© 2023 JETIR July 2023, Volume 10, Issue 7

www.jetir.org (ISSN-2349-5162)



ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Iss JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

# ANALYSIS OF WATER DISTRIBUTIONNETWORK USING EPANET

# <sup>1</sup>Jaimini C. Gawande, <sup>2</sup>Dr. M. N. Hedaoo

<sup>1</sup>Post Graduate Student, <sup>2</sup>Associate Professor <sup>1</sup>Civil Engineering Department, <sup>1</sup>Government College of Engineering Amravati, India.

Abstract : Water is a basic need of all living beings in the world. The demand for water is increasing day by day. A plumbing system is a system of engineering hydraulics and components that provide water supply. For the development of a nation, water supply networks are very important for the development of a territory because apart from supplying water for human consumption, they serve many purposes. The water network plays a virtual role in maintaining and providing a desirable quality of life to the public, a major component of which is reliability of supply. It is difficult to provide rural residents with safe water in sufficient quantity, quality and at a satisfactory pressure head while reaching an economic constraint. EPANET software is used to design and analyze a multi-village supply system considering technical sustainability. EPANET is a computer program that performs long-term simulation of hydraulic behavior in a pressurized pipeline network. Analyzing a complex hydraulic network is a time-consuming and equally tedious task. The analysis of an illustrative nine-loop hydraulic network is therefore performed by the Hardy Cross method using the Hazen-William equation. The analytical solution for the nine-loop hydraulic network is obtained using electronic spreadsheets in MS-Excel and subsequently by modeling the same hydraulic network in the EPANET computer software.

# IndexTerms - Analysis, EPANET, Hardy Cross method, Hazen-William equation, MS-Excel.

# I. INTRODUCTION

A water distribution system is a hydraulic infrastructure consisting of elements such as pipes, reservoirs, reservoirs, pumps and valves, etc. It is crucial to provide potable or potable water to end users; efficient water supply is therefore of paramount importance when designing a new water supply network or expanding an existing one. The calculation of flows and pressures in a complex network has been a major challenge and interest for those involved in the design, construction and maintenance of public water distribution systems. The analysis and design of pipe networks is a rather complex problem, especially when the network consists of a series of pipes, as is often the case in the water distribution systems of large metropolitan areas. In the absence of significant fluid acceleration, the behavior of the network can be determined by a sequence of steady-state conditions, which form a small but vital component in assessing the adequacy of the network. Such an analysis is needed whenever a significant change in consumption or delivery pattern or an added function such as water delivery, addition of auxiliary pumps, pressure control valves or storage tanks will change the system. Many methods have been used in the past to calculate flows in a pipe network, from graphical methods to the use of physical analogies to the use of mathematical models.

Network analysis methods have been developed and implemented on the computer during the last fifty years. Of all the methods available, the first and probably the most widely used method of analysis is the Hardy Cross Technique. This method makes corrections to the initial guess value by expanding the first-order energy equation in terms of a selection factor for the flow in each loop. In certain cases, the Hardy Cross method was found to converge very slowly or not at all. This leads to the design of specific measures to improve convergence and a constrained model for the design of minimum cost water distribution networks. This methodology attempted to account for uncertainties in required requirements, required pressure heads, and pipe roughness coefficients. An optimization problem was formulated as a nonlinear programming model, which is solved using the generalized reduced gradient method. It shows that uncertainties in future requirements, head requirements and pipe roughness can have a significant impact on optimal design and cost. Further, the reliability of the water distribution system can be calculated by treating the demand, pressure head, and pipe roughness as random variables. Water consumption and pipe roughness coefficient can also be

assumed to follow a probability distribution, and then a random number generator was used to generate random variable values for each node and pipe. It leads to a hydraulic simulation and calculates the pressure heads at the demand nodes if the requirements are met. Finally, hydraulic reliabilities of nodes and systems can be calculated using EPANET.

### **II. OBJECTIVES**

1. Analyze existing water distribution using EPANET and design some

measures if the current network does not meet current and future demand;

2. Study the water distribution network of loops;

3. Collect pipeline report and network connection report;

4. Analyze data using EPANET software; and

5. For checking the discharge and pressure head in the loop network.

# **III. HAZEN-WILLIAMS FORMULA**

The Hazen-Williams equation is the most used empirical equation, which can be expressed as:

 $V = 0.85 C_{\rm H} R^{0.63} S^{0.54}$ 

(3.1)

Where, CH= Pipeline Hazen-Williams Coefficient S = Slope of hydraulic head (m/m) which is equal to the ratio of pressure loss to pipe length. The CH value for cast iron pipe for design purposes is 100 (Manual, 1999).

Substitution,  $V = 4Q/(\pi D^2)$ ,  $C_H = 100$ , R = D/4, and S = hf/L in Eq. (3.1) and after some algebraic manipulations the equations can be obtained.

| $h_f = \frac{10.68LQ^{1.852}}{C_H^{1.852}D^{4.87}}$                                      | (3.2) |
|------------------------------------------------------------------------------------------|-------|
| $h_f = KQ^{1.852}$                                                                       | (3.3) |
| Where, K = Pipe resistance coefficient and is given by:<br>$\mu = \frac{10.68L}{10.68L}$ |       |
| $K = \frac{1}{C_H^{1.852} D^{4.87}}$                                                     | (3.4) |

The Hazen Williams formula expressed in the forms of the above equations can be used to calculate the head loss in a pipeline flowing under pressure.

## IV. METHODS OF BALANCING HEAD

In this method, based on the knowledge of inflows and outflows from the system, the flows in all pipes of the network are distributed in such a way as to satisfy the continuity constraints at all nodes. When the inflows and outflows are explicitly known, this will involve assigning as many flows as there are in the primary loop system. The requirement that the sum of the head losses around the primary loop be zero leads to a system of many equations. The solution of a well-determined system of nonlinear equations is influenced by a systematic relaxation known as the Hardy Cross method. In the Handy Cross head-balancing method, a trial-and-error process, the necessary flux correction formulas for assumed flows are algebraically consistent by arbitrarily assigning positive signs to clockwise flows and associated head losses and negative signs to counterclockwise flows and associated loss of head.

1. Assume clockwise flow is positive and counterclockwise flow is negative; and negative counter-clockwise flow signs and associated pressure losses; and

2. Assign a positive sign to pressure drops for flows toward the coupling and a negative sign to flows away from the coupling.

The overall procedure for the Hardy Cross balancing head loop network analysis can be summarized as follows:

Step 1: Number all nodes and pipe connections. Also the number of loops. Adopt the sign convention that pipe discharge is positive if it flows from a lower node number to a higher node number, negative otherwise. Apply the nodal continuity equation to all nodes to obtain initial pipe discharges.

Step 2: Obtain pressure in other pipes, repeat until all pipe flows are known. If there are more than two pipes with an unknown If the discharges assume arbitrary discharges in all but one pipe, use the continuity equation to obtain the discharge in the other pipes. The total number of pipes with arbitrary discharges should be equal to the total number of primary loops in the network. Calculate the corresponding K using Eq.3.4

Step 3: Assume the loop pipe flow sign convention to apply loop discharge corrections.

Step 4: Take the value of CH.

Step 5: Calculate  $\Delta Q$  for existing pipeline flows using the equation and apply algebraic pipeline corrections.

Step 6: Use a similar procedure in all loops of the pipe network. Repeat step 5 until the discharge corrections in all loops are relatively very small, i.e. within the permissible limits of  $\pm 0.2\%$ , or the sum of the pressure losses in the closed is relatively very small, i.e. within the permissible limit of  $\pm 0.150$  m. When the corrections are less than the permissible boundary limits, the predicted flows are correct and the iterations are terminated.

# V. STEPS FOR ANALYSIS USING EPANET

- 1. Draw a network representation of the distribution system.
- 2. Edit the properties of the objects that make up the system.
- 3. Describe how the system works.
- 4. Select a set of analysis options.
- 5. Perform hydraulic/water quality analysis. And

### 6. View the analysis results.

# VI. ANALYSIS OF HYDRAULIC NETWORK

The hydraulic network contains single source and nine loops as shown in Fig.6.1. In this, pipes B-G, C-F, H-G, G-F, F-E, G-J, F-K, I-J, J-K, K-L, J-O and K-N, are common to loops 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8 and 8-9 respectively. The corrections in discharges  $\Delta Q1$ ,  $\Delta Q2$ ,  $\Delta Q3$ ,  $\Delta Q4$ ,  $\Delta Q5$ ,  $\Delta Q6$ ,  $\Delta Q7$ ,  $\Delta Q8$  and  $\Delta Q9$  were applied to find discharge in the pipes. Required data for the analysis of the hydraulic network containing flow and resistance for pipes are given in Table 6.1.



Fig.6.1: Nine loop Example with demands in (m3/s)

| Node | Nodal<br>Flow,m3/sec | Pipe | L,m | Dia,mm | Pipe Flow,m3/sec |
|------|----------------------|------|-----|--------|------------------|
| А    | 0.010                | AB   | 150 | 50     | 0.060            |
| В    | 0.010                | AH   | 150 | 50     | 0.070            |
| С    | 0.010                | BC   | 150 | 50     | 0.030            |
| D    | 0.008                | BG   | 150 | 50     | 0.020            |
| Е    | 0.010                | CD   | 150 | 50     | 0.010            |
| F    | 0.013                | CF   | 150 | 50     | 0.013            |
| G    | 0.026                | DE   | 150 | 50     | 0.002            |
| Н    | 0.200                | HG   | 150 | 50     | 0.060            |
| Ι    | 0.012                | HI   | 150 | 50     | 0.070            |
| J    | 0.0133               | GF   | 150 | 50     | 0.030            |
| K    | 0.0133               | GJ   | 150 | 50     | 0.024            |
| L    | 0.0177               | FE   | 150 | 50     | 0.017            |
| М    | 0.0133               | FK   | 150 | 50     | 0.010            |
| Ν    | 0.0188               | EL   | 150 | 50     | 0.009            |
| 0    | 0.0133               | IJ   | 150 | 50     | 0.020            |
| Р    | 0.0133               | IP   | 150 | 50     | 0.038            |
|      |                      | JK   | 150 | 50     | 0.0207           |
|      |                      | JO   | 150 | 50     | 0.010            |
|      |                      | KL   | 150 | 50     | 0.010            |
|      |                      | KN   | 150 | 50     | 0.0074           |
|      |                      | LM   | 150 | 50     | 0.0013           |
|      |                      | PO   | 150 | 50     | 0.0247           |
|      |                      | ON   | 150 | 50     | 0.0214           |
|      |                      | MN   | 150 | 50     | 0.0100           |

| T | able | 6.1 | : Flow, | Lengt | h and | l Dian | neter | of Pipes | s for | HN |
|---|------|-----|---------|-------|-------|--------|-------|----------|-------|----|
|   |      |     |         |       |       |        |       |          |       |    |

# VII. ANALYSIS OF HYDRAULIC NETWORK USING HARDY CROSS METHOD

The relevant calculations required for iteration 1 and 4 for hydraulic networks (HN) 1 are listed in Table 7.1

|                | Table 7.1. Relevant calculations required for iteration 1 and 4           |     |             |        |            |             |         |         |         |  |  |  |
|----------------|---------------------------------------------------------------------------|-----|-------------|--------|------------|-------------|---------|---------|---------|--|--|--|
|                | ITERATION 1                                                               |     |             |        |            |             |         |         |         |  |  |  |
| LOOP 1 (ABGHA) |                                                                           |     |             |        |            |             |         |         |         |  |  |  |
| PIPE           | PIPEDLKQ $h_f=KQ^{1.852}$ 1.852KQ^{0.852} $\Delta$ QQc%EQ                 |     |             |        |            |             |         |         |         |  |  |  |
| AB             | 0.05                                                                      | 150 | 368170.9080 | 0.060  | 2009.9515  | 62040.5039  | -0.0134 | 0.0466  | 22.3339 |  |  |  |
| BG             | 0.05                                                                      | 150 | 368170.9080 | 0.020  | 262.7586   | 24331.4509  | -0.0134 | 0.0066  | 67.0016 |  |  |  |
| GH             | 0.05                                                                      | 150 | 368170.9080 | -0.060 | -2009.9515 | 62040.5039  | -0.0134 | -0.0734 | 22.3339 |  |  |  |
| HA             | HA 0.05 150 368170.9080 0.070 2674.0593 70747.9697 -0.0134 0.0566 19.1433 |     |             |        |            |             |         |         |         |  |  |  |
|                |                                                                           |     |             |        | 2936.8180  | 219160.4283 |         |         |         |  |  |  |

| Table 7.1: Relevant calculation | s required for iteration 1 and 4 |
|---------------------------------|----------------------------------|
|---------------------------------|----------------------------------|

|      | LOOP 2 (BCFGB) |     |             |        |                                     |                          |            |         |         |  |  |  |  |
|------|----------------|-----|-------------|--------|-------------------------------------|--------------------------|------------|---------|---------|--|--|--|--|
| PIPE | D              | L   | K           | Q      | h <sub>f</sub> =KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | $\Delta Q$ | Qc      | %EQ     |  |  |  |  |
| BC   | 0.05           | 150 | 368170.9080 | 0.030  | 556.7728                            | 34371.4426               | 0.0013     | 0.0313  | 4.3796  |  |  |  |  |
| CF   | 0.05           | 150 | 368170.9080 | 0.013  | 118.3239                            | 16856.6080               | 0.0013     | 0.0143  | 10.1067 |  |  |  |  |
| FG   | 0.05           | 150 | 368170.9080 | -0.030 | -556.7728                           | 34371.4426               | 0.0013     | -0.0287 | 4.3796  |  |  |  |  |
| GB   | 0.05           | 150 | 368170.9080 | -0.020 | -262.7586                           | 24331.4509               | 0.0013     | -0.0187 | 6.5693  |  |  |  |  |
|      |                |     |             |        | -144.4347                           | 109930.9440              |            |         |         |  |  |  |  |
|      |                |     |             |        |                                     |                          |            |         |         |  |  |  |  |

|      | LOOP 3 (CDEFC) |     |             |        |                                     |                          |            |         |          |  |  |  |  |
|------|----------------|-----|-------------|--------|-------------------------------------|--------------------------|------------|---------|----------|--|--|--|--|
| PIPE | D              | L   | K           | Q      | h <sub>f</sub> =KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | $\Delta Q$ | Qc      | %EQ      |  |  |  |  |
| CD   | 0.05           | 150 | 368170.9080 | 0.010  | 72.7863                             | 13480.0173               | 0.0037     | 0.0137  | 36.9951  |  |  |  |  |
| DE   | 0.05           | 150 | 368170.9080 | 0.002  | 3.6945                              | 3421.1176                | 0.0037     | 0.0057  | 184.9754 |  |  |  |  |
| EF   | 0.05           | 150 | 368170.9080 | -0.017 | -194.4647                           | 21185.2177               | 0.0037     | -0.0133 | 21.7618  |  |  |  |  |
| FC   | 0.05           | 150 | 368170.9080 | -0.010 | -72.7863                            | 13480.0173               | 0.0037     | -0.0063 | 36.9951  |  |  |  |  |
|      |                |     |             |        | <mark>-190.7702</mark>              | 51566.3701               |            |         |          |  |  |  |  |
|      |                |     |             |        |                                     |                          |            |         |          |  |  |  |  |

|      | LOOP 4 (HGJIH) |     |             |        |                                     |                          |        |         |         |  |  |  |  |
|------|----------------|-----|-------------|--------|-------------------------------------|--------------------------|--------|---------|---------|--|--|--|--|
| PIPE | D              | L   | K           | Q      | h <sub>f</sub> =KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | ΔQ     | Qc      | %EQ     |  |  |  |  |
| HG   | 0.05           | 150 | 368170.9080 | 0.060  | 2009.9515                           | 62040.5039               | 0.0030 | 0.0630  | 5.0175  |  |  |  |  |
| GJ   | 0.05           | 150 | 368170.9080 | 0.024  | 368.2991                            | 28420.4159               | 0.0030 | 0.0270  | 12.5437 |  |  |  |  |
| Л    | 0.05           | 150 | 368170.9080 | -0.020 | -262.7586                           | 24331.4509               | 0.0030 | -0.0170 | 15.0524 |  |  |  |  |
| IH   | 0.05           | 150 | 368170.9080 | -0.070 | <mark>-2674</mark> .0593            | 70747.9697               | 0.0030 | -0.0670 | 4.3007  |  |  |  |  |
|      |                |     |             |        | -558.5673                           | 185540.3403              |        |         |         |  |  |  |  |

|      | LOOP 5 (GFKJG) |     |             |         |                                     |                          |        |         |        |  |  |  |  |  |
|------|----------------|-----|-------------|---------|-------------------------------------|--------------------------|--------|---------|--------|--|--|--|--|--|
| PIPE | D              | L   | K           | Q       | h <sub>f</sub> =KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | ΔQ     | Qc      | %EQ    |  |  |  |  |  |
| GF   | 0.05           | 150 | 368170.9080 | 0.030   | 556.7728                            | 34371.4426               | 0.0002 | 0.0302  | 0.6179 |  |  |  |  |  |
| FK   | 0.05           | 150 | 368170.9080 | 0.010   | 72.7863                             | 13480.0173               | 0.0002 | 0.0102  | 1.8538 |  |  |  |  |  |
| KJ   | 0.05           | 150 | 368170.9080 | -0.0207 | -280.0442                           | 25055.1603               | 0.0002 | -0.0205 | 0.8956 |  |  |  |  |  |
| JG   | 0.05           | 150 | 368170.9080 | -0.024  | -368.2991                           | 28420.4159               | 0.0002 | -0.0238 | 0.7724 |  |  |  |  |  |
|      |                |     |             |         | -18.7842                            | 101327.0361              |        |         |        |  |  |  |  |  |

|      | LOOP 6 (FELKF) |     |             |        |                                     |                          |         |         |         |  |  |  |  |
|------|----------------|-----|-------------|--------|-------------------------------------|--------------------------|---------|---------|---------|--|--|--|--|
| PIPE | D              | L   | K           | Q      | h <sub>f</sub> =KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | ΔQ      | Qc      | %EQ     |  |  |  |  |
| FE   | 0.05           | 150 | 368170.9080 | 0.017  | 194.4647                            | 21185.2177               | -0.0018 | 0.0152  | 10.5818 |  |  |  |  |
| EL   | 0.05           | 150 | 368170.9080 | 0.009  | 59.8834                             | 12322.6771               | -0.0018 | 0.0072  | 19.9878 |  |  |  |  |
| LK   | 0.05           | 150 | 368170.9080 | -0.010 | -72.7863                            | 13480.0173               | -0.0018 | -0.0118 | 17.9890 |  |  |  |  |
| KF   | 0.05           | 150 | 368170.9080 | -0.010 | -72.7863                            | 13480.0173               | -0.0018 | -0.0118 | 17.9890 |  |  |  |  |
|      |                |     |             |        | 108.7756                            | 60467.9295               |         |         |         |  |  |  |  |

|      | LOOP 7 (IJOPI) |     |             |         |                        |                          |            |         |         |  |  |  |
|------|----------------|-----|-------------|---------|------------------------|--------------------------|------------|---------|---------|--|--|--|
| PIPE | D              | L   | K           | Q       | hf=KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | $\Delta Q$ | Qc      | %EQ     |  |  |  |
| IJ   | 0.05           | 150 | 368170.9080 | 0.020   | 262.7586               | 24331.4509               | 0.0084     | 0.0284  | 42.0040 |  |  |  |
| JO   | 0.05           | 150 | 368170.9080 | 0.010   | 72.7863                | 13480.0173               | 0.0084     | 0.0184  | 84.0080 |  |  |  |
| OP   | 0.05           | 150 | 368170.9080 | -0.0247 | -388.4403              | 29125.1557               | 0.0084     | -0.0163 | 34.0113 |  |  |  |
| PI   | 0.05           | 150 | 368170.9080 | -0.038  | -862.5985              | 42040.3260               | 0.0084     | -0.0296 | 22.1074 |  |  |  |

# © 2023 JETIR July 2023, Volume 10, Issue 7

|      |      |     |             |        | -915.4938                           | 108976.9499              |            |        |        |
|------|------|-----|-------------|--------|-------------------------------------|--------------------------|------------|--------|--------|
|      |      |     |             | L      | OOP 8 (JKNO                         | J)                       |            |        |        |
| PIPE | D    | L   | K           | Q      | h <sub>f</sub> =KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | $\Delta Q$ | Qc     | %EQ    |
| JK   | 0.05 | 150 | 368170.9080 | 0.0207 | 280.0442                            | 25055.1603               | 0.0007     | 0.0214 | 3.1609 |
| KN   | 0.05 | 150 | 368170.9080 | 0.0074 | 41.6741                             | 10429.7975               | 0.0007     | 0.0081 | 8.8420 |

|    | 0.00 |     | 2 2 2 2 . 2 . 5 . 5 . 5 . 5 |         |           |            |        | 0.000-  |        |
|----|------|-----|-----------------------------|---------|-----------|------------|--------|---------|--------|
| NO | 0.05 | 150 | 368170.9080                 | -0.0214 | -297.8350 | 25775.2559 | 0.0007 | -0.0207 | 3.0575 |
| OJ | 0.05 | 150 | 368170.9080                 | -0.010  | -72.7863  | 13480.0173 | 0.0007 | -0.0093 | 6.5431 |
|    |      |     |                             |         | -48.9030  | 74740.2310 |        |         |        |

|      |      |     |             | L       | OOP 9 (KLMN            | <b>K</b> )               |        |         |         |
|------|------|-----|-------------|---------|------------------------|--------------------------|--------|---------|---------|
| PIPE | D    | L   | K           | Q       | hf=KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | ΔQ     | Qc      | %EQ     |
| KL   | 0.05 | 150 | 368170.9080 | 0.010   | 72.7863                | 13480.0173               | 0.0010 | 0.0110  | 10.0630 |
| LM   | 0.05 | 150 | 368170.9080 | 0.0013  | 1.6637                 | 2370.1192                | 0.0010 | 0.0023  | 77.4077 |
| MN   | 0.05 | 150 | 368170.9080 | -0.0100 | -72.7863               | 13480.0173               | 0.0010 | -0.0090 | 10.0630 |
| NK   | 0.05 | 150 | 368170.9080 | -0.0074 | -41.6741               | 10429.7975               | 0.0010 | -0.0064 | 13.5987 |
|      |      |     |             |         | -40.0104               | 39759.9514               |        |         |         |

|      |      |     |             | Ι      | <b>TERATION 4</b>      |                          |        |         |        |
|------|------|-----|-------------|--------|------------------------|--------------------------|--------|---------|--------|
|      |      |     |             | LC     | OOP 1 (ABGHA           |                          |        |         |        |
| PIPE | D    | L   | K           | Q      | hf=KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | ΔQ     | Qc      | %EQ    |
| AB   | 0.05 | 150 | 368170.9080 | 0.046  | 1212.7396              | 49173.7739               | 0.0000 | 0.0457  | 0.0000 |
| BG   | 0.05 | 150 | 368170.9080 | 0.006  | 25.4883                | 8318.4975                | 0.0000 | 0.0057  | 0.0000 |
| GH   | 0.05 | 150 | 368170.9080 | -0.074 | -2988.1019             | 74455.9261               | 0.0000 | -0.0743 | 0.0000 |
| HA   | 0.05 | 150 | 368170.9080 | 0.056  | 1749.8740              | 58209.0442               | 0.0000 | 0.0557  | 0.0000 |
|      |      |     |             |        | 0.0000                 | 190157.2417              |        |         |        |

|      |      |     |             |                     | DOP 2 (BCFGB)          |                          |        |         |        |
|------|------|-----|-------------|---------------------|------------------------|--------------------------|--------|---------|--------|
| PIPE | D    | L   | K           | Q                   | hf=KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | ΔQ     | Qc      | %EQ    |
| BC   | 0.05 | 150 | 368170.9080 | 0.031               | <u>602.</u> 7576       | 35649.4644               | 0.0000 | 0.0313  | 0.0000 |
| CF   | 0.05 | 150 | 368170.9080 | 0. <mark>014</mark> | <u>141</u> .4123       | 18297.1821               | 0.0000 | 0.0143  | 0.0000 |
| FG   | 0.05 | 150 | 368170.9080 | -0.029              | -512.4720              | 33085.1099               | 0.0000 | -0.0287 | 0.0000 |
| GB   | 0.05 | 150 | 368170.9080 | -0.019              | -231.6979              | 22963.2618               | 0.0000 | -0.0187 | 0.0000 |
|      |      |     |             |                     | 0.0000                 | 109995.0183              |        |         |        |
|      |      |     |             |                     |                        |                          |        | •       |        |

|      |      |     |             | LC     | O <mark>OP 3 (CDEFC)</mark>         |                          |        |         |        |
|------|------|-----|-------------|--------|-------------------------------------|--------------------------|--------|---------|--------|
| PIPE | D    | L   | K           | Q      | h <sub>f</sub> =KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | ΔQ     | Qc      | %EQ    |
| CD   | 0.05 | 150 | 368170.9080 | 0.014  | 129.8108                            | 17590.6354               | 0.0000 | 0.0137  | 0.0000 |
| DE   | 0.05 | 150 | 368170.9080 | 0.006  | 25.4242                             | 8308.8591                | 0.0000 | 0.0057  | 0.0000 |
| EF   | 0.05 | 150 | 368170.9080 | -0.013 | -123.9999                           | 17223.9022               | 0.0000 | -0.0133 | 0.0000 |
| FC   | 0.05 | 150 | 368170.9080 | -0.006 | -31.2350                            | 9134.1281                | 0.0000 | -0.0063 | 0.0000 |
|      |      |     |             |        | 0.0000                              | 52257.5248               |        |         |        |
|      | •    | •   |             |        |                                     |                          |        | •       | •      |

|      |      |     |             | LO     | OOP 4 (HGJIH)          |                          |        |         |        |
|------|------|-----|-------------|--------|------------------------|--------------------------|--------|---------|--------|
| PIPE | D    | L   | K           | Q      | hf=KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | ΔQ     | Qc      | %EQ    |
| HG   | 0.05 | 150 | 368170.9080 | 0.063  | 2200.7471              | 64683.5590               | 0.0000 | 0.0630  | 0.0000 |
| GJ   | 0.05 | 150 | 368170.9080 | 0.027  | 458.4230               | 31431.4739               | 0.0000 | 0.0270  | 0.0000 |
| JI   | 0.05 | 150 | 368170.9080 | -0.017 | -194.2292              | 21173.4099               | 0.0000 | -0.0170 | 0.0000 |
| IH   | 0.05 | 150 | 368170.9080 | -0.067 | -2464.9408             | 68146.6894               | 0.0000 | -0.0670 | 0.0000 |
|      |      |     |             |        | 0.0000                 | 185435.1323              |        |         |        |

|      |      |     |             | LC      | OOP 5 (GFKJG)          |                          |            |         |        |
|------|------|-----|-------------|---------|------------------------|--------------------------|------------|---------|--------|
| PIPE | D    | L   | K           | Q       | hf=KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | $\Delta Q$ | Qc      | %EQ    |
| GF   | 0.05 | 150 | 368170.9080 | 0.030   | 563.1610               | 34552.3068               | 0.0000     | 0.0302  | 0.0000 |
| FK   | 0.05 | 150 | 368170.9080 | 0.010   | 75.3047                | 13692.6221               | 0.0000     | 0.0102  | 0.0000 |
| KJ   | 0.05 | 150 | 368170.9080 | -0.0205 | -275.4175              | 24863.8713               | 0.0000     | -0.0205 | 0.0000 |
| JG   | 0.05 | 150 | 368170.9080 | -0.024  | -363.0482              | 28233.2863               | 0.0000     | -0.0238 | 0.0000 |
|      |      |     |             |         | 0.0000                 | 101342.0865              |            |         |        |

LOOP 6 (FELKF)

| PIPE | D    | L   | K           | Q      | hf=KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | ΔQ     | Qc      | %EQ    |
|------|------|-----|-------------|--------|------------------------|--------------------------|--------|---------|--------|
| FE   | 0.05 | 150 | 368170.9080 | 0.015  | 158.0980               | 19260.5386               | 0.0000 | 0.0152  | 0.0000 |
| EL   | 0.05 | 150 | 368170.9080 | 0.007  | 39.6320                | 10191.4847               | 0.0000 | 0.0072  | 0.0000 |
| LK   | 0.05 | 150 | 368170.9080 | -0.012 | -98.8650               | 15519.3334               | 0.0000 | -0.0118 | 0.0000 |
| KF   | 0.05 | 150 | 368170.9080 | -0.012 | -98.8650               | 15519.3334               | 0.0000 | -0.0118 | 0.0000 |
|      |      |     |             |        | 0.0000                 | 60490.6900               |        |         |        |

|      |      |     |             | L       | OOP 7 (IJOPI)          |                          |            |         |        |
|------|------|-----|-------------|---------|------------------------|--------------------------|------------|---------|--------|
| PIPE | D    | L   | K           | Q       | hf=KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | $\Delta Q$ | Qc      | %EQ    |
| IJ   | 0.05 | 150 | 368170.9080 | 0.028   | 501.4820               | 32756.7931               | 0.0000     | 0.0284  | 0.0000 |
| JO   | 0.05 | 150 | 368170.9080 | 0.018   | 224.0905               | 22613.2800               | 0.0000     | 0.0184  | 0.0000 |
| OP   | 0.05 | 150 | 368170.9080 | -0.0163 | -180.8630              | 20490.1737               | 0.0000     | -0.0163 | 0.0000 |
| PI   | 0.05 | 150 | 368170.9080 | -0.030  | -544.7095              | 34026.8181               | 0.0000     | -0.0296 | 0.0000 |
|      |      |     |             |         | 0.0000                 | 109887.0650              |            |         |        |

|      |      |     |             | LO      | OOP 8 (JKNOJ)          |                          |            |         |        |
|------|------|-----|-------------|---------|------------------------|--------------------------|------------|---------|--------|
| PIPE | D    | L   | K           | Q       | hf=KQ <sup>1.852</sup> | 1.852KQ <sup>0.852</sup> | $\Delta Q$ | Qc      | %EQ    |
| JK   | 0.05 | 150 | 368170.9080 | 0.0214  | 296.6550               | 25728.2244               | 0.0000     | 0.0214  | 0.0000 |
| KN   | 0.05 | 150 | 368170.9080 | 0.0081  | 48.7529                | 11210.3830               | 0.0000     | 0.0081  | 0.0000 |
| NO   | 0.05 | 150 | 368170.9080 | -0.0207 | -281.1934              | 25102.4086               | 0.0000     | -0.0207 | 0.0000 |
| OJ   | 0.05 | 150 | 368170.9080 | -0.009  | -64.2145               | 12724.9662               | 0.0000     | -0.0093 | 0.0000 |
|      |      |     |             |         | 0.0000                 | 74765.9822               |            |         |        |

|      |      |     |             | LO      | OP 9 (KLMNK                         | )                         |        |         |        |
|------|------|-----|-------------|---------|-------------------------------------|---------------------------|--------|---------|--------|
| PIPE | D    | L   | K           | Q       | h <sub>f</sub> =KQ <sup>1.852</sup> | -1.852KQ <sup>0.852</sup> | ΔQ     | Qc      | %EQ    |
| KL   | 0.05 | 150 | 368170.9080 | 0.011   | 86.8775                             | 14623.3981                | 0.0000 | 0.0110  | 0.0000 |
| LM   | 0.05 | 150 | 368170.9080 | 0.0023  | 4.7964                              | 3857.6156                 | 0.0000 | 0.0023  | 0.0000 |
| MN   | 0.05 | 150 | 368170.9080 | -0.0090 | -59.8500                            | 12319.5109                | 0.0000 | -0.0090 | 0.0000 |
| NK   | 0.05 | 150 | 368170.9080 | -0.0064 | -31.8239                            | 9212.9527                 | 0.0000 | -0.0064 | 0.0000 |
|      |      |     |             | H       | 0.0000                              | 40013.4773                |        |         | 7      |

# VIII. ANALYSIS OF HYDRAULIC NETWORK USING EPANET

From the given procedure, the results of the analysis will be in the Project option under which Graphs and Tables can be displayed for links and nodes involving various parameters.

## IX. INPUT

An illustrative example was modeled in EPANET and is shown in Fig.9.1



Fig.9.1: Illustrative example of HN using EPANET

# X. OUTPUT

The results obtained are described below:

Table 10.1 and 10.2 show the result obtained for all pipes and nodes in the network. In the pipes As a result, the output includes flow rate, pipe velocity and unit head loss. In nodes results output includes height, altitude and pressure.

| Link ID | Length<br>m | Diameter<br>mm | Roughness | Flow<br>LPS | Velocity<br>m/s | Unit Headloss<br>m/km | Friction Factor | Status |
|---------|-------------|----------------|-----------|-------------|-----------------|-----------------------|-----------------|--------|
| Pipe 1  | 150         | 50             | 100       | 0.45        | 0.23            | 2.96                  | 0.054           | Open   |
| Pipe 2  | 150         | 50             | 100       | 0.41        | 0.21            | 2.40                  | 0.055           | Open   |
| Pipe 3  | 150         | 50             | 100       | 0.25        | 0.13            | 1.00                  | 0.059           | Open   |
| Pipe 4  | 150         | 50             | 100       | 0.24        | 0.12            | 0.94                  | 0.059           | Open   |
| Pipe 5  | 150         | 50             | 100       | 0.46        | 0.24            | 3.09                  | 0.054           | Open   |
| Pipe 6  | 150         | 50             | 100       | 0.04        | 0.02            | 0.03                  | 0.078           | Open   |
| Pipe 7  | 150         | 50             | 100       | 0.14        | 0.07            | 0.35                  | 0.064           | Open   |
| Pipe 8  | 150         | 50             | 100       | 0.67        | 0.34            | 6.08                  | 0.051           | Open   |
| Pipe 9  | 150         | 50             | 100       | 0.43        | 0.22            | 2.71                  | 0.055           | Open   |
| Pipe 10 | 150         | 50             | 100       | 0.33        | 0.17            | 1.59                  | 0.057           | Open   |
| Pipe 11 | 150         | 50             | 100       | 0.62        | 0.32            | 5.31                  | 0.052           | Open   |
| Pipe 12 | 150         | 50             | 100       | 0.25        | 0.13            | 0.98                  | 0.059           | Open   |
| Pipe 13 | 150         | 50             | 100       | 0.24        | 0.12            | 0.90                  | 0.060           | Open   |
| Pipe 14 | 150         | 50             | 100       | 0.56        | 0.29            | 4.36                  | 0.053           | Open   |
| Pipe 15 | 150         | 50             | 100       | 0.34        | 0.17            | 1.75                  | 0.057           | Open   |
| Pipe 16 | 150         | 50             | 100       | 0.43        | 0.22            | 2.63                  | 0.055           | Open   |
| Pipe 17 | 150         | 50             | 100       | 0.61        | 0.31            | 5.05                  | 0.052           | Open   |
| Pipe 19 | 150         | 50             | 100       | 0.04        | 0.02            | 0.04                  | 0.076           | Open   |
| Pipe 20 | 150         | 50             | 100       | 0.15        | 0.08            | 0.39                  | 0.064           | Open   |
| Pipe 21 | 150         | 50             | 100       | 0.27        | 0.14            | 1.12                  | 0.059           | Open   |
| Pipe 22 | 150         | 50             | 100       | 0.26        | 0.13            | 1.02                  | 0.059           | Open   |
| Pipe 23 | 150         | 50             | 100       | 0.39        | 0.20            | 2.28                  | 0.055           | Open   |
| Pipe 24 | 150         | 50             | 100       | 0.42        | 0.21            | 2.57                  | 0.055           | Open   |
| Pipe 18 | 150         | 50             | 100       | 0.41        | 0.21            | 2.44                  | 0.055           | Open   |

| Fahle | 10.1. | Pine | Resul | te |
|-------|-------|------|-------|----|
| able  | 10.11 | Pipe | Resul | ιs |

| III Network Table - Nodes |                |                    |           |               |         |  |
|---------------------------|----------------|--------------------|-----------|---------------|---------|--|
| Node ID                   | Elevation<br>m | Base Demand<br>LPS | Head<br>m | Pressure<br>m | Quality |  |
| Junc J1                   | 97             | 0.010              | 109.10    | 12.10         | 0.00    |  |
| Junc J2                   | 96             | 0.010              | 108.65    | 12.65         | 0.00    |  |
| Junc J3                   | 96             | 0.010              | 108.29    | 12.29         | 0.00    |  |
| Junc J4                   | 96             | 0.008              | 108.14    | 12.14         | 0.00    |  |
| June J5                   | 100            | 0                  | 109.56    | 9.56          | 0.00    |  |
| Junc J6                   | 99             | 0.026              | 108.65    | 9.65          | 0.00    |  |
| Junc J7                   | 97             | 0.013              | 108.24    | 11.24         | 0.00    |  |
| Junc J8                   | 96             | 0.010              | 108.00    | 12.00         | 0.00    |  |
| Junc J9                   | 98             | 0.012              | 108.76    | 10.76         | 0.00    |  |
| June J10                  | 99             | 0.0133             | 108.50    | 9.50          | 0.00    |  |
| Junc J11                  | 96             | 0.0133             | 108.11    | 12.11         | 0.00    |  |
| Junc J12                  | 96             | 0.0177             | 107.35    | 11.35         | 0.00    |  |
| Junc J13                  | 96             | 0.0133             | 108.60    | 12.60         | 0.00    |  |
| Junc J14                  | 96             | 0.0133             | 108.44    | 12.44         | 0.00    |  |
| Junc J15                  | 96             | 0.0188             | 108.10    | 12.10         | 0.00    |  |
| Junc J16                  | 96             | 0.0113             | 107.72    | 11.72         | 0.00    |  |
| Resvr 17                  | 115            | #N/A               | 115.00    | 0.00          | 0.00    |  |
| Resvr 18                  | 103            | #N/A               | 103.00    | 0.00          | 0.0     |  |

# Table 10.2: Node Results

### XI. RESULT AND DISCUSSION

The results of the analysis of the nine-loop hydraulic network analyzed by the Hardy Cross method. For this method, acceptable results were obtained in the 4th iteration meeting the criteria of  $\Sigma hf \le 0.150$  m; acceptable results were obtained in the 3rd iteration meeting the criteria of  $\Sigma hf \le 0.0001$  m.

### **11.1 Junction Report**

The hydraulic network of nine loops consists of 16 junctions. Results for an illustrative nine-loop problem are obtained using EPANET software. The pressure is determined using the Hazen-Williams approach. For the elevation of the reservoir equal to 15 meters, none of the nine intersections shows a vacuum height. Vacuum height means that the hydraulic drop line lies below the delivery level. This problem can be overcome by increasing the diameter of the supply pipe or by providing auxiliary pumps. Other connections show fluctuations in pressure head.

### 11.2 Pipe Report

The nine-loop hydraulic network consists of 16 pipes. Following are some of the findings of the study. The error between the actual flow rate and the flow rate calculated using the EPANET software is compared. The actual flow rate is almost the same as the flow rate obtained using EPANET. The head loss calculated by EPANET is almost equal to the actual head loss.

## **XII.** CONCLUSION

The above study revealed that; EPANET software saves time and has no limitations on the number of nodes, the number of pipes or pumps that are modeled and analyzed in it to easily solve complex networks. As increasing the number of iterations, the head loss value approaches zero and for verification the obtained answers are used to equalize the flows at each point. Results obtained using Hardy cross method and the EPANET software are almost the same.

## REFERENCES

- [1] Rossmann, L.A. 2000. EPANET 2.0 User's Guide. Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cinchinnati.
- [2] Yadav, V.G., Mehta, D. and Waikhom, S.I. Study of water distribution network using EPANET. International Journal of Advanced Research in Engineering Science and Management ISSN:2394-1766.
- [3] Ramana, G. V., Sudheer, V. S. S. and Rajasekhar, B. 2015. Network analysis of rural water distribution system using EPANET. 13th Conference on Computing for the Water Industry, CCWI.
- [4] Kakadiya, S., Mavani K., Mehta, D., and Yadav, V. 2016. Simulation of Existing Water Distribution Network Using EPANET: A Case Study of Surat City, Global Research and Development Journal for Engineering, Recent Advances in Civil Engineering for global sustainability e-ISSN: 2455-5703.
- [5] Swamee, P. K. and Sharma, A. K. 1990. Decomposition of large water-distribution systems. Journal of Environmental Engineering, Vol. 116, no. 2, ASCE, ISSN 0733-9372/90/0002-0269.
- [6] Lungariya, P., Katharotia, N., Mehta, D. and Waikhom, S. 2016. Analysis of Continuous Water Distribution in Surat City Using EPANET: A Case Study, Global Research and Development Journal for Engineering, Recent Advances in Civil Engineering for global sustainability e-ISSN: 2455-5703.