On Weight Distribution of $\mathbb{Z}_{\mathbf{p}^{\mathbf{t}}}$ Simplex Code

Saheb Navghare,
Research Student, School of Mathematical Sciences, SRTM University, Nanded-431606, Maharashtra, India.

Abstract: This research paper investigates the weight distribution of rank $2 \mathbb{Z}_{p^{t-}}$ Simplex codes, where $p^{t} \geq 2$, with p being a prime number and t a positive integer.

Index Terms $-\mathbb{Z}_{\boldsymbol{p}^{t}}$-linear code, codes over finite rings, $\mathbb{Z}_{\boldsymbol{p}^{t}}$-Simplex codes, rank, minimum Hamming distance.

I. Introduction

A code C represents a subset of $\mathbb{Z}_{p^{t}}^{n}$, where $\mathbb{Z}_{p^{t}}$ denotes the set of integers modulo p^{t} and n is a positive integer. In this context, let x and y be elements of $\mathbb{Z}_{p^{t}}^{n}$. The Hamming distance between x and y is defined as the count of differing coordinates, denoted by $d(x, y)$. Specifically, $d(x, y)$ can be expressed as the Hamming weight of $x-y$, which represents the number of non-zero coordinates in $x-y$. The minimum Hamming distance $d(C)$ for code C is defined as follows:

$$
\begin{aligned}
d(C) & =\min \{d(x, y) \mid x, y \in C \text { and } x \neq y\} \\
& =\min \{w t(x-y) \mid x, y \in C \text { and } x \neq y\}
\end{aligned}
$$

Furthermore, the minimum Hamming weight of C is given by $\min \{w t(c) \mid c \in C$ and $c \neq 0\}$. Henceforth, the terms "minimum distance" and "minimum weight" refer to the minimum Hamming distance and the minimum Hamming weight, respectively. An
 further details on coding theory, please refer to [1].

It is well-known that $\mathbb{Z}_{p^{t}}$ forms a group under addition modulo p^{t}. Consequently, $\mathbb{Z}_{p^{t}}^{n}$ becomes a group under coordinate-wise addition modulo p^{t}, thus making it a $\mathbb{Z}_{p^{t}}$-module. A subset C of $\mathbb{Z}_{p^{t}}^{n}$ is considered a $\mathbb{Z}_{p^{t}}$-linear code if it serves as a submodule of $\mathbb{Z}_{p^{t}}^{n}$. Since $\mathbb{Z}_{p^{t}}^{n}$ is a finitely generated $\mathbb{Z}_{p^{t}}$-module, C represents a finitely generated submodule of $\mathbb{Z}_{p^{t}}^{n}$. The rank of the code C refers to the cardinality of a minimal generating set of $C[7]$.

A generator matrix of C is a matrix whose rows generate C. Every linear code C over $\mathbb{Z}_{p^{t}}$ can be transformed via permutation to a code with a generator matrix G (where the rows of G generate), which takes the following form:

$$
G=\left[\begin{array}{cccccc}
I_{k_{0}} & M_{01} & M_{02} & \cdots & M_{0 s-1} & M_{0 s} \\
0 & z_{1} I_{k_{1}} & z_{1} M_{12} & \cdots & z_{1} M_{1 s-1} & z_{1} M_{1 s} \\
0 & 0 & z_{2} I_{k_{2}} & \cdots & z_{2} M_{2 s-1} & z_{2} M_{2 s} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & z_{s-1} I_{k_{s-1}} & z_{s-1} M_{s-1 s}
\end{array}\right]
$$

Here, $M_{i j}$ represents matrices over $\mathbb{Z}_{p^{t}},\left\{z_{1}, z_{2}, \ldots, z_{s-1}\right\}$ denotes the zerodivisors in $\mathbb{Z}_{p^{t}}$, and the columns are organized into blocks of sizes $k_{0}, k_{1}, \ldots, k_{s-1}, k_{s}$, respectively. The cardinality of C can be calculated as

$$
|C|=p^{t k_{0}}\left(\frac{p^{t}}{z_{1}}\right)^{k_{1}}\left(\frac{p^{t}}{z_{2}}\right)^{k_{2}} \cdots\left(\frac{p^{t}}{z_{s-1}}\right)^{k_{s-1}}
$$

An $[n, k, d] \mathbb{Z}_{p^{t}}$-linear code refers to a code with rank k, length n, and a minimum Hamming distance of d over $\mathbb{Z}_{p^{t}}$. Research on codes over finite rings has been extensively carried out by numerous researchers [2-4]. Over the past two decades, there has been a substantial amount of research focused on codes over $\mathbb{Z}_{2^{2}}$. In this paper, we specifically investigate codes over $\mathbb{Z}_{p} t$, considering any positive integer $p^{t} \geq 2$, where p is a prime number and t is a positive integer.

When C represents a $\mathbb{Z}_{p^{t}}$-linear code, the following result holds true, as demonstrated in references [5,6] :

Lemma 1: The minimum Hamming distance of a $\mathbb{Z}_{p^{t}}$-linear code C is equal to its minimum Hamming weight.
For an $(n, M, d) \mathbb{Z}_{q}$-code denoted by C, where $0 \leq i \leq n$, the quantity A_{i} corresponds to the number of codewords with a Hamming weight of i. The sequence $\left\{A_{i}\right\}_{i=0}^{n}$ is referred to as the weight distribution of the code C.

In \mathbb{Z}_{p}, the element p^{t-1} has the smallest order, and the subgroup H generated by p^{t-1} is the smallest subgroup containing more than one element. Consider the matrix:

$$
G=\left[\begin{array}{cccccc}
0 & 1 & 1 & 2 & \cdots & p^{t}-1 \\
1 & 0 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

This matrix generates the code $C=\left\{\alpha x+\beta y \mid \alpha, \beta \in \mathbb{Z}_{p^{t}}\right\}$. According to Theorem 3.1 in [6], the code C is a $\left[p^{t}+1,2, p^{t-1}(p-\right.$
 generalization of the $\mathbb{Z}_{p^{t}}$-Simplex code to rank k is introduced and denoted as $S_{k}\left(p^{t}\right)$.

The authors in [9] have previously conducted similar research, but their focus was on a broader context, encompassing all integers $q>1$. In contrast, our study specifically addresses the special case of $q=p^{t}$, where p is a prime number. This research paper focuses on various aspects of $\mathbb{Z}_{p^{t}}$-linear codes. In Section 2 , we analyze the weight distribution of $\mathbb{Z}_{p^{t}}$-Simplex codes with a rank of 2 , considering positive integers $p^{t} \geq 2$.

II. Main Result

In [5, 6], the parameters and properties of $\mathbb{Z}_{p^{t}}$ Simplex codes $S_{k}\left(p^{t}\right)$ with rank k were introduced for positive integers $p^{t} \geq 2$, focusing on the weight distribution of rank 2 for prime power p^{t}. In this section, we aim to determine the weight distribution of $S_{2}\left(p^{t}\right)$ for any positive integer $p^{t} \geq 2$.

Theorem 1: For any integer $p^{t} \geq 2$, the weight distribution of a $\mathbb{Z}_{p^{t}}$-Simplex code with rank 2 is given by:

Proof:
Consider the matrix (1.2):

$$
\begin{aligned}
& A_{0}=1 \\
& A_{p^{t}}=p^{2 t}-p^{2 t-1}+p^{t}-1 \\
& A_{p^{t}-p^{t-e}+1}=p^{e}\left(p^{e}-p^{e-1}\right), \text { for } 0<e<t \\
& A_{p^{t}+1}=p^{t}\left(p^{t}-1\right)-\sum_{0<e \leq t} p^{e}\left(p^{e}-p^{e-1}\right)
\end{aligned}
$$

$$
\left[\begin{array}{cccccc}
0 & 1 & 1 & 2 & \cdots & p^{t}-1 \\
1 & 0 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

Let x and y represent the first and second rows of the above matrix. Then $S_{2}\left(p^{t}\right)=\left\{\alpha x+\beta y \mid \alpha, \beta \in \mathbb{Z}_{p^{t}}\right\}$, where $\alpha x=$ $\underbrace{x+x+\cdots+x}_{\alpha \text { times }}$.

Case (i): If $\alpha=0=\beta$, then $w t(\alpha x+\beta y)=0$. Consequently, we have $A_{0}=1$.
Case (ii): If $\alpha=0$ and $\beta \neq 0$, then $\beta 1 \neq 0$ for all $\beta \neq 0$ in $\mathbb{Z}_{p^{t}}$. This implies $w t(\beta y)=p^{t}$, resulting in $w t(\alpha x+\beta y)=p^{t}$. In this scenario, there are $p^{t}-1$ codewords of weight p^{t}.

Before proceeding to the next case, we apply the following theorem:
Theorem 2 [5]: Let G be a cyclic group of order n. For every divisor d of n, G has a unique subgroup of order d.
Consider elements $x, y \in \mathbb{Z}_{p^{t}}$. We define the relation $x \sim y$ if $\langle x\rangle=\langle y\rangle$ under addition. This relation is an equivalence relation. Let $H(x)=\left\{y \in \mathbb{Z}_{p^{t}} \mid x \sim y\right\}$. It follows that $H(x)$ contains only elements of order $o(x)$. According to Theorem 2 , we have $o(H(x))=\phi(o(x))$. For every divisor d of p^{t}, there exists a subset $H(x)$ of $\mathbb{Z}_{p^{t}}$ that contains elements of order $o(x)$. Since $H(x)$ represents an equivalence class, we have either $H(x)=H(y)$ or $H(x) \cap H(y)=\phi$. Moreover, $\mathbb{Z}_{p^{t}}=U H(x)$, where the sum runs over one element from each equivalence class.

Case (iii): Let $\alpha \neq 0$ and $\beta=0$. If $\alpha \in H(x)$ for $x \neq 0$, then $o(\alpha)=o(x)=p^{e}$ where $0 \leq e \leq t$, let's say. Since $o(\alpha) \mid o\left(\mathbb{Z}_{p^{t}}\right)$, all elements in the subgroup generated by α appear an equal number of times in the set $\left\{\alpha 0, \alpha 1, \alpha 2, \ldots, \alpha\left(p^{t}-1\right)\right\}$. In other words, $\alpha\left(0,1,2, \ldots, p^{t}-1\right)=0,1 \alpha, 2 \alpha, \ldots,\left(p^{e}-1\right) \alpha, 0,1 \alpha, 2 \alpha, \ldots,\left(p^{e}-1\right) \alpha, \ldots, 0,1 \alpha, 2 \alpha, \ldots,\left(p^{e}-1\right) \alpha$. This implies that zero appears p^{t-e} times in the sequence $\alpha\left(0,1,2, \ldots, p^{t}-1\right)$. Therefore, $w t\left(\alpha\left(0,1,2, \ldots, p^{t}-1\right)\right)=p^{t}+1-p^{t-e}$, where $0 \leq e \leq t$. Since $H(x)$ has $p^{e}-p^{e-1}$ elements of order p^{e}, there are $p^{e}-p^{e-1}$ codewords of weight $p^{t}-p^{t-e}+1$. Hence, for $0<e \leq t$, there are $p^{e}-p^{e-1}$ codewords of weight $p^{t}-p^{t-e}+1$.

Case (iv): Let $\alpha \neq 0$ and $\beta \neq 0$. If $o(\alpha)=p^{e}$, where $0<e \leq t$, then all elements in $\langle\alpha\rangle$ appear an equal number of times in the sequence $\alpha\left(0,1,2, \ldots, p^{t}-1\right)$, specifically p^{t-e} times.
(1) If $\beta \in\langle\alpha\rangle \backslash\{0\}$, then $w t(\alpha x+\beta y)=p^{t}+1-p^{t-e}$. Consequently, the number of codewords with weight $p^{t}-p^{t-e}+1$ is $\left(p^{e}-1\right)\left(p^{e}-p^{e-1}\right)$.
(2) If $\beta \notin\langle\alpha\rangle \backslash\{0\}$, then $w t(\alpha x+\beta y)=p^{t}+1$. Hence, there are $\left(p^{t}-p^{e}\right)\left(p^{e}-p^{e-1}\right)$ codewords with weight $p^{t}+1$, where $1<e<t$.

References

[1] Ling, San, and Chaoping Xing. Coding theory: a first course. Cambridge University Press, 2004.
[2] Eugene Spiegel, Codes over \mathbb{Z}_{m}, Information and Control 35 (1977), 48-51.
[3] Steven T. Dougherty, T. Aaron Gulliver, Young Ho Park and John N. C. Wong, Optimal linear codes over \mathbb{Z}_{m}, J. Korean Math. Soc. 44(5) (2007), 11391162 .
[4] Steven T. Dougherty, Manish K. Gupta and Keisuke Shiromoto, On generalised weights for codes over \mathbb{Z}_{k}, Australasian J. Combin. 31 (2005), 231-248.
[5] P. Chella Pandian and C. Durairajan, On the \mathbb{Z}_{q}-linear and \mathbb{Z}_{q}-Simplex codes and its related parameters for q is a prime power, J. Discrete Math. Sci. Crypto. (to appear).
[6] C. Durairajan, J. Mahalakshmi and P. Chella Pandian, On the \mathbb{Z}_{q}-Simplex codes and its weight distribution for dimension 2 (communicated).
[7] M. K. Gupta and C. Durairajan, On the covering radius of some modular codes, Adv. Math. Commun. 8(2) (2014), 129-137.
[8] Joseph Rotman, Galois Theory, Springer-Verlag, Inc., New York, 1998.
[9] Durairajan, C., and J. Mahalakshmi. "On codes over integers modulo q." Adv. Appl. Math 15 (2015): 125-143.

