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Abstract :  This research paper presents the construction of a new subclass of cyclic codes with composite length. We provide the 

generator matrix for the constructed cyclic codes, which can be used to efficiently encode and decode data. Additionally, we prove 

some results related to their weight distribution. Our findings contribute to the theory of cyclic codes and have potential 

applications in various fields, such as communication systems, error-correcting codes, and cryptography. 
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I. INTRODUCTION 

Cyclic codes are a fascinating category of linear codes. While their error correcting capability may not be as strong as that  of 

general linear codes, they find extensive use in storage and communication systems due to their efficient encoding and decoding 

algorithms ([3][4][6]). Well-known families of cyclic codes include BCH codes, Golay codes, binary Hamming codes, and 

quadratic residue codes, among others. Despite being studied for a considerable period, the construction of cyclic codes with 

favorable parameters and properties remains an intriguing question, particularly considering their newfound applications in the 

construction of locally recoverable codes ([1][8][5]) and convolutional codes ([7]). 

In this study, we focus on constructing cyclic codes with good properties and parameters for composite lengths. Let us consider a 

finite field 𝐹𝑞 of order 𝑞, where 𝑛 and 𝑟 are distinct odd primes satisfying gcd(𝑛𝑟, 𝑞) = 1, and 𝑞 is a quadratic residue for both 𝑛 

and 𝑟. Ding ([2]) presented three constructions of cyclic codes of length 𝑛𝑟 and dimensions 
(𝑛𝑟+1)

2
 over 𝐹𝑞 by utilizing quadratic 

residue codes of lengths 𝑛 and 𝑟 separately. Building upon Ding's work, Maosheng et al. ([9][10]) provided a general theory for 

cyclic codes of composite length 𝑛𝑟 and partially explained the reason behind the relatively large minimum distance of cyclic 

codes obtained from Ding's constructions. They also introduced a general construction of cyclic codes with length 𝑛𝑟 and 

dimension 
(𝑛+1)𝑟

2
 based on quadratic residue codes of length 𝑛. 

The second section of this research paper provides an introduction to cyclic codes, which are linear error-correcting codes widely 

used in information and communication technology. We discuss their properties and algebraic structure, drawing upon the theory 

of finite fields. In the third section, concatenated codes (Forney, 1965) are briefly overviewed along with their properties. The 

fourth section presents a construction approach for a specific class of cyclic codes with composite length. Subsequently, in the 

fifth section, we provide the generator matrix for the constructed cyclic code, a crucial tool for both encoding and decoding 

processes. The sixth section focuses on proving results related to the weight distribution of the constructed cyclic code, a vital 

measure of its errorcorrecting capability. 

Finally, the last section concludes the research paper by summarizing the main findings and contributions. We discuss potential 

applications of the constructed cyclic code and suggest future research directions in the field of coding theory. 

 

II. PRELIMINARIES 

Cyclic codes are a class of linear error-correcting codes widely employed in information and communication technology. They 

possess a distinct algebraic structure that enables efficient encoding and decoding procedures. In this section, we present an 

overview of the fundamental concepts related to cyclic codes. For a more comprehensive understanding, interested readers may 

refer to Huffman and Pless (2010) and Ling and Xing (2004). 
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Let 𝔽𝑞 denote a finite field comprising 𝑞 elements. A cyclic code of length 𝑛 over 𝔽𝑞 is a linear code, denoted as 𝐶, which 

exhibits the cyclic shift property. This property implies that if a codeword 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1) belongs to 𝐶, then its cyclic shift 
(𝑐𝑛−1, 𝑐0, 𝑐1, … , 𝑐𝑛−2) also belongs to 𝐶. Essentially, cyclic codes remain invariant under cyclic shifts of their codewords. 

Cyclic codes can be defined by their generator polynomial 𝑔(𝑥), which is a divisor of the polynomial 𝑥𝑛 − 1 in the polynomial 

ring 𝔽𝑞[𝑥]. Specifically, the code 𝐶 comprises all polynomials divisible by 𝑔(𝑥), denoted as 𝐶 = {𝑓(𝑥) ∈ 𝔽𝑞[𝑥] ∣ 𝑔(𝑥) divides 

𝑓(𝑥)}. The generator polynomial 𝑔(𝑥) possesses a degree of 𝑘, where 𝑘 represents the code's dimension. 

The generator polynomial 𝑔(𝑥) facilitates the construction of the code's generator matrix, denoted as 𝐺. This matrix is of 

dimensions 𝑘 × 𝑛, where the 𝑖-th row corresponds to the coefficients of the polynomial 𝑥𝑖−1𝑔(𝑥) for 1 ⩽ 𝑖 ⩽ 𝑘. Consequently, 

any codeword 𝑐 from the code 𝐶 can be obtained by the matrixvector multiplication 𝑐 = 𝑚𝐺, where 𝑚 represents a message 

vector of length 𝑘. 

Additionally, the parity check matrix 𝐻 of the code 𝐶 can be derived from the generator polynomial 𝑔(𝑥). This matrix has 

dimensions (𝑛 − 𝑘) × 𝑛, with its rows being the coefficients of the polynomial 𝑥𝑖−1(𝑥𝑛 − 1)/𝑔(𝑥) for 1 ⩽ 𝑖 ⩽ 𝑛 − 𝑘. Notably, 

any codeword 𝑐 from the code 𝐶 satisfies the equation 𝑐𝐻𝑇 = 0, where 𝐻𝑇  represents the transpose of 𝐻. 

Cyclic codes possess several properties that render them valuable for error correction. For instance, the minimum distance of a 

cyclic code can be determined using the generator polynomial method. This involves computing the roots of 𝑔(𝑥) over an 

extension field of 𝔽𝑞. Moreover, cyclic codes can be efficiently encoded and decoded using techniques like the Berlekamp-

Massey algorithm and the Reed-Solomon algorithm. These properties establish cyclic codes as powerful tools within the field of 

coding theory. 

III. CONCATENATED CODES 

We recall the definition and basic properties of concatenated codes in this section. Throughout the text, 𝔽𝑞 denotes the finite field 

with 𝑞 elements, where 𝑞 is a prime power. 

For positive integers 𝑘 ⩽ 𝑛, let 𝔽𝑞𝑘 and 𝔽𝑞
𝑛 denote the degree 𝑘 extension of 𝔽𝑞 and an 𝑛-dimensional vector space over 𝔽𝑞, 

respectively. 

Definition 3.1. Let 𝐶 be a linear code with the parameters [𝑁,𝐾, 𝑑(𝐶)] over 𝔽𝑞𝑘. Let 𝜋: 𝔽𝑞𝑘 → 𝔽𝑞
𝑛 be an 𝔽𝑞−-linear injection and 

set 𝐴:= 𝑖𝑚(𝜋) = 𝜋(𝔽𝑞𝑘), which is an [𝑛, 𝑘, 𝑑(𝐴)] linear code over 𝔽𝑞. Then the set 

𝜋(𝐶): = {(𝜋(𝑐1),… , 𝜋(𝑐𝑁)): (𝑐1, … , 𝑐𝑁) ∈ 𝐶} 

is called a concatenated code, which is also denoted by 𝐴 ◻ 𝐶. Here, 𝐴 and 𝐶 are called inner code and outer code, respectively. 

Note that 𝜋 is injective when its domain is extended to 𝔽
𝑞𝑘
𝑁 . Hence, 𝜋(𝐶) is a linear code with parameters [𝑛𝑁, 𝑘𝐾] over 𝔽𝑞. It is 

easy to see that the minimum distance 𝑑(𝜋(𝐶)) is lower bounded by 𝑑(𝐴)𝑑(𝐶). 

IV. CONCATENATION FOR CYCLIC CODE 

In this section, we will construct cyclic code whose parameters will be better than old codes by using concatenated code. 

specially, we will give exact minimum distance of constructed cyclic code which helps to identify exact error correcting and 

detecting capacity of constructed cyclic code. We continue with the notation and definition in section 3, in particular about the 

map 𝜋. 

Theorem 4.1. Let 𝐶 = {(𝛼, 𝛼, … , 𝛼): 𝛼 ∈ 𝔽𝑞𝑘} be a linear code with the parameters [𝑁, 1, 𝑁] over 𝔽𝑞𝑘 and 𝐴 = 𝑖𝑚(𝜋) = 𝜋(𝔽𝑞𝑘) 

be a cyclic code with the parameters [𝑛, 𝑘, 𝑑(𝐴)] over 𝔽𝑞. Then the 𝐴 ◻ 𝐶 is cyclic code with the parameters [𝑛𝑁, 𝑘, 𝑑(𝐴)𝑁] over 

𝔽𝑞. 

Proof. Let 𝐶 = {(𝛼, 𝛼, … , 𝛼): 𝛼 ∈ 𝔽𝑞𝑘} be a linear code with the parameters [𝑁, 1,𝑁] over 𝔽𝑞𝑘 and 𝐴 = 𝑖𝑚(𝜋) = 𝜋(𝔽𝑞𝑘) be a 

cyclic code with the parameters [𝑛, 𝑘, 𝑑(𝐴)] over 𝔽𝑞. 

∴ 𝐴 ◻ 𝐶 = {(𝜋(𝛼),… , 𝜋(𝛼)): 𝛼 ∈ 𝔽𝑞𝑘} is linear code 

with parameters [𝑛𝑁, 𝑘, 𝑑(𝐴 ◻ 𝐶)], where 𝑑(𝐴 ◻ 𝐶) ⩾ 𝑁𝑑(𝐴). 

To find exact minimum distance of 𝐴 ◻ 𝐶 : 

𝑑(𝐴 ◻ 𝐶) = min{𝑑((𝜋(𝛼),… , 𝜋(𝛼)), (𝜋(𝛽),… , 𝜋(𝛽))):𝛼, 𝛽 ∈ 𝔽𝑞𝑘} 

∴ 𝑑(𝐴 ◻ 𝐶) = min{𝑑(𝐴)𝑑(𝜋(𝛼), (𝜋(𝛽)): 𝛼, 𝛽 ∈ 𝔽𝑞𝑘} 
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∴ 𝑑(𝐴 ◻ 𝐶) = 𝑑(𝐴) × min{𝑑(𝜋(𝛼), (𝜋(𝛽)): 𝛼, 𝛽 ∈ 𝔽𝑞𝑘} 

∴ 𝑑(𝐴 ◻ 𝐶) = 𝑑(𝐴)𝑑(𝐶) = 𝑑(𝐴)𝑁 

∴ 𝐴 ◻ 𝐶 is linear code with parameters [𝑛𝑁, 𝑘, 𝑑(𝐴)𝑁] over 𝔽𝑞 

To show 𝐴 ◻ 𝐶 is cyclic code: 

Consider (𝑐1, 𝑐2, … , 𝑐𝑛⏟      
1

, 𝑐𝑛+1, … , 𝑐2𝑛⏟      
2

, … , 𝑐(𝑁−1)𝑛+1, … , 𝑐𝑁𝑛⏟          
𝑁

) ∈ 𝐴 ◻ 𝐶 

∴ ∃𝛼 ∈ 𝔽𝑞𝑘 such that 𝜋(𝛼) = (𝑐1, 𝑐2, … , 𝑐𝑛) = (𝑐𝑛+1, … , 𝑐2𝑛) = ⋯ = (𝑐(𝑁−1)𝑛+1, … , 𝑐𝑁𝑛) ∈ 𝐴 

∴ 𝑐1 = 𝑐𝑛+1 = ⋯ = 𝑐(𝑁−1)𝑛+1, 𝑐2 = 𝑐𝑛+2 = ⋯ = 𝑐(𝑁−1)𝑛+2, … , 𝑐𝑛 = 𝑐2𝑛 = … = 𝑐𝑁𝑛. 

We know 𝐴 is cyclic code, so we get 

(𝑐𝑛 , 𝑐1, … , 𝑐𝑛−1) ∈ 𝐴 

∴ ∃𝛽 ∈ 𝔽𝑞𝑘 such that 𝜋(𝛽) = (𝑐𝑛 , 𝑐1, … , 𝑐𝑛−1) 

∴ 𝜋(𝛽) = (𝑐𝑁𝑛 , 𝑐1, … , 𝑐𝑛−1) = (𝑐𝑛 , 𝑐𝑛+1, … , 𝑐2𝑛−1) = ⋯ = (𝑐(𝑁−1)𝑛 , 𝑐(𝑁−1)𝑛+1, … , 𝑐𝑁𝑛−1) 

∴ (𝑐𝑁𝑛, 𝑐1, … , 𝑐𝑛−1⏟          
1

, 𝑐𝑛, 𝑐𝑛+1, … , 𝑐2𝑛−1⏟          
2

, … , 𝑐(𝑁−1)𝑛, 𝑐(𝑁−1)𝑛+1, … , 𝑐𝑁𝑛−1⏟                  
𝑁

) ∈ 𝐴 ◻ 𝐶 

∴ 𝐴 ◻ 𝐶 is cyclic code with parameters [𝑛𝑁, 𝑘, 𝑑(𝐴)𝑁] over 𝔽𝑞. 

 Corollary 4.2. Let 𝐶 = {(𝛼, 𝛼, … , 𝛼): 𝛼 ∈ 𝔽𝑞𝑘} be a linear code with the parameters [𝑁, 1,𝑁] over 𝔽𝑞𝑘 and 𝐴 = 𝑖𝑚(𝜋) = 𝜋(𝔽𝑞𝑘) 

be a cyclic code with the parameters [𝑘, 𝑘, 𝑑(𝐴)] over 𝔽𝑞. Then the 𝐴 ◻ 𝐶 is cyclic code with the parameters [𝑘𝑁, 𝑘, 𝑁] over 𝔽𝑞. 

Proof. Let 𝐶 = {(𝛼, 𝛼, … , 𝛼): 𝛼 ∈ 𝔽𝑞𝑘} be a linear code with the parameters [𝑁, 1,𝑁] over 𝔽𝑞𝑘 and 𝐴 = 𝑖𝑚(𝜋) = 𝜋(𝔽𝑞𝑘) be a 

cyclic code with the parameters [𝑘, 𝑘, 𝑑(𝐴)] over 𝔽𝑞. 

By using above Theorem 4.1 , we can write 

𝐴 ◻ 𝐶 is cyclic code with the parameters [𝑘𝑁, 𝑘, 𝑑(𝐴)𝑁] over 𝔽𝑞. 

clearly, 𝐴 is subcode of 𝔽𝑞
𝑘 and dim(𝐴) = 𝑘 

∴ 𝐴 = 𝔽𝑞
𝑘 

∴ 𝑑(𝐴) = 1 

∴ 𝐴 ◻ 𝐶 is cyclic code with the parameters [𝑘𝑁, 𝑘, 𝑁] over 𝔽𝑞. 

V. GENERATOR MATRIX FOR THE CONSTRUCTED CYCLIC CODE 

In this section, we will give the generator polynomials for constructed cyclic code and it's dual by using generator polynomial of 

inner code 𝐴. 

Theorem 5.1. Let 𝐶 = {(𝛼, 𝛼, … , 𝛼): 𝛼 ∈ 𝔽𝑞𝑘} be a linear code with the parameters [𝑁, 1, 𝑁] over 𝔽𝑞𝑘 and 𝐴 = 𝑖𝑚(𝜋) = 𝜋(𝔽𝑞𝑘) 

be a cyclic code with the parameters [𝑛, 𝑘, 𝑑(𝐴)] over 𝔽𝑞. Then the 𝐺(𝑥) = (1 + 𝑥𝑛 + 𝑥2𝑛 +⋯+ +𝑥(𝑁−1)𝑛)𝑔(𝑥) is generator 

polynomial of 𝐴 ◻ 𝐶 if 𝑔(𝑥) is generator polynomial of 𝐴. 

Proof. Let 𝐶 = {(𝛼, 𝛼, … , 𝛼): 𝛼 ∈ 𝔽𝑞𝑘} be a linear code with the parameters [𝑁, 1,𝑁] over 𝔽𝑞𝑘 and 𝐴 = 𝑖𝑚(𝜋) = 𝜋(𝔽𝑞𝑘) be a 

cyclic code with the parameters [𝑛, 𝑘, 𝑑(𝐴)] over 𝔽𝑞. 

∴ 𝐴 ◻ 𝐶 is cyclic code with the parameters [𝑘𝑁, 𝑘, 𝑁] over 𝔽𝑞. 

To find generator polynomial of 𝐴 ◻ 𝐶 : 
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Consider 𝜋: 𝐹𝑞
𝑛 →

𝐹𝑞[𝑥]

<𝑥𝑛−1>
 and 𝜋′: 𝐹𝑞

𝑁𝑛 →
𝐹𝑞[𝑥]

<𝑥𝑁𝑛−1>
 defined as 𝜋((𝑐1, 𝑐2, … , 𝑐𝑛)) = 𝑐1 + 𝑐2𝑥 + ⋯+ 𝑐𝑛𝑥

𝑛−1 and 

𝜋′ ((𝑐1, 𝑐2, … , 𝑐𝑛 , 𝑐𝑛+1, … , 𝑐2𝑛,, … , 𝑐(𝑁−1)𝑛+1, … , 𝑐𝑁𝑛)) = 𝑐1 + 𝑐2𝑥 + ⋯…+ 𝑐𝑛𝑥
𝑛−1 + 𝑐𝑛+1𝑥

𝑛 +⋯ .+𝑐2𝑛𝑥
2𝑛−1 +⋯+

𝑐((𝑁−1)𝑛+1)𝑥
(𝑁−1)𝑛 +⋯ . 𝑐𝑁𝑛𝑥

𝑁𝑛−1 respectively. 

 Consider (𝑐1, 𝑐2, … , 𝑐𝑛 , 𝑐𝑛+1, … , 𝑐2𝑛,, … , 𝑐(𝑁−1)𝑛+1, … , 𝑐𝑁𝑛) ∈ 𝐴 ◻ 𝐶

∴ ∃𝛼 ∈ 𝔽𝑞𝑘 such that 𝜋(𝛼) = (𝑐1, 𝑐2, … , 𝑐𝑛) = (𝑐𝑛+1, … , 𝑐2𝑛) = ⋯ =

(𝑐(𝑁−1)𝑛+1, … , 𝑐𝑁𝑛) ∈ 𝐴

∴ 𝑐1 = 𝑐𝑛+1 = ⋯ = 𝑐(𝑁−1)𝑛+1, 𝑐2 = 𝑐𝑛+2 = ⋯ = 𝑐(𝑁−1)𝑛+2, … , 𝑐𝑛 = 𝑐2𝑛 =

… = 𝑐𝑁𝑛. 

∴ 𝜋′ ((𝑐1, 𝑐2, … , 𝑐𝑛 , 𝑐𝑛+1, … , 𝑐2𝑛,, … , 𝑐(𝑁−1)𝑛+1, … , 𝑐𝑁𝑛)) = 𝑐1 + 𝑐2𝑥 + ⋯…+

𝑐𝑛𝑥
𝑛−1 + 𝑐𝑛+1𝑥

𝑛 +⋯ .+𝑐2𝑛𝑥
2𝑛−1 +⋯+ 𝑐((𝑁−1)𝑛+1)𝑥

(𝑁−1)𝑛 +⋯ . 𝑐𝑁𝑛𝑥
𝑁𝑛−1

∴  = 𝑐1 + 𝑐2𝑥 +⋯+ 𝑐𝑛𝑥
𝑛−1 + 𝑐1𝑥

𝑛 + 𝑐2𝑥
(𝑛+1) +⋯+ 𝑐𝑛𝑥

2𝑛−1 +⋯+ 𝑐1𝑥
((𝑁−1)𝑛 +

𝑐2𝑥
(𝑁−1)𝑛+1 +⋯+ 𝑐𝑛𝑥

𝑁𝑛−1

∴  = (𝑐1 + 𝑐2𝑥 +⋯+ 𝑐𝑛𝑥
𝑛−1) + (𝑐1 + 𝑐2𝑥 + ⋯+ 𝑐𝑛𝑥

𝑛−1)𝑥𝑛 +⋯+ (𝑐1 + 𝑐2𝑥 +

…+ 𝑐𝑛𝑥
𝑛−1)𝑥((𝑁−1)𝑛

∴  = (1 + 𝑥𝑛 + 𝑥2𝑛 +⋯+ 𝑥(𝑁𝑛−1))(𝑐1 + 𝑐2𝑥 + ⋯+ 𝑐𝑛𝑥
𝑛−1)

∴  = (1 + 𝑥𝑛 + 𝑥2𝑛 +⋯+ 𝑥(𝑁𝑛−1))𝑓(𝑥)𝑔(𝑥)

∴ (1 + 𝑥𝑛 + 𝑥2𝑛 +⋯+ 𝑥(𝑁𝑛−1))𝑔(𝑥) is monic least degree polynomial such 

 that 𝜋′(𝐴 ◻ 𝐶) =< (1 + 𝑥𝑛 + 𝑥2𝑛 +⋯+ 𝑥(𝑁𝑛−1))𝑔(𝑥) >

∴ (1 + 𝑥𝑛 + 𝑥2𝑛 +⋯+ 𝑥(𝑁𝑛−1))𝑔(𝑥) is generator polynomial of 𝐴 ◻ 𝐶. 

 

VI. SOME RESULTS 

Theorem 6.1. Let 𝐶 = {(𝛼, 𝛼, … , 𝛼): 𝛼 ∈ 𝔽𝑞𝑘} be a linear code with the parameters [𝑁, 1, 𝑁] over 𝔽𝑞𝑘 and 𝐴 = 𝑖𝑚(𝜋) = 𝜋(𝔽𝑞𝑘) 

be a linear code with the parameters [𝑛, 𝑘, 𝑑(𝐴)] over 𝔽𝑞. Then 𝑁 ∣ 𝑤𝑡(𝑐) if 𝑐 ∈ 𝐴 ◻ 𝐶. 

Proof. Let 𝐶 = {(𝛼, 𝛼, … , 𝛼): 𝛼 ∈ 𝔽𝑞𝑘} be a linear code with the parameters [𝑁, 1,𝑁] over 𝔽𝑞𝑘 and 𝐴 = 𝑖𝑚(𝜋) = 𝜋(𝔽𝑞𝑘) be a 

linear code with the parameters [𝑛, 𝑘, 𝑑(𝐴)] over 𝔽𝑞 

Consider 𝑐 ∈ 𝐴 ◻ 𝐶 

∴ ∃𝛼 ∈ 𝔽𝑞𝑘 such that 𝑐 = (𝜋(𝛼), … , 𝜋(𝛼)) 

By using definition, 

𝑤𝑡(𝑐) = 𝑤𝑡((𝜋(𝛼),… , 𝜋(𝛼)))

∴ 𝑤𝑡(𝑐) = 𝑁 × 𝑤𝑡(𝜋(𝛼))

∴ 𝑁 ∣ 𝑤𝑡(𝑐)

 

By using above theorem 6.1, clearly, we can conclude, weight distribution of 𝐴 gives weight distribution of constructed cyclic 

code. 

Theorem 6.2. Let 𝐶 = {(𝛼, 𝛼, … , 𝛼): 𝛼 ∈ 𝔽𝑞𝑘} be a linear code with the parameters [𝑁, 1, 𝑁] over 𝔽𝑞𝑘 and 𝐴 = 𝑖𝑚(𝜋) = 𝜋(𝔽𝑞𝑘) 

be a cyclic code with the parameters [𝑛, 𝑘, 𝑑(𝐴)] over 𝔽𝑞. Then 𝐴 ◻ 𝐶 is LCD cyclic code if 𝐴 is reversible code and 

gcd(𝑁𝑛, 𝑞) = 1. Proof. Let 𝐶 = {(𝛼, 𝛼, … , 𝛼): 𝛼 ∈ 𝔽𝑞𝑘} be a linear code with the parameters [𝑁, 1,𝑁] over 𝔽𝑞𝑘 and 𝐴 =

𝑖𝑚(𝜋) = 𝜋(𝔽𝑞𝑘) be a cyclic code with the parameters [𝑛, 𝑘, 𝑑(𝐴)] over 𝔽𝑞. 

∴ 𝐴 ◻ 𝐶 is cyclic code with parameters [𝑁𝑛, 𝑘, 𝑑(𝐴)𝑁] 

Now, Consider 𝐴 is reversible code and gcd(𝑁𝑛, 𝑞) = 1. 

To show 𝐴 ◻ 𝐶 is reversible code : 

Consider (𝑐1, 𝑐2, … , 𝑐𝑛⏟      
1

, 𝑐𝑛+1, … , 𝑐2𝑛⏟      
2

, … , 𝑐(𝑁−1)𝑛+1, … , 𝑐𝑁𝑛⏟          
𝑁

) ∈ 𝐴 ◻ 𝐶 

∴ ∃𝛼 ∈ 𝔽𝑞𝑘 such that 𝜋(𝛼) = (𝑐1, 𝑐2, … , 𝑐𝑛) = (𝑐𝑛+1, … , 𝑐2𝑛) = ⋯ = (𝑐(𝑁−1)𝑛+1, … , 𝑐𝑁𝑛) ∈ 𝐴 

∴ 𝑐1 = 𝑐𝑛+1 = ⋯ = 𝑐(𝑁−1)𝑛+1, 𝑐2 = 𝑐𝑛+2 = ⋯ = 𝑐(𝑁−1)𝑛+2, … , 𝑐𝑛 = 𝑐2𝑛 = … = 𝑐𝑁𝑛 
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We know 𝐴 is reversible code,so we get 

(𝑐𝑛 , 𝑐𝑛−1, … , 𝑐1) ∈ 𝐴 

∴ ∃𝛽 ∈ 𝔽𝑞𝑘 such that 𝜋(𝛽) = (𝑐𝑛 , 𝑐𝑛−1, … , 𝑐1) 

∴ 𝜋(𝛽) = (𝑐𝑛, 𝑐𝑛−1, … , 𝑐1) = (𝑐2𝑛 , 𝑐2𝑛−1, … , 𝑐𝑛+1) = ⋯ = (𝑐𝑁𝑛 , 𝑐𝑁𝑛−1, … , 𝑐(𝑁−1)𝑛+1)

∴ (𝑐𝑁𝑛 , 𝑐𝑁𝑛−1, … , 𝑐(𝑁−1)𝑛+1⏟              
1

, 𝑐(𝑁−1)𝑛 , 𝑐(𝑁−1)𝑛−1, … , 𝑐(𝑁−2)𝑛+1⏟                    
2

, … , 𝑐𝑛 , 𝑐𝑛−1, … , 𝑐1⏟        
𝑁

) ∈ 𝐴 ◻ 𝐶 

∴ 𝐴 ◻ 𝐶 is reversible code with parameters [𝑛𝑁, 𝑘, 𝑑(𝐴)𝑁] over 𝔽𝑞……..(2) 

By using Theorem, 

∴ 𝐴 ◻ 𝐶 is LCD cyclic code with parameters [𝑛𝑁, 𝑘, 𝑑(𝐴)𝑁] over 𝔽𝑞. 

VII.  CONCLUSION 

In the fourth section of our research article, we have presented the construction of a class of cyclic codes with improved 

parameters, utilizing concatenated codes. Moving forward to the fifth section, we have provided the generator matrix for the 

constructed cyclic code. Finally, in the last section, we have presented some results about constructed cyclic code. 
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