On Weight Distribution of $\mathbb{Z}_{\mathbf{p}^{\text {t }}}$ linear code

Saheb Navghare,
Research Student , School of Mathematical Sciences, SRTM University, Nanded-431606, Maharashtra, India.

 prime number, and t is a positive integer. We thoroughly investigate the parameters of these codes and determine their weight distribution for rank 2 .

Index Terms $-\mathbb{Z}_{p^{t}}$-linear code, codes over finite rings, , rank, minimum Hamming distance.

I. Introduction

A code C is a subset of $\mathbb{Z}_{p^{t}}^{n}$, where $\mathbb{Z}_{p^{t}}$ represents the set of integers modulo p^{t}, and n is a positive integer. For any two elements x and y in $\mathbb{Z}_{p^{t}}^{n}$, the Hamming distance between them, denoted as $d(x, y)$, is defined as the count of differing coordinates. In other words, it is the Hamming weight of the difference $x-y$, which represents the number of non-zero coordinates in $x-y$.

The minimum Hamming distance $d(C)$ of a code C is defined as follows:

$$
\begin{aligned}
d(C) & =\min \{d(x, y) \mid x, y \in C \text { and } x \neq y\} \\
& =\min \{w t(x-y) \mid x, y \in C \text { and } x \neq y\}
\end{aligned}
$$

Here, $w t(x-y)$ denotes the Hamming weight of $x-y$, representing the number of non-zero entries in the vector $x-y$.
Additionally, the minimum Hamming weight of C can be determined as $\min \{w t(c) \mid c \in C$ and $c \neq 0\}$. Therefore, the terms "minimum distance" and "minimum weight" refer to the minimum Hamming distance and minimum Hamming weight of a code, respectively. An $(n, M, d) \mathbb{Z}_{p^{t}}$-code denotes a code over \mathbb{Z}_{q} with a length of n, a cardinality of M, and a minimum Hamming distance of d. For more in-depth information on coding theory, please refer to [1]. The group $\mathbb{Z}_{p} t$ is well-known to be a group under addition modulo p^{t}. Consequently, the set $\mathbb{Z}_{p^{t}}^{n}$ forms a group under coordinate-wise addition modulo p^{t}, making it a $\mathbb{Z}_{p^{t-}}$
 $\mathbb{Z}_{p} t$-module, the code C represents a finitely generated submodule of $\mathbb{Z}_{p^{t}}^{n}$. The rank of the code C is defined as the cardinality of a minimal generating set for C [4].

A generator matrix of a linear code C is a matrix whose rows generate C. For any linear code C over $\mathbb{Z}_{p^{t}}$, it is possible to apply a permutation to obtain a code with a generator matrix G where the rows of G generate C. The generator matrix G takes the following form:

$$
G=\left[\begin{array}{cccccc}
I_{k_{0}} & M_{01} & M_{02} & \cdots & M_{0 s-1} & M_{0 s} \\
0 & z_{1} I_{k_{1}} & z_{1} M_{12} & \cdots & z_{1} M_{1 s-1} & z_{1} M_{1 s} \\
0 & 0 & z_{2} I_{k_{2}} & \cdots & z_{2} M_{2 s-1} & z_{2} M_{2 s} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & z_{s-1} I_{k_{s-1}} & z_{s-1} M_{s-1 s}
\end{array}\right]
$$

In the matrix $G, M_{i j}$ represents matrices over $\mathbb{Z}_{p^{t}},\left\{z_{1}, z_{2}, \ldots, z_{s-1}\right\}$ denotes the set of zero-divisors in $\mathbb{Z}_{p^{t}}$, and the columns are organized into blocks of sizes $k_{0}, k_{1}, \ldots, k_{s-1}, k_{s}$, respectively.

The cardinality of C can be calculated as $|C|=p^{t k_{0}}\left(\frac{p^{t}}{z_{1}}\right)^{k_{1}}\left(\frac{p^{t}}{z_{2}}\right)^{k_{2}} \cdots\left(\frac{p^{t}}{z_{s-1}}\right)^{k_{s-1}}$.
We define an $[n, k, d] \mathbb{Z}_{p^{t}}$ linear code as a code of rank k, length n, and minimum Hamming distance d over the ring $\mathbb{Z}_{p^{t}}$. Extensive research has been conducted by several scholars on codes over finite rings, as documented in various works [2-4]. In the past two decades, significant attention has been given to codes over the specific ring $\mathbb{Z}_{2^{2}}$. In this study, we focus on investigating codes over $\mathbb{Z}_{p^{t}}$, where p is a prime number and t is a positive integer, with $p^{t} \geq 2$.

In the context of a $\mathbb{Z}_{p^{t}}$-linear code C, it has been established in references $[5,6]$ that the minimum Hamming distance of C is equal to its minimum Hamming weight.

Lemma 1: For a $\mathbb{Z}_{p^{t}}$-linear code C, the minimum Hamming distance is equivalent to the minimum Hamming weight.
In an $(n, M, d) \mathbb{Z}_{q}$-code denoted by C, where $0 \leq i \leq n$, the value A_{i} represents the number of codewords in C with a Hamming weight of i. The sequence $\left\{A_{i}\right\}_{i=0}^{n}$ is commonly known as the weight distribution of the code C.

Let us examine the properties of the element p^{t-1} in $\mathbb{Z}_{p^{t}}$. It has the smallest order among all elements, and the subgroup H generated by p^{t-1} is the smallest subgroup that contains more than one element. To further explore these concepts, we consider the following matrix:

$$
G=\left[\begin{array}{cccccc}
0 & 1 & 1 & 2 & \cdots & p^{t}-1 \\
1 & 0 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

The matrix provided generates a code C defined as $=\left\{\alpha x+\beta y \mid \alpha, \beta \in \mathbb{Z}_{p^{t}}\right\}$. Referring to Theorem 3.1 in [8], we conclude that the code C is a $\left[p^{t}+1,2, p^{t-1}(p-1)+1\right] \mathbb{Z}_{p^{t}}$-linear code.

This kind of work, has been carried out by authors in [9] However, they did in the general set up, in the sense that, authors did it for any integer $q>1$. This is our small attempt to tackle the particular case for $q=p^{t}$, for p prime. This research paper is dedicated to the comprehensive study of $\mathbb{Z}_{p} t$-linear codes, covering a wide range of topics. In Section 2, we present a detailed introduction and analysis of a new class of $\mathbb{Z}_{p} t$-linear codes, examining their specific parameters and properties. In Section 3 , we focus on the weight distributions associated with these code, providing valuable insights and results to complement our investigations.

II. $\mathbb{Z}_{\mathbf{p}^{\mathbf{t}}}$-LINEAR CODE WITH THE GENERATOR MATRIX OVER ZERO-DIVISORS OF $\mathbb{Z}_{\mathbf{p}^{\mathbf{t}}}$

In this section, we proceed to construct an additional novel $\mathbb{Z}_{p^{t}}$-linear code and analyze its various parameters. Considering that $\mathbb{Z}_{p^{t}}$ consists of $p^{t}-p^{t-1}$ units, it follows that there exist $p^{t-1}-1$ zero-divisors within this ring.

Let us define the matrix:

$$
G=\left[\begin{array}{cccccc}
1 & 0 & z_{1} & z_{2} & \cdots & z_{s} \\
0 & 1 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

Here, $z_{1}, z_{2}, \ldots, z_{s}$ represent zero-divisors, with $s=p^{t-1}-1$. The matrix G generates a $\left[p^{t-1}+1,2\right] \mathbb{Z}_{p^{t}}$-linear code denoted by C. The code C consists of all the vectors of the form $\alpha x+\beta y$, where $\alpha, \beta \in \mathbb{Z}_{p}$ and x and y are the first and second rows of G, respectively. The length of the code C is $p^{t-1}+1$, and it has a rank of 2 .

Theorem 1: Consider $p^{t} \geq 2$, and let

$$
G=\left[\begin{array}{cccccc}
1 & 0 & z_{1} & z_{2} & \cdots & z_{s} \\
0 & 1 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

where $\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$ represents the set of zero-divisors in \mathbb{Z}_{p}. The code
C generated by G is a $\left[p^{t-1}+1,2, p^{t-1}+1-\frac{p^{t}}{o(\alpha)}\right] \mathbb{Z}_{p^{t}}$ linear code,
where α denotes the non-zero element in $\mathbb{Z}_{p}{ }^{t}$ with the least order.

Proof:
let's consider the following cases:
Case (i): If $\alpha=0$ and $\beta=0$, then $w t(\alpha x+\beta y)=0$.
Case (ii): If $\alpha=0$ and $\beta \neq 0$, then $\min \{w t(\alpha x+\beta y)\}=p^{t-1}+1-1=p^{t-1}$. Case (iii): If $\alpha \neq 0$ and $\beta=0$, let's proceed to the next part. Let α be a non-zero element in $\mathbb{Z}_{p^{t}}$ with order $r>1$. In the sequence $\alpha\left(0,1,2, \ldots, p^{t}-1\right)$, each element in the subgroup generated by α, denoted as $\langle\alpha\rangle$, appears $\frac{p^{t}}{r}$ times. Therefore, the element 0 appears $\frac{p^{t}}{r}$ times in this sequence.

Now, let's consider the case when u is a unit in $\mathbb{Z}_{p^{t}}$. Since $o(\alpha)=o(\alpha u)$, it implies that $\alpha u \neq 0$. Hence, all the zero coordinates in the sequence $\alpha\left(0,1,2, \ldots, p^{t}-1\right)$ are contributed by the terms in $\alpha\left(0, z_{1}, z_{2}, \ldots, z_{s}\right)$. Therefore, we have $t\left(\alpha\left(0, z_{1}, z_{2}, \ldots, z_{s}\right)\right)=$ $s+1-\frac{p^{t}}{r}$.

Now, let's consider the sequence $\alpha\left(1,0, z_{1}, z_{2}, \ldots, z_{s}\right)$. Here, the first coordinate is 1 , followed by the terms in $\alpha\left(0, z_{1}, z_{2}, \ldots, z_{s}\right)$. The zero coordinates in this sequence are the same as in $\alpha\left(0, z_{1}, z_{2}, \ldots, z_{s}\right)$. Therefore, we have $w t\left(\alpha\left(1,0, z_{1}, z_{2}, \ldots, z_{s}\right)\right)=s+$ $1-\frac{p^{t}}{r}+1=p^{t-1}-\frac{p^{t}}{r}+1$. In fact, we can simplify this as $w t\left(\alpha\left(1,0, z_{1}, z_{2}, \ldots, z_{s}\right)\right)=p^{t-1}-\frac{p^{t}}{o(\alpha)}+1$.

Consider

$$
\begin{aligned}
& \min \left\{w t\left(\alpha\left(1,0, z_{1}, z_{2}, \ldots, z_{s}\right) \mid \alpha \in \mathbb{Z}_{p^{t}}, \alpha \neq 0\right)\right\} \\
= & \min \left\{\left.p^{t-1}-\frac{p^{t}}{o(\alpha)}+1 \right\rvert\, \alpha \in \mathbb{Z}_{p^{t}}-\{0\}\right\} \\
= & p^{t-1}+1-\max \left\{\left.\frac{p^{t}}{o(\alpha)} \right\rvert\, \alpha \in \mathbb{Z}_{p^{t}}-\{0\}\right\}
\end{aligned}
$$

If $o(\alpha)$ is minimum, then $\frac{p^{t}}{o(\alpha)}$ is maximum.
Therefore,

$$
\min \left\{w t\left(\alpha\left(1,0, z_{1}, z_{2}, \ldots, z_{s}\right) \mid \alpha \neq 0, \alpha \in \mathbb{Z}_{p^{t}}\right)\right\}=p^{t-1}+1-\frac{p^{t}}{o(\alpha)}
$$

where α is the least order non-zero element in \mathbb{Z}_{t}.
Case (iv). Let $\alpha \neq 0$ and $\beta \neq 0$.
Let $\alpha \in \mathbb{Z}_{p^{t}}$, with $o(\alpha)=d \neq 1$. In $\alpha\left(0, z_{1}, z_{2}, \ldots, z_{s}\right)$, each d order element in $\langle\alpha\rangle$ appears $\frac{p^{t}}{d}-\frac{p^{t}-p^{t-1}}{\phi(d)}$ times and each remaining element of order less than d in $\langle\alpha\rangle$ appears exactly $\frac{p^{t}}{d}$ times.

Let $\beta \in \mathbb{Z}_{p^{t}}, \beta \neq 0$. (i) If $\beta \in\langle\alpha\rangle$ with $o(\beta)=d$, then $w t(\alpha x+\beta y)=2+\left(p^{t-1}-1\right)-\left[\frac{p^{t}}{d}-\frac{p^{t}-p^{t-1}}{\phi(d)}\right]=p^{t-1}+1-$ $\left[\frac{p^{t}}{d}-\frac{p^{t}-p^{t-1}}{\phi(d)}\right]=1+p^{t-1}-\frac{p^{t}}{d}+\frac{p^{t}-p^{t-1}}{\phi(d)}$.
(ii) If $\beta \in\langle\alpha\rangle$ with $o(\beta) \neq d$ and $\beta \neq 0$, then $w t(\alpha x+\beta y)=1+q-p^{t}-p^{t-1}-\frac{p^{t}}{d}$ and
(iii) If $\beta \in \mathbb{Z}_{p^{t}}$ but $\beta \notin\langle\alpha\rangle$, then $w t(\alpha x+\beta y)=1+p^{t-1}$.

Therefore,

$$
\begin{aligned}
& \min \left\{w t(\alpha x+\beta y) \mid \alpha \neq 0 \neq \beta \text { and } \alpha, \beta \in \mathbb{Z}_{p^{t}}\right\} \\
= & \min \left\{1+p^{t-1}-\frac{p^{t}}{d}+\frac{p^{t}-p^{t-1}}{\phi(d)}, 1+p^{t-1}-\frac{p^{t}}{d}, 1+p^{t-1}\right\} \\
= & \min \left\{1+p^{t-1}-\frac{p^{t}}{o(\alpha)}\right\} .
\end{aligned}
$$

If α is the least order element, then it reaches the minimum. Therefore, for the least order non-zero element $\alpha \neq 0$ in \mathbb{Z}_{p},

$$
\min \left\{w t(\alpha x+\beta y) \mid \alpha \neq 0 \neq \beta \text { and } \alpha, \beta \in \mathbb{Z}_{p^{t}}\right\}=1+p^{t-1}-\frac{p^{t}}{o(\alpha)}
$$

III. Weight Distribution of the $\mathbb{Z}_{\mathbf{p}} \mathbf{t}$-LINEAR COde C of Rank 2

In this section, we consider a positive integer p^{t} where $p \geq 2$. According to Theorem 1, the matrix

$$
G=\left[\begin{array}{cccccc}
1 & 0 & z_{1} & z_{2} & \cdots & z_{s} \\
0 & 1 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

 equal to $p^{t-1}-1$. The resulting code has a rank of 2 .

Theorem 2: For any integer $p^{t} \geq 2$, the weight distribution of $\mathbb{Z}_{p^{t}}$-linear code of rank 2 generated by the Matrix

$$
G=\left[\begin{array}{cccccc}
1 & 0 & z_{1} & z_{2} & \cdots & z_{p^{t-1}-1} \\
0 & 1 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

is

$$
\begin{aligned}
& A_{0}=1 \\
& A_{p^{t-1}}=p^{t}-1 \\
& A_{p^{t-1}+1}=\phi(d)\left[p^{t}-d\right], d \neq p^{t} \\
& A_{p^{t-1}-\frac{p^{t}}{d}}=\phi(d)[d-\phi(d)] \text { and } \\
& A_{p^{t-1}-\left[\frac{p^{t}}{d}-\frac{p^{t}-p^{t-1}}{\phi(d)}\right]+1}=[\phi(d)]^{2}
\end{aligned}
$$

where d is a divisor of p^{t} and $d \neq 1$.

Proof:
Let x and y be the first and second rows of the above matrix. Then $=\left\{\alpha x+\beta y \mid \alpha, \beta \in \mathbb{Z}_{p^{t}}\right\}$.
Case (i). If $\alpha=0=\beta$, then $w t(\alpha x+\beta y)=0$. Therefore,

$$
A_{0}=1
$$

Case (ii). If $\alpha=0$ and $\beta \neq 0$, then $\beta 1 \neq 0$ for all non-zero β in $\mathbb{Z}_{p^{t}}$ which implies $w t(\beta y)=p^{t-1}+1-1$ and hence $w t(\alpha x+$ $\beta y)=p^{t-1}$ for all non-zero $\beta \in \mathbb{Z}_{p^{t}}$. In this way, we get $p^{t}-1$ codewords of weight p^{t-1}.

Case (iii). Let $\alpha, \beta \in \mathbb{Z}_{p^{t}}$ with $\alpha \neq 0$ and $\beta=0$. Let $o(\alpha)=d, d \neq 1$. Then $w t(\alpha x+\beta y)=p^{t-1}+1-\frac{p^{t}}{d}$. Thus, there are $\phi(d)$ codewords of weight $p^{t-1}+1-\frac{p^{t}}{d}$

Case (iv). Let $\alpha, \beta \in \mathbb{Z}_{p^{t}}$ with $\alpha \neq 0$ and $\beta \neq 0$. Let $o(\alpha)=d, d \neq 1$. In $\alpha\left(0, z_{1}, z_{2}, \ldots, z_{s}\right), s=p^{t-1}-1$, each d order element in $\langle\alpha\rangle$ appears $\frac{p^{t}}{d}-\frac{p^{t}-p^{t-1}}{\phi(d)}$ times and each remaining element in $\langle\alpha\rangle$ appears exactly $\frac{p^{t}}{d}$ times.

If $\beta \in\langle\alpha\rangle$ with $o(\beta)=d$, then $w t(\alpha x+\beta y)=1+p^{t-1}-\left[\frac{p^{t}}{d}-\frac{p^{t}-p^{t-1}}{\phi(d)}\right]$, for all $\alpha, \beta \in \mathbb{Z}_{p^{t}}$. Therefore, for $o(\alpha)=o(\beta)=d$, there are $\phi(d)$ such α 's and $\phi(d)$ such β 's. This gives $\phi(d) \phi(d)$ codewords of weight $1+p^{t-1}-\left[\frac{p^{t}}{d}-\frac{p^{t}-p^{t-1}}{\phi(d)}\right]$

If $\beta \in\langle\alpha\rangle$ with $o(\beta) \neq d, \beta \neq 0$, then $w t(\alpha x+\beta y)=1+p^{t-1}-\frac{p^{t}}{d}$, for $o(\alpha)=d$ and $o(\beta) \neq d$. That is, for $o(\alpha) \neq$ $o(\beta), w t(a x+\beta y)=1+p^{t-1}-\frac{p^{t}}{d}$. Therefore, there are $\phi(d)[d-1-\phi(d)]$ codewords of weight $1+p^{t-1}-\frac{p^{t}}{d}$

If $\beta \notin\langle\alpha\rangle$, then $w t(\alpha x+\beta y)=1+p^{t-1}$. This implies that there are $\phi(d)\left[p^{t}-d\right]$ codewords of weight $1+p^{t-1}$, for $o(\alpha)=$ $d, \beta \notin\langle\alpha\rangle$.

References

[1] Ling, San, and Chaoping Xing. Coding theory: a first course. Cambridge University Press, 2004.
[2] Eugene Spiegel, Codes over \mathbb{Z}_{m}, Information and Control 35 (1977), 48-51.
[3] Steven T. Dougherty, T. Aaron Gulliver, Young Ho Park and John N. C Wong, Optimal linear codes over \mathbb{Z}_{m}, J. Korean Math. Soc. 44(5) (2007), 11391162.
[4] Steven T. Dougherty, Manish K. Gupta and Keisuke Shiromoto, On generalised weights for codes over \mathbb{Z}_{k}, Australasian J. Combin. 31 (2005), 231-248.
[5] P. Chella Pandian and C. Durairajan, On the \mathbb{Z}_{q}-linear and \mathbb{Z}_{q}-Simplex codes and its related parameters for q is a prime power, J. Discrete Math. Sci. Crypto. (to appear).
[6] C. Durairajan, J. Mahalakshmi and P. Chella Pandian, On the \mathbb{Z}_{q}-Simplex codes and its weight distribution for dimension 2 (communicated).
[7] Joseph Rotman, Galois Theory, Springer-Verlag, Inc., New York, 1998.
[8] Mahalakshmi, J., and C. Durairajan. "On the Z_{q}-Macdonald code and its weight distribution of dimension 3." arXiv preprint arXiv:1505.05642 (2015). [9] Durairajan, C., and J. Mahalakshmi. "On codes over integers modulo q." Adv. Appl. Math 15 (2015): 125-143.

