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Abstract:  In the last few years green synthesis of metallic nanoparticles has been a highly attractive research area. A variety of 

biocomponents e.g plant, bacteria, fungi, yeast, and plant extracts have been used for the synthesis or fabrication of nanomaterials. 

Among them, plant extracts have been proven highly efficient stabilizing and reducing agents with controlled shapes, sizes, 

structures, and other specific features. Green synthesis approach reduces the harmful effects associated with other traditional 

methods. Now this is commonly used in laboratory and many industries for various applications. In this review paper, we have 

summarized the basic process and possible mechanism of silver (Ag) and other metallic nanoparticles synthesised with plant 

extract as natural reactants. We have discussed here the role of many phytochemicals and other biological components, such as 

alkaloids, flavonoids, terpenoids, sugars, aldehydes and amides, as reducing, capping and stabilizing agents. Moreover, we have 

also covered potential biomedical applications of such synthesized bioinspired nanomaterials. In this paper, our main aim is to 

review silver nanoparticles formation with green synthesis and presenting important applications for healthcare and treatment. 

Lastly, we have concluded this review with a summary and challenges associated with use of metallic nano-particles in 

biomedical field. 
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I. INTRODUCTION 

In the last decade,  new synthesis methods for nanomaterials (metallic nanoparticles (MNPs), carbon nanotubes (CNTs), quantum 

dots (QDs), graphene, and their composites) have been an interesting area [1-10]. Many physical, chemical and biological 

methods have been used to obtain these nanomaterials of desired size, shape, and functions. Two different basic approaches of 

synthesis viz. 1. Top to down and 2. Bottom to up; have been mostly used in the existing literature. In the first approach (top to 

down), nanomaterials/nanoparticles are prepared through chemical etching, laser ablation, mechanical ball milling, sputtering and 

electro explosion of bulk material [11]. While in case of using the second approach (bottom to up) nanoparticles are grown from 

simpler molecules. In this approach, several methods like chemical vapour deposition, sol–gel processes, laser pyrolysis, spray 

pyrolysis, atomic/molecular condensation, aerosol processes and green synthesis may be employed (Fig. 1). Interestingly, the 

morphological features of nanoparticles (e.g., size and shape) can be modified by changing the concentration and reaction 

conditions (e.g., temperature and pH).Now in real world; it is desirable to improve the different properties of nanomaterials. So, 

these challenges associated with synthesis of nanoparticles are opening new and great opportunities in this field of research. 

 

Figure1. Plant-mediated biosynthesis of metallic nanoparticles (Schematic) [58] 
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In ‘Green synthesis’ the use of unwanted harmful by-products is avoided and production takes place by using eco-friendly 

synthesis procedures. The use of natural resources (organic systems) is essential to achieve this goal. Green synthesis of metallic 

nanoparticles uses various biological materials (e.g., bacteria, fungi, algae, and plant leaves, roots, flower extracts). Use of plant 

extracts for green synthesis of metallic nanoparticles, is simple and easy process at large scale relative to other synthesis routes. 

These products are collectively known as biogenic nanoparticles. Green synthesis is eco-friendly approach as toxic chemicals are 

not involved in it. Here, biological components itself act as reducing, capping and stabilizing agents, therefore, reducing the 

overall cost of production. External conditions like high energy, temperature, pressure are also not required which leads to energy 

saving. So it can be used for large scale production of nanoparticles. Green synthesis is affected by various reaction condit ions 

like solvent, temperature, pressure, and pH etc. For metallic nanoparticles, plants have been largely used due to the presence of 

many phytochemicals in plant extracts. In leaves aldehydes, ketones, flavones, terpenoids, carboxylic acids, phenols, and ascorbic 

acids are found. These phytochemicals can reduce metal salts into metal nanoparticles [12]. The basic features of nanomaterials 

have been utilized in biomedical applications (diagnosis, antimicrobial agents, catalysis, molecular sensing, optical imaging, and 

bio labelling) [13]. Physical and chemical synthesis approaches require many steps, high energy in the form of heat or radiations, 

toxic reactants and stabilizing agents, which may be harmful to different life forms. While, green synthesis of metallic 

nanoparticles is single step eco-friendly reduction method which needs relatively less energy. So this bio-reduction method is cost 

efficient [14-20].  

Components for “green” synthesis- Bacterial species have been utilized for various biotechnological applications such as 

bioremediation, genetic engineering, and bioleaching [21]. Many bacteria have the ability to reduce metal ions and can be used in 

nanoparticles preparation [22]. Bacteria mediated synthesis of nanoparticles is suitable due to easy manipulation [23]. Metallic 

nanoparticles with different size shape and morphology can be produced using bacterial strains: Escherichia coli, Lactobacillus 

casei, Bacillus cereus, Aeromonas sp. etc. 

Fungi mediated biosynthesis of metallic nanoparticles is also a very efficient process due to the presence of a variety of 

intracellular enzymes [24]. Many fungal species have been used to synthesize metal and metal oxide nanoparticles of silver, gold, 

titanium dioxide and zinc oxide. Some fungi can synthesize higher amount of nanoparticles compared to bacteria [25]. Moreover, 

fungi may serve better due to the presence of many enzymes, proteins and reducing agents on their cell surfaces [26]. Formation 

of metallic nanoparticles by fungal cells may be due to enzymatic (reductase) reduction.  

Yeasts are single-celled eukaryotic micro-organisms. A total of 1500 yeast species have been identified [27]. Successful synthesis 

of silver and gold nanoparticles by Saccharomyces cerevisiae  has been reported. Many diverse species of yeast can be employed 

for the preparation of metallic nanoparticles. 

Plants mediated green biosynthesis techniques for nanoparticles preparation using plant extracts have now become very popular. 

These are simple, efficient, cost effective and feasible methods. They can be excellent alternative routes to conventional 

preparation methods. Plants have many biomolecules such as carbohydrates, proteins, and coenzymes to reduce metal salt into 

nanoparticles. Many plants like aloe vera (Aloe barbadensis miller), oat (Avenasativa), alfalfa (Medicago sativa), tulsi (Osimum 

sanctum), lemon (Citrus limon), neem (Azadirachta indica), coriander (Coriandrum sativum), mustard (Brassica juncea), lemon 

grass (Cymbopogon flexuosus) and many others have been used to synthesize silver and gold nanoparticles. Mostly, research has 

explored the ex vivo synthesis, while metallic nanoparticles can also be formed in living plants (in vivo). The in vivo synthesis of 

nanoparticles like zinc, nickel, cobalt, and copper was observed in mustard (Brassica juncea), alfalfa (Medicago sativa), and 

sunflower (Helianthus annuus) [28]. ZnO nanoparticles have been prepared with plant leaf extracts such as coriander 

(Coriandrum sativum) [29], crown flower (Calotropis gigantean) [30], copper leaf (Acalypha indica) [31], china rose (Hibiscus 

rosa-sinensis) [32], green tea (Camellia sinensis) [33], and aloevera leaf extract (Aloe barbadensis ) [34]. Iravani reported 

overview of plant materials utilized for the biosynthesis of nanoparticles [35]. 

Plant leaf extract-based mechanism of “green” synthesis for metallic nanoparticles  

In nanoparticle synthesis mediated by plant leaf extract, the extract is mixed with metal precursor solutions at different reaction 

conditions [36]. Nature and concentration of phytochemicals, metal salt, pH, and temperature are supposed to control the 

nanoparticle formation. Their yield and stability is also depend on these paraameters [37]. The phytochemicals in plants have 

better potential to reduce metal ions as compared to fungi and bacteria [38]. Therefore, plant leaf extracts are excellent source for 

metallic nanoparticles synthesis. Plant leaf extract play a dual role by acting as reducing and stabilizing agents in nanoparticles 

synthesis [39]. The plant leaf extract composition is also an important factor in nanoparticle synthesis as different plants have 

varying concentration levels of phytochemicals [40, 41]. In plants, the main phytochemicals (flavonoids, terpenoids, sugars, 

ketones, aldehydes, carboxylic acids, and amides) are responsible for bioreduction of nanoparticles [42]. In sweet basil 

(Ocimumbasilicum) extracts, enol- to keto-transformation is important factor in the synthesis of biogenic silver nanoparticles 

[43]. Sugars (glucose and fructose) present in plant extracts can also be responsible for metallic nanoparticles synthesis with 

different size and shapes. Whereas, fructose-mediated gold and silver nanoparticles are monodispersive in nature [44]. FTIR 

analysis of green synthesized nanoparticles via plant extracts confirmed that nascent nanoparticles were associated with proteins 

[45]. Gruen et al. [46] observed that amino acids are proficient in binding with silver ions. Tan et al. [47] tested all of the 20 

natural α-amino acids to establish potential towards the reduction of Au0 metal ions. Plant extracts have carbohydrates and 

proteins biomolecules, which act as a reducing agent and promote the formation of metallic nanoparticles [48]. Proteins having 

amino groups (–NH2) available in plant extracts can actively participate in the reduction of metal ions [49]. According to Huang 

et al. [50], the absorption peaks of FTIR spectra imply the stretching of (1) –C–O–C– or –C–O–, (2) –C=C– and (3) –C=O, 
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respectively. It was confirmed that functional groups like –C–O–C–, –C–O–, –C=C–, and –C=O, are the capping ligands of the 

nanoparticles [51]. The main role of the capping ligands is to stabilize the nanoparticles to prevent further growth and 

agglomeration. Alcoholic compounds serve as main reducing agents for the reduction of silver ions to silver nanoparticles [52]. 

Numerous phytochemicals including alkaloids, terpenoids, phenolic acids, sugars, polyphenols, and proteins play a significant 

role in the bioreduction of metal salt into metallic nanoparticles. Shankar et al. [53] confirmed that the terpenoids present  in 

geranium leaf extract actively take part in the conversion of silver ions into nanoparticles. Eugenol is a main terpenoid component 

of Cinnamomum zeylanicum (cinnamon) extracts, and it plays a crucial role for the bioreduction of HAuCl4 and AgNO3 metal 

salts into their respective metal nanoparticles. FTIR data showed that –OH groups originating from eugenol disappear during the 

formation of Au and Ag nanoparticles. After the formation of Au nanoparticles, carbonyl, alkenes, and chloride functional groups 

appeared [54]. The exact mechanism for metallic nanoparticle synthesis via plant extracts is still not fully known. In general, there 

are three phases of metallic nanoparticle synthesis from plant extracts: (1) activation phase or bioreduction of metal ions (2) 

growth phase or combination of small particles) via Ostwald ripening, and (3) termination phase defining the final shape of the 

nanoparticles [55, 56].  

Biomedical Applications of Metallic Nanoparticles Formed By Green Synthesis: 

In recent years, metallic NPs and their alloys have been studied and used in various fields e.g. sensor technology, optical devices, 

catalysis, biological labelling, drug delivery system, and treatment of some cancers. Metallic NPs are very suitable as a marker. 

They are used for the optical detection of biomolecules, antimicrobial, antiplatelet, drug delivery and photo thermal therapeutic 

applications, due to their excellent SPR properties [57]. Here are some extremely promising prospects in the field of healthcare 

and medicines (Fig. 2). 

 

Figure 2. Biomedical applications of metallic nanoparticles formed by green synthesis. [59] 

1. Antimicrobial applications- The metallic nanoparticles effectively prevent growth of several microbial species [60]. The 

antimicrobial effectiveness of metallic nanoparticles depends upon: (a) material used for nanoparticles synthesis and (b) particle 

size. Over the time, microbial resistance to antimicrobial drugs has raised considerable threat to public health. Antimicrobial drug 

resistant bacteria contain methicillin-resistant, sulfonamide-resistant, penicillin-resistant, and vancomycin-resistant properties 

[61]. Antibiotics face many current challenges such as multidrug-resistant mutants and biofilms. The effectiveness of antibiotic is 

likely to decrease due to the drug resistance capabilities of microbes. Biofilms also provide multidrug resistance against heavy 

doses of antibiotics. Drug resistance mainly occurs in infectious diseases such as lung infection and gingivitis [62]. The best 

approach for avoiding multidrug-resistance and biofilm formation is utilization of nanoparticles. Various nanoparticles act by 

multiple mechanisms to fight microbes [e.g., metal-containing nanoparticles, NO-releasing nanoparticles, and chitosan-containing 

nanoparticles].  Due to multiple mechanisms, microbes must have multiple gene mutations in their cell to overcome nanoparticles. 

However, multiple gene mutations in the same cell are unlikely [63]. Silver nanoparticles are efficient antimicrobial, antifungal, 

antiviral, and anti-inflammatory agents [64]. The antimicrobial ability of silver nanoparticles can be due to (1) membrane 

denaturation [65], (2) fragmentation of bacterial cell membrane. [66, 67], and (3) disruption in metabolic processes; leading to cell 

death [68]. Triangular nanoparticles are more reactive because of high atom-density on their surfaces [69]. Au nanoparticles are 

highly useful and effective antibacterial agents because of their non-toxic nature and photo-thermal activity [70-72]. 

Antimicrobial action of gold nanoparticles is not linked with the production of reactive oxygen species [73]. Azam et al. [74] 

reported the antimicrobial potential of zinc oxide, copper oxide, and iron oxide nanoparticles toward gram-negative bacteria 

(Escherichia coli, Pseudomonas aeruginosa) and gram-positive bacteria (Staphylococcus Aureus and Bacillus subtilis). The most 

intense antibacterial activity was reported for the ZnO nanoparticles. In contrast, Fe2O3 nanoparticles exhibited the weakest 

antibacterial effects. The size of nanoparticles have important role in the antibacterial activity [74]. The anticipated mechanism of 

antimicrobial action of ZnO nanoparticles is: (1) ROS generation, (2) release of zinc ion on the surface, (3) membrane 

dysfunction, and (4) entry into the cell. Antimicrobial potential of ZnO nanoparticles depends upon concentration and surface area 

[75]. Mahapatra et al. [76] determined the antimicrobial action of copper oxide nanoparticles for several bacterial species such 

as Klebsiella pneumoniae, P. aeruginosa, Shigella, Salmonella paratyphi s. They found that CuO nanoparticles exhibited 

antibacterial activity against these bacteria. It was assumed that nanoparticles should enter bacterial cell membrane to damage 
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enzymes of bacteria, which leads to cell death. Nanoparticles formed by green synthesis show higher antimicrobial activity than 

chemically synthesized nanoparticles because the plants [such as Ocimum sanctum (tulsi) and Azadirachta indica (neem)] used 

for synthesis of nanoparticles, already have medicinal properties [77, 78]. Green synthesized silver nanoparticles showed larger 

zone of inhibition against various bacterial strains compared to commercial silver nanoparticles [79]. Recently some studies have 

shown that metal nanoparticles can be effective antiviral agents against HIV-1, hepatitis B virus, respiratory syncytial virus, 

herpes simplex virus, monkeypox virus, influenza virus and Tacaribe virus [80]. 

2. Nanomedicines- Nanotechnology-based drugs have also been developed in the last few years. The unique properties of 

NPs, viz., small size, ability to travel through fine blood capillaries, vessels, junctions, and barriers, have made them good choice 

for medicinal use  [81]. They have great advantages like improved bioavailability of drugs, good solubility, improved 

pharmacological activities, toxicity safeguard, and prevention from degradation and increased stability of drugs inside the body 

[82]. Nanomedicines have shown higher capacity to bind with biomolecules, reduction of inflammation and oxidative stress in 

tissues. Nanomaterials based drugs and medicines have applications at molecular level to cure diseases. It provides a platform for 

the discovery of therapeutic nanomaterials or nanomedicines. The growth in nanomedicines has introduced numerous possibilities 

in medical sciences, specifically in the drug delivery systems. Their structural properties make them excellent for target specific 

quick penetration in the cell or diseased sites [83]. Depending on therapeutic need, various types of NPs have been developed e.g. 

liposomal, polymeric protein, metal based, and iron oxide NPs.  

3. Nanomaterials for control of multi-drug resistant pathogens- Application of nanomaterials to control microbial 

proliferation has garnered much interest from scientists worldwide [84, 85]. The increase in resistance of microorganisms to 

antimicrobial agents or antibiotics, has led to health-related complications. It is revealed that by combining the nanotechnology, 

and the inherent antimicrobial activity of certain metals, innovative applications for metal NPs can be identified [86]. It is 

reported that metal and their metal oxide nanoparticles have toxicity towards numerous microorganisms [87, 88]. These Nano 

particles may be used successfully to stop the growth of various bacterial species. The surge in development of multi-drug 

resistant pathogens is presenting itself as a grave problem to public health, and thus, several studies have been conducted to 

improve the antimicrobial treatments [89]. Approximately 70% of bacterial infections have developed resistance to one or more of 

the first- and second-line drugs used to treat the infection [90]. The extensive use of poor quality of over-the-counter medicines in 

several countries has caused a steep rise in antimicrobial resistance [91]. Now development and the synthesis of effective novel 

antimicrobial agents are highly required. NPs based antibacterial agents can solve this challenge. They have the ability to establish 

an effective nanostructure, which may be used to deliver the antibacterial agents, targeting efficiently the bacterial growth. In 

addition, nanoparticles leaves the pathogens with little device to develop resistance. Most of the available metal oxide NPs have 

zero toxicity for mammalian cells at low concentrations [92]. Metals like gold (Au), silver (Ag), titanium (Ti), copper (Cu), and 

zinc (Zn) are known to have their own properties and shows differential activity against microorganisms. This information has 

been utilized across various cultures for many centuries [93]. Metal nanoparticles of [gold (Au), silver (Ag), silicon (Si), titanium 

(TiO2), zinc (ZnO), copper (CuO), calcium (CaO), and magnesium (MgO)] have the potential to inhibit several microbial species, 

like Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, etc. [94-103]. 

It is well known that nanoparticles show different characteristics when compared to the same material in bulk because the 

surface to volume ratio of the NPs increases with a decrease in the particle size [104]. Certainly, in dimensions of nanoscale, the 

molecular surface noticeably increases, which in turn can lead in improvement of some of the properties of the particles. For 

example, it may be heat transfer, treatment, catalytic activity, or the dissolution rate [105]. Literature survey has pointed that the 

particle size can determine the effectiveness of antimicrobial activity of metal nanoparticles [106, 107]. The use of combination 

therapy with metal nanoparticles has the potential to be a strategy for preventing bacterial resistance to multiple antibacterial 

agents [108, 109]. More studies are needed to find out if green synthesized nanoparticles have better efficacy over traditionally 

synthesized nanoparticles or not. Some studies have displayed the same level of antimicrobial effects [110, 111]. The shape of 

nanoparticles plays major influence on their antimicrobial effects [112]. When antibacterial activity of AgNPs of three different 

shapes, (spherical, rod-shaped, and triangular) were compared, triangular NPs were found more reactive because of high atom 

density surfaces and they displayed greater antimicrobial activity [113]. In another study, the size and shape-based antimicrobial 

activity of fluorescent Ag nanoparticles (1–5 nm) was studied against some Gram-positive and Gram-negative bacteria [114].  It 

is reported that smaller the particles size, easily they enter the cell and exhibit higher antimicrobial activity. AgNPs could be used 

for various procedures such as wound dressing, biofilms, bio-adhesives, and coating of certain biomedical materials. 

Antimicrobial property of TiO2 is related to the crystal size, shape, and structure [115]. The exact mechanisms in which non-

metals present the antibacterial effect is still an area of active investigation. Based on literature review, there are some intrinsic 

factors that can influence the ability of nanomaterials in reducing or completely eliminating the cells [116]. 

The pharmaceutical industry has used NPs as a tool to reduce toxicity and side effects of drugs [117]. But while using NPs, 

certain safety concerns still exist. Numerous NPs seem non-toxic which ultimately has beneficial effects on health [118-121]. 

Biologically synthesized NPs have been found to be non-toxic or less toxic due to not using external stabilizing agents, hazardous 

chemicals and solvents during the synthesis process. Hasan et al. [122] compared the morphological, physiological, and 

biochemical responses of biologically and chemically synthesized iron oxide NPs in Zea mays. The biological synthesized iron 

(FeO) NPs promoted better growth as compared to the chemically derived NPs. Similarly, Anna et al. [123] also observed better 

growth in (P. kessleri).  

 

4. Silver nanoparticles as biomaterials in dentistry- AgNPs have distinctive biological properties and can serve as a 

novel application in dental restoration, endodontics, implantology, periodontology and oral cancers. AgNPs holds immense 

potential due to their antimicrobial, antiviral, antifungal actions. AgNPs can prevent biofilm, microleakage and secondary caries. 

They can improve mechanical properties of restorative materials. They can be used as canal irrigant similar to sodium 
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hypochlorite. Its use with acrylic resins has shown antifungal property and less chances of denture stomatitis. They can be used 

for antibiocidal surface coating over titanium implants preventing peri-implantitis. Experiments have revealed that AgNPs possess 

anticancer activity also. AgNPs based adhesive systems can be used in orthodontic treatments. In vitro research suggested that 

nanoparticles prevent crack propagation, periodontal diseases and stimulate regeneration. They have been found to be 

biocompatible with mammalian cells. AgNPs have been found suitable with dental biomaterials, but most of the studies have been 

done in vitro. In spite of benefits of AgNPs, research on long-term in-vivo results, methods of AgNPs incorporation, 

characterization and data on its long-term antibacterial action is the needed for its clinical applications [124]. 

 

5. Cardioprotection- The medicinal plant or herb neem (Millingtonia hortensis) has been used for AgNPs synthesis and 

significant cardioprotective properties were observed in rats [125]. In low concentrations, silver has been indicated as non-toxic 

and safe material to humans. It has been assessed as a promising material in pharmaceutical and biomedical uses [126, 127]. 

 

6. Wound care and healing application- A very important area for application of AgNPs is the treatment of wound 

infections caused by opportunistic microorganisms. The main goal is rapid tissue repair processes, accompanied by maximum 

restoration of functionality and minimum scar formation. The wound healing includes various stages such as blood coagulation, 

inflammation, cell proliferation, and matrix and tissue remodeling. Antibacterial and bactericidal properties of silver make it 

suitable for wound healing. It was found that doses of silver nanoparticles (non-toxic) synthesized by bacteria Bacillus 

cereus and Escherichia fergusonii promoted the collagen formation and epithelisation. It slowed down angiogenesis and the 

length of epithelization termination in rats [128]. Data were also revealed on biomaterials for improving wound healing such as 

modified cotton fabrics, bacterial cellulose, and chitosan [129-132]. Biopolymers combined with nanoparticles (antimicrobial, and 

anti-inflammatory) have great potential in wound healing. It is particularly useful in the management of diabetic foot ulcers 

(DFUs), which is related to high amputation rates and clinical costs [133]. Dai et al. developed an antimicrobial peptide-AgNPs 

composite and tested its wound healing properties in vivo on a diabetic rat model. They demonstrated improved wound healing 

without side effects, indicating a wide-spectrum activity without inducing bacterial resistance [134]. AgNPs increases the 

effectiveness against multi-drug-resistant organisms [135]. Prevention of microbial accumulation is very important in rapid 

wound management and to avoid high costs of antibiotics [136]. In vivo; a reduction of the bacterial burden and fast wound 

healing by silver-containing dressings was demonstrated, [137]. Several products with silver nanoparticles, such as bandages, 

gauzes, sutures, plasters, many creams and ointments can be prepared for wound healing application [138]. Silver treated textile 

materials and surgical sutures demonstrated improved wound healing in vitro, indicating a positive effect of silver for cell 

migration and proliferation [139-141]. Silver and silk proteins combination (improved antibacterial properties and tissue 

regeneration) is opening new options for development of completely natural wound dressing biomaterials [142]. This application 

for wound dressing biomaterials requires multidisciplinary research involving biotechnologists, clinicians, wound care 

professionals for further progress in wound care [143]. 

 

7. Larvicidal and antiplasmodial activity- The spread of many diseases by mosquito vectors is one of the most serious 

problems in many countries. The most typical diseases are dengue fever (A. aegypti) and malaria (A. stephensi). Mosquitoes are 

vectors for transfer of zika virus, yellow fever, japanese encephalitis, and many other diseases. Since effective drugs, and 

vaccines, are not available against these diseases, controlling the mosquito population in their breeding areas can be an alternative 

for controling these diseases. It has been demonstrated that silver nanoparticles obtained from extracts of various plants and 

microbial cultures have larvicidal, pupicidal, and adulticidal toxicity for A. albopictus and A. aegypti [144-148]. AgNPs penetrate 

the exoskeleton of young mosquitoes, and then bind to cell enzymes and DNA. Decrease in membrane permeability may cause 

cell function loss and cell death [149,150]. AgNPs’ may have direct impact on the pathogen Plasmodium falciparum and other 

plasmodia [151-153].  

 

8. Anthelmintic activity- Contact with the soil as well as travel to tropical regions abundant with different parasites results 

in human infections of various types of helminths. The most anthelmintic drugs act on target proteins and regulation of parasite 

neurons and muscles, resulting in paralysis, starvation, immune attack, and expulsion of the worm. However, such drugs may 

have a limited activity spectrum in different types of worms and generate drug resistance [154]. The concentration-dependent 

nature of silver nanoparticles in such bioactivity manifestation using plant extracts has been indicated [155-157]. It is assumed 

that the lethal effect in worms is achieved by inhibiting glucose uptake and the presence of components such as glycosides, 

tannins, and saponins in the packaging of nanoparticles [158,159]. These phytochemicals can attach to free proteins in the 

gastrointestinal tract or glycoprotein on the parasite’s cuticle and cause death.  

 

9.  Leishmanicidal activity- Leishmaniasis is another health problem transmitted to humans by sand flies [160]. 

Leishmaniasis is closely linked to poverty, poor sanitation, malnutrition, and other diseases affecting the immune system. This 

disease is mainly observed in underdeveloped and war-torn countries around the world. Although, various strategies for the 

registration and treatment of this disease have been made, there is no anti-leishmaniasis vaccine. Traditional leishmaniasis 

treatment uses toxic and poorly tolerated expensive drugs which have already developed resistance.  Here, the use of silver 

nanoparticles has potential for solving this problem. Leishmanicidal activity is based on the generation of ROS, latency in G0/G1 

phases of the cell cycle, and inhibition of trypanothione/trypanothione reductase enzyme system [161-163]. “Green” AgNPs from 

plant extracts with activity against Leishmania can be a new hope in managing this health problem. 

 

10. Antioxidant activity- Silver phyto-nanoparticles obtained from extracts of flower Hyacinthus orientalis and Dianthus 

caryophyllus (oriental hyacinth and garden clove) have high antioxidant activity [164]. Salari et al. demonstrated that AgNPs 

synthesized using aqueous Prosopis farcta fruit extract were excellent free radical “cleaners” [165]; a similar effect were found in 

vitro for aqueous extract of black Currant pomace [166], apple extract [167], leaf extracts of Elephantopus 

scaber [168], Indigofera hirsuta [169], and Tinospora cordifolia [170]. The most popular used and rapid methods for estimating 

antioxidant activity are the ABTS (2, 2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid radical) and DPPH (1, 1-diphenyl–2–

picrylhydrazyl radical) assays [171]. The high antioxidant potential of silver nanoparticles was shown for aqueous solution o f  
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spice mixture (garlic, ginger, and cayenne pepper) [172]. Antioxidant activity of the nanoparticles may be associated with 

different types of functional groups from the spice mixture that were responsible for reducing and capping the AgNPs. Similar 

results were obtained in other studies against DPPH and ABTS [173]. Various substances in plant extracts (polyphenols, enzymes, 

alkaloids, etc.) can donate hydrogen to free radicals and thus disrupt the free radical chain reaction. Silver nanoparticles 

synthesized by purple sweet potato root extract (Ipomoea batatas L.) had radical scavenging activity in vitro. Sweet potato root 

extract is full of glycoalkaloids, polyphenols, and anthocyanins acting as free radical scavengers and AgNP-capping by these 

molecules can be great antioxidants [174]. According to Elemike et al. antioxidant capacity of AgNPs was due to the phenolic 

compounds, terpenoids, and flavonoids in plants that let nanoparticles act as singlet oxygen quenchers, hydrogen donors, and 

reducing agents [175]. Shriniwas et al. suggested that the higher antioxidant activity of AgNPs from Lantana camara leaves may 

be associated with the predominant adsorption of the antioxidant substances from the extract to the surface of the nanoparticles 

[176]. Thus, high antioxidant phyto-nanoparticle activity may be associated with the specific capping of AgNPs specifically for 

medicinal plants, whose extracts contain a variety of antioxidant substances (polyphenols, flavonoids, etc.). 

 

11. Anticancer activity- Many side effects in “classical” cancer therapy and their poor tolerance is a reason for searching 

new drugs of natural origin. Silver nanoparticles are potential agents for cancer diagnosis and therapy. Silver nanoparticles can 

induce apoptosis-dependent programmed cell death in the absence of the p53 tumor suppressor. A higher cytotoxicity was 

observed against cancer cells compared to non-cancer fibroblasts [177]. The cell cycle has a complex series of signaling pathways 

for the cell growth, DNA replication and division. Due to mutations in cancer cells, uncontrolled cell proliferation takes place. 

Thus, the most important stages of the cell cycle - DNA synthesis (S), Gap2/mitosis (G2/M), Gap1 (G0/G1), and subG1 are the 

main arrest points [178]. Al-Sheddi et al. showed that AgNPs produced by the plant Nepeta deflersiana had the ability to induce 

apoptosis and cell death by cell necrosis HeLA by stopping the sub G1 cell cycle [179]. Silver nanoparticles were found to induce 

apoptotic pathway by generating free oxygen radicals that displayed antitumor, antiproliferative, and antiangiogenic effects in 

vitro [180]. Silver nanoparticles influence the integrity of membranes by inducing different apoptotic signaling genes in 

mammalian cells, leading to programmed cell death [181]. It is well known that the high level of ROS can damage mitochondrial 

membranes, leading to toxicity [182]. 

Antitumor activities of AgNPs have been described: toxicity against tumor cells of HepG2 (human hepatocellular 

carcinoma) [183,184] and MCF-7 (invasive human breast ductal adenocarcinoma) [185]. It was found that the induction of 

apoptosis of HT29 cells (human colon cancer) can occur due to DNA fragmentation by silver nanoparticles [186]. It has been 

shown that the process of apoptosis can be realized via the degradation of lysosomes during autophagy, increasing the 

programmed cancer cells’ death [187]. Similar results for Jurkat cells were obtained in vitro. Activation of caspase-3 and 

condensation/fragmentation of chromatin were observed in tumour cells treated with silver nanoparticles, which led to cell death 

due to the apoptotic process [188]. Antitumor effect was found for A549 cells (human adenocarcinoma) [189], HeLa cells [190], 

HCT116 (human colon carcinoma), MCF-7 (human breast adenocarcinoma), PC3 (prostate cell line), and A549 (lung carcinoma 

cell line) [191]. The most common biofactory for the production of AgNPs is plants, specially those for which anti-cancer 

properties are already known. However, other organisms are also used for synthesis of nanoparticles, for example, fungi A. 

fumigatus [191, 192]. So due to powerful anti-carcinogenic properties and very low toxicity, AgNPs are promising anticancer 

medicines.  

 

12. Antidiabetic activity- α-amylase and α-glucosidase are key enzymes in carbohydrate metabolism. These enzymes 

breakdown carbohydrates to monosaccharides, resulting in increased blood glucose levels. Amylase inhibitor, jointly with starchy 

foods, reduces the usual upturn in blood sugar. AgNP’s are represented as alpha-amylase inhibitors in many studies in vitro and in 

vivo [193-197]. 

 

13. Anti-inflammatory activity- In vitro, silver nanoparticles have anti-inflammatory effect due to TNF-α, interferons, and 

interleukin 1, inhibition of COX-2 and MMP-3 expressions. They reduce the activity of TNF-α, (involved in inflammatory 

processes) [198-202]. AgNPs from the Piper nigrum extract were shown as selective cytokine inhibitory agents for IL-1β and IL-6 

[203]. AgNPs using European cranberry bush fruit extracts were developed and their anti-inflammatory effect was identified both 

in vitro (on HaCaT cell line, exposed to UVB radiation) and in vivo (on acute inflammation model in Wistar rats) that could be 

used for the treatment of inflammation [204]. Silver nanoparticles from European black elderberry (Sambucus nigra) fruit extracts 

demonstrated an anti-inflammatory feature in vitro on HaCaT cells exposed to UVB radiation, in vivo on the acute inflammation 

model, and for humans on psoriasis damage. In vitro, the anti-inflammatory effects of functionalized AgNPs were indicated by 

the decrease in cytokine production induced by UVB irradiation, and in vivo, the pre-administration of AgNPs reduced the edema 

and cytokine levels in the tissues early after the induction of inflammation [205]. Synergistic effect of polyphenols and silver 

nanoparticles for the manifestation of anti-inflammatory activity is known. Polyphenols have good anti-inflammatory activity in 

the treatment of psoriasis [206]. AgNPs produced using  Clinacanthus nutans aqueous leaf extract have good analgesic and 

muscle relaxant properties, and can act as an analgesic agent [207]. Specific targeting of skin macrophages and suppression of 

inflammatory mediators may contribute to a substantial enhancement in therapeutic results [208]. 

 

14.   Anti-alzheimer activity- Alzheimer’s disease is associated with AChE. AgNPs could be new acetylcholinesterase 

inhibitors. Silver nanoparticles interact with the AChE protein, inhibiting its activity. It indicates the affinity of the nanoparticles 

with cholinesterase. The lithophilicity of the nanoparticles and hydrophobicity environment of the enzyme ChE molecule provide 

this interaction [209]. 

 

15.  Application in medical equipments- AgNP coating is used in catheters to prevent biofilms [210, 211]. Medical 

dressings with silver nanoparticles are used in burns, chronic ulcers, pemphigus, and toxic epidermal necrolysis [212]. AgNPs are 

used in creation of orthopedic and orthodontic implants, dental instruments, and bandages, as well as medical clothing to avoid 

bacterial infections [213-215]. Central venous catheters (CVC) are widely used for providing intravenous fluids, drug delivery, 
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and nutritional support in critically ill patients. So they should be clean and resistant to microbial contamination. It was found that 

catheters with silver nanoparticles coating were non-toxic and capable of preventing infectious complications [216, 217]. In 

catheter (surfaces coated with AgNPs), an inhibitory effect was found against both Gram-positive (coagulase-negative 

staphylococci) and Gram-negative microorganisms [218, 219]. 

 

Major Challenges  

A large number of studies have reported the green synthesis of metallic NPs using various biological sources (bacteria, fungi, and 

yeast and many plants). However, challenges persist, limiting their large-scale production and applications. Some of the major 

challenges during the synthesis are discussed here. Optimization studies on reactants (plant extract, microbial inoculum, medium 

composition, etc.) and process parameters (temperature, pH, agitational speed, etc.) are required to control the size and shape of 

the NPs. Research is required to be focused on improving various physicochemical characteristics of NPs for specific use. The 

involvement of each metabolite of plant extract and cellular components of microorganism in the synthesis of NPs should be fully 

analyzed. Scale-up of NPs production for commercial purposes using green synthesis methods is highly needed. Optimizing all 

reaction parameters for high yield, stability, less reaction time is required. Green synthesis methods may be cost-effective in 

comparison to the conventional methods for the large-scale production of NPs. The separation and purification of NPs from the 

reaction mixture needs to be refined. Toxicity of the NPs on plants and animals is necessary before expanding their applications in 

diverse fields. Genetically modified microorganisms (with the ability to produce greater quantity of enzymes, proteins, and bio 

molecules) could further enhance the biosynthesis as well as the stability of NPs. Thus, the low toxicity, low production cost, and 

multiple uses of metallic nanoparticles make them suitable for solving various biomedical problems.  

The prospective medical applications of NPs obtained using a wide variety of biological materials are extremely large, and the 

number of publications increasing rapidly on this topic is. A Vast variety of materials used for biosynthesis of silver nanoparticles 

with knowledge in the biosynthesis, mechanism and their influence on living organisms, will undoubtedly find new areas of 

applications in near future [220]. 

 

Conclusion and future prospects 

The present review focuses on the green synthesis of metal NPs derived from plants and their biomedical applications. 

Green synthesis is a clean, non-toxic, and eco-friendly approach for metallic NPs synthesis as compared to other conventional 

(physical and chemical) methods. A wide range of plant materials (extract of stems, leaves, fruits, seeds, and bark etc.) and 

microorganism (bacteria, fungi, actinomycetes, etc.) have shown great potential for synthesis of various metal and metal oxide 

NPs (viz., Au, Ag, Pt, Pd, Ni, Se, Cu, CuO, and TiO2). The size and shape of NPs depends on various experimental parameters 

such as reaction time, reactant concentration, pH, temperature, aeration, salt concentration, etc. Different characterization 

techniques such as UV-VIS spectroscopy, FTIR, XRD, SEM, TEM, EDX, and AFM have been used to determine shape, size, and 

morphology of biosynthesized NPs. However, several factors, viz., bioavailability, cellular interactions, biodistribution, and 

biodegradation, adverse reactions, toxicity etc. need to be addressed. 

 The accumulation of these nanomaterials in the environment and biological systems may lead to undesired consequences 

(DNA, membrane, mitochondrial damage and protein misfolding). Additional research is required for safety, use and disposal of 

products containing metallic nanoparticles. In this review paper we have provided in-depth details of green synthesis and their 

real world biomedical applications. Green synthesis procedures will benefit researchers involved in this emerging field of 

nanobiotechnology. It is expected that in near future more and more biomedical applications will emerge using green synthesis 

nanobiomaterials. It may take time until we can say that commercially available silver nanomaterials are truly safe for application 

both in everyday life and medical practice. This article also points researchers to other appropriate opportunities where metallic 

nanobiomaterials can be used. 
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