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Abstract:  In this paper, a generalization of the power Rayleigh distribution known as the Generalized Exponential curve Power 

Rayleigh (GEPR) distribution has been addressed using an exponential curve transformation. The newly proposed distribution's 

statistical properties include its mode, moments, survival function, hazard rate function, order statistic, and random number 

generation. Use estimation methods, including Maximum Likelihood Estimation (MLE), briefly discussed in order to estimate the 

parameters of this distribution. 
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I. INTRODUCTION  

Lifetime data modelling and analysis are essential in the fields of applied sciences like medicine, finance, engineering, etc. 

Numerous lifetime distributions, including the exponential, Weibull, gamma, and many others, are significant in this situation. The 

chosen probability model or distribution has a significant impact on the consistency and accuracy of statistical analysis. Due to this, 

creating new distributions has become a fundamental idea in statistical theory in recent years. Typically, this is done by adding a 

new parameter to the baseline distribution. Saeed, Ijaz, Khalil, and Ali (2021). One thing to keep in mind is that the generalization 

techniques mentioned above all include a few extra parameters in the initial model. In one sense, the additional parameter(s) allows 

the distribution to analyze complex data structures with more flexibility, but on the other hand, it makes parameter estimation and 

other inferential procedures more difficult. In light of these challenges, Kumar et al. propose a small number of new transformation 

techniques in which no additional parameters are added beyond those involved in the baseline distribution. By including a shape 

parameter (α > 0) in the cumulative distribution function of the baseline distribution, Gupta, Gupta, and Gupta (1998) proposed the 

cumulative distribution function (CDF) of a new distribution. Further generalization techniques were used by Gupta and Kundu 

(2001), Seenoi, Supapakorn, and Bodhisuwan (2014), etc. to create more adaptable probability models. Using the Quadratic rank 

transmutation map (QRTM), as described by Shaw and Buckley (2009), is another well-known method for generalizing baseline 

distribution. For instance, Kumar, Singh, and Singh (2015a), Sine, Singh, and Singh (2015b), and Kumar, Singh, and Singh (2016) 

all discuss DUS transformation. The baseline distribution is always the exponential distribution. Kumar, Singh, Singh, and 

Mukherjee (2017) have published a paper using the Weibull distribution M transformation. 

The following is how the paper is set up: Generalized Exponential Curve Power Rayleigh (GEPR) is developed and graphically 

displayed in section (II). Subsections after that discuss the survival function, the hazard function, the shape of the distribution, and 

Random number generation. In section (III), a number of mathematical and statistical properties of the new distribution are derived, 

including the raw moments, mode, quantiles, and order statistics.  Section (IV) discusses the parameter estimation technique from a 

frequentist point of view. Finally, we wrap up the paper in section (V). 

 

II. GENERALIZED EXPONENTIAL CURVE POWER RAYLEIGH (GEPR) DISTRIBUTION: 

Let X be a random variable from a Power Rayleigh distribution with parameters 𝜃 >  0, 𝜆 >  0, if its probability density 

function (PDF) is given by: 

𝑔(𝑥) =  
𝜃

𝜆2
𝑥2𝜃−1𝑒

−𝑥2𝜃

2𝜆2 ;  𝜃 > 0, 𝜆 > 0, 𝑥 > 0 … … … (1) 

 

and the corresponding cumulative distribution function is given by  

 

𝐺(𝑥; 𝜃, 𝜆) = 1-𝑒
−𝑥2𝜃

2𝜆2 ; 𝜃 > 0, 𝜆 > 0, 𝑥 > 0 … … … (2) 

 

The Power Rayleigh distribution is used as the original continuous distribution in the current study, and we use Exponential curve 

transformation to obtain a new lifetime distribution. If a baseline lifetime distribution's PDF and CDF are g(x) and G(x), 

respectively, the PDF of a new distribution lifetime distribution is defined as: 
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𝑓(𝑥) =  𝛼𝛽𝑔(𝑥)𝑒𝛽𝐺(𝑥);  𝛼 > 0, 𝛽 > 0, 𝑥 > 0 … … … … (3) 

 

The corresponding CDF is given by  

 

𝐹(𝑥) =  𝛼𝑒𝛽𝐺(𝑥);  𝛼 > 0, 𝛽 > 0, 𝑥 > 0 … … … … (4) 

 

The Survival function and Hazard rate function is given as: 

 

𝑆(𝑥) = 1 − 𝐹(𝑥); … … … … … (5), 

 

and  

𝐻(𝑥) =  
𝑓(𝑥)

1−𝐹(𝑥)
 

 

𝐻(𝑥) =  
𝛼𝛽𝑔(𝑥)𝑒𝛽𝐺(𝑥)

1−𝛼𝑒𝛽𝐺(𝑥) ;  … … … … … (6), 

respectively. 

 

A reminder that the GEPR is a Power Rayleigh distribution extension is necessary. Greater flexibility in analyzing complex 

datasets has been made possible by the newly acquired. Figure 1 and 2 illustrate the shape of the PDF and CDF of GEPR 

distribution respectively. 

      
         Figure 1: PDF of GEPR distribution                                               Figure 2: CDF of GEPR distribution  

                      for different parameter values                                                         for different parameter values 

 

 Hazard rate function and Survival function: 

 

The Survival function and the Hazard rate function are the two most important inter-related probability measures for the 

lifetime distribution. Both measures are commonly used to describe and model the inherent characteristics of various survival data 

sets. The survival function is denoted as 𝑆(𝑥) = 𝑃(𝑋 > 𝑥) = 1 − 𝐹(𝑥); Similarly, the Hazard rate function, 𝐻(𝑥) is given as: 

 

𝐻(𝑥) =  
𝑓(𝑥; Ѳ)

𝑆(𝑥; Ѳ)
;  𝑆(𝑥; Ѳ) > 0 

 

Where Ѳ = {𝛼, 𝛽, 𝜃, 𝜆} is a parameter. The following expressions (9) and (10), respectively, give the survival and hazard rate 

function for the ECTPR distribution. 

𝑆(𝑥; Ѳ) = 1 −  𝛼𝑒
𝛽(1−𝑒

−𝑥2𝜃

2𝜆2  )

;  … … … (9) 

 

and 

𝐻(𝑥; Ѳ) =
 
𝛼𝛽𝜃

𝜆2 𝑥2𝜃−1𝑒
−𝑥2𝜃

2𝜆2 𝑒𝛽(1−𝑒

−𝑥2𝜃

2𝜆2  )

1 −  𝛼𝑒
𝛽(1−𝑒

−𝑥2𝜃

2𝜆2  )

;  … … … (10) 

 

As seen in Figure 3, the hazard rate function curve initially increases, then starts to decrease, and finally converges to some 

constant value. In survival analysis, it is well known that lifetime distributions with a hazard rate that first increases and then 

decreases are very helpful. This lifetime distribution, for instance, resembles the hazard rate curve of infant mortality rate. For 

more information, see Kotz and Nadarajah (2000), Rao and Mbwambo (2019), and others.  The shapes of the Hazard rate and 

Survival functions of the GEPR distribution are shown in Figures 3 and 4, respectively. 
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               Figure 3: Hazard rate function for                                                    Figure 4: Survival function for  

                                                   different parameter values                                                            different parameter values            

Shape of GEPR distribution: 

 The shape of the distribution is significant because it provides information about the nature of the distribution. Glaser 

(1980) proposed a theorem for mathematically determining the shape of the hazard rate. According to the theorem, 𝜂(𝑥) =

 −
𝑓′(𝑥)

𝑓(𝑥)
; where 𝑓(𝑥) is continuous and twice differentiable on the interval (0, ∞). If 𝜂′(𝑥) > 0 ∀ x > 0, then the hazard rate is 

increasing and if 𝜂′(𝑥) < 0  ∀ x > 0, then the hazard rate is decreasing. So, we have 

𝜂(𝑥) = −
(𝜃𝑥2 − 2𝜆2𝜃 + 𝜆2)𝑒

𝑥2𝜃

2𝜆2 − 𝛽𝜃𝑥2

𝑥𝜆2
 

Therefore, 

𝜂′(𝑥) =
𝛽𝜃

𝜆2
−

(𝜃2𝑥4 − 2𝜆2(𝜃 − 1)𝜃𝑥2 + 2𝜆4𝜃 − 𝜆4)𝑒
𝑥2𝜃

2𝜆2

𝜆4𝑥2
;   … … … … (11) 

The last term of equation (11) attains the minimum value zero as 𝑥 →  ∞. Therefore, it is clearly seen that 𝜂′(𝑥) < 0 i.e., the 

distribution has decreasing hazard rate function. 

 

Random number generation: 

The inversion method or inverse transformation method is used to generate random numbers from the GEPR 

distribution. The algorithm generates a random number U from the Uniform (0, 1) distribution first, and then the equation x = 

F−1(U) generates a random number x from the GEPR distribution. Here we have, 

𝑈 = 𝛼𝑒𝛽(1−𝑒

−𝑥2𝜃

2𝜆2  ) 
Therefore, 

𝑥 = √
−2𝜆2𝑙𝑜𝑔 (1 −

𝑙𝑜𝑔𝑈−𝑙𝑜𝑔𝛼

𝛽
)

𝜃
; … … … … … (12) 

We can easily produce random numbers of size n from the GEPR distribution by using equation (12) for known values of the 

parameter values. 

 

III. STATISTICAL PROPERTIES OF GEPR DISTRIBUTION: 

This section derives and discusses some basic and significant statistical and mathematical measures of the 
Generalized Exponential curve Power Rayleigh (GEPR) distribution, such as moments, mode, and order statistics. 

 

Moments: 

 

The rth order raw moment about origin, µ𝑟
′
 of the proposed distribution with having PDF (7) is obtained as 

follows: 

 

µ𝑟
′ = 𝐸(𝑋𝑟) 

 

µ𝑟
′ = 𝛼𝛽𝑒𝛽2−𝜃−

𝑟

2
−1𝑥2𝜃+𝑟−2 (

𝜃𝑥2

𝜆2 )
−𝜃−

𝑟

2
+1

(Γ (
𝑟

2
+ θ,

2𝜃𝑥2

𝜆2 ) − 2𝜃+
𝑟

2Γ (
𝑟

2
+ θ,

𝜃𝑥2

𝜆2 )); ……. (13) 

 

If we substitute r=1 in equation (13), the above equation is reduced to 

 

µ1
′ = 𝛼𝛽𝑒𝛽2−𝜃−

3

2𝑥2𝜃−1 (
𝜃𝑥2

𝜆2
)

−𝜃+
1

2

(Γ (
1

2
+ θ,

2𝜃𝑥2

𝜆2
) − 2𝜃+

1

2Γ (
1

2
+ θ,

𝜃𝑥2

𝜆2
)) ; … . (14) 

 

So, we have the mean µ1
′  our newly proposed GEPR distribution. From equation (13) it can be seen that, 𝑟 = 2, µ2

′  becomes 

undefined. As a result, because the gamma function is defined only for positive numbers, the variance and higher-order raw 

moments of this distribution cannot be calculated.  
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Mode: 

For any distribution, the value with the highest probability area is the mode. Thus, the value for which the maximum 

value of 𝑓(𝑥; Ѳ) equation (7) is obtained is the mode for the GEPR distribution. Mode is the result of 𝑓′(𝑥; Ѳ) = 0, and 

𝑓′′(𝑥; Ѳ) < 0, respectively. So, differentiating equation (7) with respect to x and equating to zero, we get 

 

−
𝛼𝛽𝜃𝑥2𝜃−2𝑒

−𝑥2𝜃

2𝜆2 (((𝜃𝑥2 − 2𝜆2𝜃 + 𝜆2)𝑒
𝑥2𝜃

2𝜆2 − 𝛽𝜃𝑥2)𝑒
𝛽(1−𝑒

−𝑥2𝜃

2𝜆2  )

𝜆4
= 0; … … . . (15) 

 

It is obvious that equation (15) cannot be solved analytically. As a result, some numerical iteration techniques can be used to 

solve equation (15) numerically. We prefer the Newton-Raphson method in this case in particular. 

 

Order Statistics: 

 

The order statistic is a crucial tool in reliability theory and quality control testing for estimating the time until failure of a 

particular item by taking into account a few early failures Mukherjee, Dey, and Raheem (2017). Let X1 < X2 < X2 < … < Xn be an 

ordered sample from a continuous distribution with CDF 𝐹𝑋(𝑥) and PDF 𝑓𝑥(𝑥). Then the PDF of 𝑟𝑡ℎ order statistic 𝑋(𝑟) is 

given by: 

𝑓𝑋(𝑟)
(𝑥) =  

𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
𝑓𝑋(𝑥)(𝐹𝑋(𝑥))

𝑟−1
[1 − 𝐹𝑋(𝑥)]𝑛−𝑟; 𝑟 = 1,2, … , 𝑛 

So, for the GEPR distribution PDF of the 𝑟𝑡ℎ order statistic is given as: 

 

𝑓𝑋(𝑟)
(𝑥) =  

𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!

𝛼𝛽𝜃

𝜆2
𝑥2𝜃−1𝑒

−𝑥2𝜃

2𝜆2 𝑒
𝛽(1−𝑒

−𝑥2𝜃

2𝜆2  )

(𝛼𝑒𝛽(1−𝑒

−𝑥2𝜃

2𝜆2  ))𝑟−1 [1

− 𝛼𝑒𝛽(1−𝑒

−𝑥2𝜃

2𝜆2  )]𝑛−𝑟; … … … … … … … … … … … … … … … … … … … … … . . (16) 

 

The smallest order statistic is always the sample's minimum, i.e., 𝑋(1) = min (𝑋1, 𝑋2, … , 𝑋𝑛), while the largest order statistic is 

the sample's maximum, i.e., 𝑋(𝑛) = max (𝑋1, 𝑋2, … , 𝑋𝑛).. By substituting r = 1 and n in equation (16), the expressions for the 

smallest and largest order statistics are obtained. The corresponding CDF of the  𝑟𝑡ℎ order statistic is obtained as follows: 

 

𝐹𝑋(𝑟)
(𝑥) =  ∑ (

𝑛

𝑖
)

𝑛

𝑖=𝑟

𝐹𝑋
𝑖 (𝑥)[1 − 𝐹𝑋(𝑥)]𝑛−𝑖 

𝐹𝑋(𝑟)
(𝑥) =  ∑ (

𝑛

𝑖
) (𝛼𝑒𝛽(1−𝑒

−𝑥2𝜃

2𝜆2  ))𝑖

𝑛

𝑖=𝑟

[1 − 𝛼𝑒
𝛽(1−𝑒

−𝑥2𝜃

2𝜆2  )

]𝑛−𝑖;  … … … … … (17) 

 

IV. STATISTICAL INFERENCE: 

Estimating the unknown parameter(s) for the given sample is an important step in fully understanding the probabilistic model in 

statistics. Several estimation procedures under classical and Bayesian paradigms are available in the literature; for more 

information, see Louzada, Ramos, and Perdona’ (2016), Dey, Dey, and Kundu (2014), Kundu and Raqab (2005), Mazucheli, 

Ghitany, and Louzada (2016), Fan (2015), and others. The goal of this study is to estimate the unknown parameters of the GERP 
distribution using frequentist methods. The Maximum likelihood method (MLE) is briefly described here. 

 

Maximum likelihood estimation method: 

 

 The Maximum likelihood estimation method (MLE) satisfies a number of desirable properties for a good estimator, such 

as consistency, asymptotic efficiency, invariance property, and so on. As a result, the MLE is one of the most commonly used 

techniques for parameter estimation. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be the sample of size n, drawn from the GERR distribution with PDF given 

in equation (7). 

The likelihood function is given by: 

𝐿(Ѳ; 𝑋) =  (
𝛼𝛽𝜃

𝜆2
)𝑛 ∏(𝑥𝑖

2𝜃−1)

𝑛

𝑖=1

𝑒
𝛽(1−𝑒

−𝜃 ∑ 𝑥𝑖
2𝑛

𝑖=1
2𝜆2  )

𝑒
−𝜃 ∑ 𝑥𝑖

2𝑛
𝑖=1

2𝜆2 ; … … … … … … (18) 

From equation (18), the log-likelihood function given as: 

 

𝑙𝑜𝑔𝐿(Ѳ; 𝑋) = 𝑙 = 𝑛𝑙𝑜𝑔 (
𝛼𝛽𝜃

𝜆2
) + ∑ 𝑙𝑜𝑔𝑥𝑖

2𝜃−1 +

𝑛

𝑖=1

𝛽 (1 − 𝑒
−𝜃 ∑ 𝑥𝑖

2𝑛
𝑖=1

2𝜆2  ) −
𝜃 ∑ 𝑥𝑖

2𝑛
𝑖=1

2𝜆2
; … … … . (19) 
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As a result, to maximize equation (18), we differentiate the log-likelihood function (19) above with respect to the parameters and 

equate it to zero, giving us the expressions shown below: 

 
𝜕𝑙

𝜕𝛼
= 0 ⇒  

𝑛

𝛼
= 0 … … … … … … . (20) 

 

𝜕𝑙

𝜕𝛽
= 0 ⇒  

𝑛

𝛽
− 𝑒

−𝜃 ∑ 𝑥𝑖
2𝑛

𝑖=1
2𝜆2 + 1 = 0 … … … … … … . (21)  

- 

𝜕𝑙

𝜕𝜆
= 0 ⇒  

−𝛽𝜃 ∑ 𝑥𝑖
2𝑒

−𝜃 ∑ 𝑥𝑖
2𝑛

𝑖=1
2𝜆2𝑛

𝑖=1

𝜆3 −
2𝑛

𝜆
+  

𝜃 ∑ 𝑥𝑖
2𝑛

𝑖=1

𝜆3 = 0 … … . . (22)   

 

𝜕𝑙

𝜕𝜃
= 0 ⇒  

𝑛

𝜃
−

−𝛽 ∑ 𝑥𝑖
2𝑒

−𝜃 ∑ 𝑥𝑖
2𝑛

𝑖=1
2𝜆2𝑛

𝑖=1

2𝜆2 −
∑ 𝑥𝑖

2𝑛
𝑖=1

2𝜆2 + 2 ∑ 𝑙𝑜𝑔𝑥𝑖 = 0 𝑛
𝑖=1 … … … … . . (23)  

 

It is obviously that equation (20) – (23) is not written explicitly and hence it cannot be solved analytically, we will illustrate 
numerically. So, to obtain the MLE’s of the unknown parameters to solve the equation (20) – (23) non-linear equation numerically. 

V. CONCLUSION 

In this paper, we examine and introduce the four parameters of the Generalized Exponential curve Power Rayleigh (GEPR) 

distribution. We derive the newly introduced distribution’s probability density function, cumulative distribution function, and its 

Survival function, and Hazard rate function. We compute some general properties and estimation techniques, like, raw moments, 

mode, order statistics, and Maximum likelihood estimation.  
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