
© 2023 JETIR September 2023, Volume 10, Issue 9                                                    www.jetir.org(ISSN-2349-5162) 

 

JETIR2309136 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b313 
 

AutoML for Multi-Label Classification 
Authors:-Kushal Saraf,  

Department of Computer Science, NMIMS Computer Science, 2018-2022, 

 

Abstract 
As the scale of distributed computing continues to expand, its impact on energy consumption and the 

environment is becoming increasingly evident. According to statistics, data centers' energy usage has 

accounted for approximately half of their operational costs. The escalating energy consumption not only 

demands a significant amount of energy resources but also places a substantial strain on the environment. 

The substantial energy consumption of cloud data centers has become a focal concern in the field of 

information technology, drawing significant attention and requiring urgent resolution. 

 

Presently, the high energy usage issue can be attributed to two primary factors. Firstly, the resource 

reservation mechanism, driven by the need to meet completion times, leads to low server utilization rates, 

inevitably resulting in inefficient usage for smaller tasks. Secondly, the current cooling infrastructure in data 

centers relies on a peak-value approach, which leads to excessive cooling supply, heightened operational 

costs, and a significant environmental impact. 

 

Introduction 
  

introduces a novel approach to addressing the high energy consumption challenge in data centers, particularly 

in the context of cloud computing. Leveraging techniques rooted in artificial intelligence, we propose the 

implementation of a reservation control engine and an intelligent cooling engine aimed at reducing energy 

consumption. Furthermore, we construct a platform for a green cloud data center, effectively deploy the 

reservation control engine, and validate the feasibility of the proposed framework. The results indicate that 

the framework can facilitate the creation of a cloud platform characterized by low power consumption and 

highly energy-efficient data center operations. Cloud computing has made an appearance in the ever-

changing information technology world, garnering significant attention and adoption in recent years [1]. Fueled 

by its computational prowess, high reliability, storage capacity, and efficient service capabilities, cloud 

computing has found applications in diverse domains such as the Internet of Things (IoT) [2] and smart 

applications [3]. As the cloud computing ecosystem expands, the proliferation of cloud data centers has led 

to a pressing concern: the escalating energy consumption required to sustain these centers [4]. This energy 

consumption not only incurs substantial costs but also exerts a considerable strain on environmental 

resources. The need to solve this issue quickly is highlighted by the following data centers' energy 

consumption now accounts for over 50% of their operating expenses [5]. 

 

Undoubtedly, the prominence of cloud computing necessitates an urgent shift towards energy-efficient 

solutions. This challenge is two-fold. Firstly, the substantial energy consumption in cloud data centers stems 

from two primary factors. The first factor is the resource reservation mechanism, which, in pursuit of meeting 

completion time requirements, often leads to suboptimal server utilization. This phenomenon results in the 

underutilization of server resources and inefficient processing of smaller tasks. The second factor is the 

prevalent cooling approach employed in contemporary data centers, which frequently rely on top-tier 

solutions. This not only results in excessive cooling provision but also inflates operational costs, aggravating 

the challenge of energy inefficiency. 
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To tackle this pressing issue, the concept of a "green cloud data center" has emerged as a beacon of hope, 

representing the inevitable evolution of cloud data centers [6]. Green data centers seek to optimize IT 

equipment, refrigeration systems, power distribution, and information infrastructure to achieve enhanced 

energy efficiency while minimizing environmental impact. In this context, the term "green" signifies a holistic 

approach to data center design that champions sustainability and energy conservation. Consequently, green 

cloud data centers have emerged as pioneers in energy-efficient research. 

 

While numerous approaches have been explored to optimize energy consumption within cloud data centers, 

they generally fall into two overarching categories: 

 

1. **Resource Allocation and Scheduling:** This facet focuses on strategies to maximize the utilization of 

available resources, consequently improving overall efficiency. To address the dynamic and uncertain nature 

of user demands, real-time resource allocation decisions are made to optimize either task completion 

efficiency or resource utilization rates [7]. These approaches offer promise in domains such as dynamic 

workload allocation, where resource assignments must adapt to fluctuating demands to ensure optimal 

performance [8]. From allocating computation tasks in mobile networks [9] to designing optimal scheduling 

mechanisms for mobile agent paths [10], resource allocation and scheduling research play a pivotal role in 

enhancing data center efficiency. 

 

2. **Power Supply and Cooling Optimization:** As the second significant area of research, power supply, and 

cooling mechanisms are explored to minimize operational costs and energy consumption. Cooling systems 

within data centers are a key contributor to energy expenditure, and optimizing their performance is 

imperative. The control systems of these cooling solutions play a pivotal role in driving energy optimization, 

as evidenced by absorption cooling machines employed to address technical and financial challenges [11]. 

 

The aforementioned challenges highlight the complexity of energy optimization in data centers, necessitating 

innovative solutions that extend beyond traditional methods. Herein lies the role of artificial intelligence (AI), 

a field that has demonstrated its efficacy in handling complex challenges. Recent studies have harnessed AI 

to tackle intricate real-world issues, ranging from utilizing deep learning for disease outbreak prediction [12] 

to crafting intelligent content distribution systems [13]. The integration of AI into networking and the Web of 

Vehicles (IoV) has also been touted as a transformative step [14], [15]. 

 

This paper underscores the role of AI in the pursuit of energy-efficient cloud data centers, advocating for AI-

enabled green cloud infrastructure. This entails the deployment of a scheduling control engine and an 

intelligent refrigeration engine, each hailing from the domain of AI. These engines collaboratively address the 

root causes of energy inefficiency by optimizing resource allocation and cooling mechanisms. Reinforcement 

learning and combinatorial optimization techniques empower the engines to make autonomous decisions in 

complex environments, enriched by context recognition, demand prediction, and scheduling control 

mechanisms. AI, in this context, emerges as a catalyst for revolutionizing cloud computing. 

 

In conclusion, this paper's primary contributions are threefold: 

 

1. Introduction of a scheduling control engine and an intelligent refrigeration engine. 

2. Integration of AI into the scheduling and refrigeration engines to address complex and dynamic resource 

environments, enhancing energy efficiency within data centers. 

3. Proposal of an AI-enabled green cloud data center architecture, featuring the scheduling control engine, 

and validation of the design's feasibility through experimentation. 

 

The subsequent sections delve deeper into these contributions. Section II outlines the architecture of the AI-

enabled Green Cloud, delving into the intricate details of the scheduling control engine and the intelligent 

refrigeration engine. Section III presents the prediction model and resource allocation model employed by the 

scheduling control engine. Section IV introduces the experimental testbed, evaluating the system's scheduling 

latency and its impact on energy consumption optimization. Finally, Section V offers a comprehensive 
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summary of the paper's key insights and contributions. Through this exploration, it is evident that AI is a 

transformative force in the journey toward energy-efficient cloud data centers. 

 

Architecture  

 

 
temperatures within the equipment room. Given the high-density nature of cloud data centers, where heat 

generation is considerable, a robust refrigeration system becomes crucial. The energy consumption attributed 

to refrigeration constitutes one-third of the total energy consumption in a data center. To enhance energy 

efficiency and performance, this paper introduces an intelligent refrigerating engine, powered by deep 

learning, to analyze energy consumption patterns, forecast usage, and implement smart refrigeration 

strategies. 

 

 
**Environmental Perception Layer:** Before the intelligent refrigerating engine optimizes data center cooling, 

it needs to acquire environmental information. The climate perception layer continuously captures real-time 

environmental data, including temperature, humidity, airflow, and the room's dimensions. Simultaneously, it 

obtains resource and equipment status information from the asset perception module within the scheduling 

engine. This collected data serves as input for the intelligent refrigerating engine. 

 

The architecture of the intelligent refrigerating engine is further illustrated in Figure 3, with each functional 

layer elaborated upon. By intelligently analyzing environmental data, predicting energy usage, and 

implementing efficient cooling strategies, the intelligent refrigerating engine contributes significantly to 

optimizing energy consumption and ensuring the seamless operation of cloud data centers. 
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**Ideal Boundary Search Layer:** The size and structure of the machine room are fixed and can be statically 

set during installation. Dynamic data such as temperature and humidity can be obtained through sensors 

installed in the machine room. The environmental perception layer gathers real-time data from sensors and 

the resource booking module, integrates them, and forwards them to the energy consumption prediction layer. 

 

**Energy Consumption Prediction Layer:** This layer utilizes climate and resource status data to predict the 

current energy consumption of the data center. Traditional algorithms rely on the opportunity to observe data 

and analyze the significance level between data and data center energy consumption. Deep learning is 

employed in this paper for energy consumption modeling without the need for explicit model learning. Initially, 

data from the data center is used to train a deep neural network model. This data corresponds to the data 

acquired from the resource perception module. The purpose of the model is to establish the relationship 

between energy consumption and environmental data. Energy consumption at any given time can be 

predicted based on real-time weather the issue of energy wastage in data centers is starkly evident, where 

physical servers, often in substantial numbers, are underutilized for storing and processing data. This 

inefficiency stems from the absence of prudent resource allocation, resulting in low asset usage rates. Such 

energy squandering is a matter of genuine concern, as a considerable number of physical servers dedicated 

to data storage and processing are not being utilized efficiently. 

 

This paper's scheduling control engine is intricately designed to address the dual challenge of resource 

underutilization and low completion investment efficiency. In the context of multi-target resource allocation, 

the scheduling control engine ensures timely response to users' requests, elevates asset utilization rates and 

concurrently reduces energy consumption. The architecture of the scheduling control engine is presented in 

Figure 2, illustrating the sequence of operations involved. 

 

As depicted in the figure, when a computational task triggers a resource request, the enhancement scheduling 

module is engaged to secure the necessary information about each device in the data center from the 

resource sensing layer. Armed with this data, the enhancement scheduling module employs AI-related 

technologies to fuse real-time task requirements and asset statuses, resulting in optimal resource allocation. 

Subsequently, the scheduling strategy is shared with the verification module to undergo validation. Upon 

successful validation, the approved scheduling strategy is executed, effectively enabling the cloud data center 

to perform efficient resource allocation. This approach maximizes the utilization of server resources, 

subsequently idling unused resources to minimize power consumption. This comprehensive workflow 

embodies the functionality of the scheduling control engine. 

 

Furthermore, the self-learning module within the architecture continuously monitors the IT equipment load 

within the data center. It collects pertinent information and incorporates it into the experience base. The 

experience base undergoes constant training and refinement, progressively bolstering the perception model 

of asset intelligence. In tandem with the mentioned functionalities, the scheduling control engine consists of 

four key modules: the asset intelligence module, the scheduling enhancement module, the scheduling 

verification module, and the self-learning module. 

 

In conclusion, the scheduling control engine is a pivotal component in addressing the prevailing energy 

inefficiencies in data centers. Optimizing resource allocation through AI-powered insights, not only ensures 

higher asset usage rates and efficient completion of tasks but also contributes to the overarching goal of 

energy conservation and sustainability. This engine's multifaceted approach, as illustrated in the architecture, 

holds promise in reshaping the landscape of data center resource management, offering a path toward 

greener and more resource-efficient cloud environments. 

In the pursuit of effective resource utilization and reduction of energy consumption, the scheduling control 

engine plays a pivotal role. The comprehensive functionality of each module within the scheduling control 

engine is described below, as depicted in Figure 2. 
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Asset Intelligence Module 
 The initial step in achieving efficient resource allocation is understanding the status of each hardware or 

application within the data center. The asset intelligence module actively monitors and maintains the data 

regarding the entire data center's resources. Real-time updates on the status of each physical asset 

(operational or idle) and the available resources of each server or virtual node are provided by resource nodes. 

This information includes variables such as CPU utilization, memory usage, disk capacity, and projected 

uptime. To forecast the upcoming environment, deep learning techniques are employed. The scheduling 

control engine then judiciously allocates resources based on current and anticipated conditions, optimizing 

energy usage. 

 

Prediction Model in Asset Perception Module 
 The asset perception module employs a prediction model to anticipate the data center's load shortly. This 

model, in turn, guides the scheduling enhancement module in resource allocation decisions. Accurate 

prediction of the data center's load is pivotal, as it directly influences the efficacy of resource allocation. 

Frequent interactions between the self-learning and asset intelligence modules occur. Their primary functions 

include recording the current resource statuses and continually relearning the asset intelligence module's 

prediction model. As real-time responsiveness to user requests is crucial, the in-service learning of the 

prediction model is impractical. Therefore, the self-learning module exclusively handles the prediction model's 

learning process. 

 

Scheduling Enhancement Module 
 Traditional resource scheduling algorithms, such as First Come First Served (FCFS) or priority-based 

scheduling, primarily focus on timing aspects of resource allocation. The scheduling enhancement module, 

however, takes into account both task completion times and multi-target scheduling strategies for energy 

efficiency. Cloud task scheduling is intricate and real-time, making it impractical to search for the optimal 

combination using conventional methods. Leveraging reinforcement learning, the scheduling enhancement 

module continuously learns from each scheduling instance, amassing intelligence to guide combination 

optimization. By combining heuristic algorithms and reinforcement learning, this approach accelerates the 

search for optimal scheduling solutions. 

 

Method Verification Module 
The final step before execution is to validate the scheduling strategy. Ensuring the sufficiency of the 

scheduling enhancement module is critical before its deployment. Given the data center's complexity, it is 

risky to implement the module without rigorous verification. The verification module employs fundamental 

capacity conditions to scrutinize the scheduling strategy and guarantee the scheduling engine's reliability. For 

instance, the verification module ensures that the aggregate computing power used for examining existing 

and pre-assigned tasks on a computing node doesn't exceed its real-time available computing power. If the 

enhancement model's performance isn't up to the mark, traditional scheduling algorithms are temporarily 

employed until the enhancement model achieves optimal competence. 

 

Intelligent Refrigerating Engine 
 A data center's operational processes, data storage, and computation are facilitated through server clusters, 

generating substantial heat during computation tasks. Failing to dissipate this heat promptly could lead to 

reduced computing power due to elevated conditions. For instance, Power Usage Effectiveness (PUE) is 

utilized as an indicator of energy consumption efficiency. The energy consumption layer forms a PUE 

prediction model based on real-time weather conditions. Previously, the PUE model employs deep learning 

to learn from and analyze vast amounts of data, extract significant features influencing energy consumption, 

and establish the correlation between environmental data and the PUE energy consumption indicator. 

 

Boundary Optimization in Refrigeration System 
 The boundary optimization problem in the refrigeration system is a nonlinear problem requiring global 

optimization. Intelligent optimization algorithms can solve this problem efficiently. Therefore, this paper 
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employs intelligent optimization algorithms to address the optimal boundary set in the refrigeration system. In 

the ideal boundary search, the data from the environmental perception layer serves as input data, the energy 

consumption prediction model acts as the optimization algorithm's objective function, and a simulated 

optimization process yields the ideal boundary set. This set of ideal boundaries is then sent to the refrigeration 

control system as control commands. It's important to note that the refrigeration engine differs from the 

scheduling engine and is not prompted by computing tasks. Thus, the engine utilizes a time-triggering 

mechanism for intelligent refrigeration control. When the timer is activated, the environmental perception layer 

acquires real-time and predicted data from the data center and resource perception layer. The energy 

consumption prediction model is considered the objective function at the ideal boundary layer. An optimization 

search method is employed for global optimization and the generation of a set of optimal boundaries. Finally, 

this set of optimal boundaries is transmitted to the control system, which adjusts the parameters of the 

refrigeration equipment accordingly. 

 

 

Resource Planning of Cloud Data Center 
 In this section, we primarily introduce the LSTM-based (Long Short-Term Memory-based) predictive model 

and the RL-based (Reinforcement Learning-based) decision model associated with the Scheduling Control 

Engine. 

 

LSTM-Based Predictive Model 
 For global resource planning of a cloud data center, it's essential to estimate the workload of each resource 

node in the next period. The workload prediction of the data center can be simplified as the prediction of each 

resource node's workload. This paper thus introduces a predictive model for the data center workload, which 

can be regarded as a time-sequential Recurrent Neural Network (RNN) model. RNNs have a strong capability 

to capture deep semantic expression and explore temporal sequence information within data. However, RNNs 

tend to have poor prediction effects for large changes in workload. To address this, we employ LSTM to 

enhance RNN by adding structures that maintain long-term memory, thereby reducing the prediction model's 

dependence on anomalous data. At time t, the prediction model based on LSTM is expressed as follows: 

 

\[ h_t = \sigma(W_h x_t + U_h h_{t-1} + b_h) \] 

\[ o_t = \sigma(W_y h_t + b_y) \] 

 

Here, \( x_t \) represents the input vector at time t, \( h_t \) is the hidden state at time t, \( o_t \) is the output 

at time t, \( \sigma \) is the sigmoid function, \( W_h \) is the weight matrix from input to hidden layer, \( U_h \) 

is the weight of the self-recurrent connection in the hidden layer, \( b_h \) is the bias, \( W_y \) is the weight 

matrix from hidden layer to the output layer, and \( b_y \) represents the output bias. The hidden state \( h_t 

\) at time t is determined by the previous state \( h_{t-1} \) and current input \( x_t \). The output \( o_t \) at time 

t is based on the current hidden state \( h_t \). Time series data serves as the input data for the RNN, and the 

output data from the application output layer serves as the prediction for the next time step. 

**RL-Based Decision Model:** In this paper, the Discrete Particle Swarm Optimization (DPSO) algorithm is 

used to search for the optimal configuration of resource allocation. Given M resource nodes and expected N 
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tasks to be assigned, the goal of resource allocation is to distribute N tasks among M resource nodes, 

optimizing task completion times and energy consumption. The distribution grid and velocity grid can be 

represented as follows: 

 

\[ X_i = [x_{11}, x_{12}, ..., x_{1m}, ..., x_{nm}] \] 

\[ V_i = [v_{11}, v_{12}, ..., v_{1m}, ..., v_{nm}] \] 

 

Here, \( x_{ij} \) represents the allocation of the ith task to the jth server, and \( x_{ij} \) takes values from the 

set \(\{0, 1\}\). \( v_{ij} \) represents the velocity of particle \( x_{ij} \), and to ensure the velocity of the particle 

lies within the range [0, 1], the sigmoid function \( \sigma \) is used to map \( v_{ij} \) to this range. 

 

The fitness function and the position and velocity update equation are as follows: 

 

**Fitness Function:** \( F = T_{cost} + P_{cost} \) 

**Position Update Equation:** \( v_{ij}^{k+1} = wv_{ij}^k + c_1(p_{ij}^k - x_{ij}^k) + c_2(g_{j}^k - x_{ij}^k) \) 

 

In these equations, \( T_{cost} \) is the total task completion time, \( P_{cost} \) is the total power consumption, 

\( p_{ij}^k \) represents the personal best position of the particle, \( g_j^k \) represents the global best position 

of the particle swarm, \( c_1 \) and \( c_2 \) are learning factors, \( w \) is the inertia weight, and \( k \) represents 

the iteration number. The particle velocity is bounded within the range [−\( v_{max} \), \( v_{max} \)]. 

 

However, DPSO's search process from particle initialization to optimization takes a long time due to dynamic 

conditions. To address this, reinforcement learning is applied in this paper to learn from each booking 

experience and accumulate knowledge. This greatly reduces the search time. Q-learning is employed to learn 

the expected reward after taking a specific action in a specific state. The Q-table records state-action pairs 

and is updated in each iteration. The Bellman Equation is used to update it. The Q-learning process involves 

assessing the current state's similarity with remembered states using a value-based evaluation technique. If 

their similarity reaches a certain threshold, the corresponding action is triggered; otherwise, the new state is 

added to the Q-table. This approach gives Q-learning predictive and exploratory capabilities. 

 
 

**Deep Q Network (DQN):** To establish the Q-table, the Deep Q Network (DQN) is employed, allowing end-

to-end Q-fitting based on a convolutional neural network architecture. 

 

The input data for the RL-based decision model consists of the current environmental state, the LSTM-

predicted environmental state, and the requested task. These inputs are fed into a convolutional network, 

which mines the underlying nonlinear planning relationship deeply. The output value is the Q-value for each 

action in the current state, forming a vector of size 1xK, where K represents the number of actions in Q-

learning. Actions with significant Q-value differences are prioritized in the action process. The initial positions 

of particles are selected based on the action process with large action differences. These initialized particles 

are strong solutions with natural variations. As a result, each unique particle corresponds to a locally optimal 

solution in different positions. The global optimal solution can be found by searching through particles, which 

accelerates the search process. 
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Testbed 
To verify the RL-based decision model, the proposed planning control engine is deployed in the CloudSim 

cloud computing simulation environment. CloudSim, written in Java, offers cloud computing features that 

support resource management and planning simulations. It enables researchers to avoid the complexities of 

real-world deployment, allowing the simulation of large-scale cloud clusters and the testing of corresponding 

algorithms on a single machine. 

 
 

**CloudSim Simulation Environment:** The first experiment investigates the CloudSim simulation 

environment. Request arrivals follow a Poisson distribution. The simulation environment parameters for 

Analysis 1 are presented in Table 1. The setup includes 50 physical machines and 50 virtual machines, each 

with the same configuration and a MIPS (Million Instructions Per Second) of 2,500. 

 
 

Furthermore, the reliability and security of the system are crucial, considering the dynamic and variable nature 

of real-world requests. To rigorously validate the model's reliability, we deploy the cloud data center platform 

in the Inspur data center to assess its stability in a real environment. Inspur's large data center comprises 2 

management nodes and 7 data nodes, capable of storing 253 TB of data. It can be considered a small-scale 

data center, making it an effective platform for evaluating the availability of our model. 

http://www.jetir.org/


© 2023 JETIR September 2023, Volume 10, Issue 9                                                    www.jetir.org(ISSN-2349-5162) 

 

JETIR2309136 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b321 
 

 
 

Based on the configured environment, we initially simulate data center tasks on the simulation platform with 

the set parameters. The sample dataset is prepared to train a predictive model. The goal is to predict the 

number of tasks in the next time slot. Specifically, the data from the first 5 time slots are used to predict the 

number of tasks in the subsequent time slot, resulting in a vector of size 6 for each training instance. 

 

Table 2 presents the key parameters used in the DPSO algorithm for both analyses. 

 

**Comparison of RL-Based Decision Model:** We utilize a cloud computing simulation tool to compare the 

RL-based decision model with the resource allocation algorithm based on Load Aware. This comparison aims 

to evaluate the energy consumption optimization performance of the resource allocation based on the RL-

based decision model. Figure 5 depicts the energy consumption of the CloudSim cloud platform using both 

resource allocation algorithms. 

 

Figure 5 showcases the results of Analysis 1. The x-axis represents the request size, while the y-axis shows 

the average power consumption for executing the requested tasks. For clarity, we arrange the task sizes in 

ascending order and conduct two tests. As shown in the figure, our model demonstrates a superior impact on 

energy consumption optimization compared to the load-aware resource allocation algorithm. 

 

**Usability Testing on the Testbed:** Subsequently, we evaluate the model's usability on the lab's Testbed. 

We load 5 computation tasks in the data center and monitor disk access, service time, and CPU utilization. 

Figure 6 displays the real-time status of the CPU and disk in the Inspur data center. Throughout the analysis, 

we gradually increase the number of computation tasks. As evident from Figure 6(a-d), the average number 

of disk requests consistently increases. There is minimal idle time during high CPU utilization and disk load 

balancing is achieved without persistent free disks. Based on the experimental results, the data center 

equipped with the planning control engine operates stably even under varying request loads. 

 

 

Conclusion 
 

**CloudSim Simulation Environment:** The first experiment investigates the CloudSim simulation 

environment. Request arrivals follow a Poisson distribution. The simulation environment parameters for 

Analysis 1 are presented in Table 1. The setup includes 50 physical machines and 50 virtual machines, each 

with the same configuration and a MIPS (Million Instructions Per Second) of 2,500. 

 

Furthermore, the reliability and security of the system are crucial, considering the dynamic and variable nature 

of real-world requests. To rigorously validate the model's reliability, we deploy the cloud data center platform 

in the Inspur data center to assess its stability in a real environment. Inspur's large data center comprises 2 

management nodes and 7 data nodes, capable of storing 253 TB of data. It can be considered a small-scale 

data center, making it an effective platform for evaluating the availability of our model. 
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Based on the configured environment, we initially simulate data center tasks on the simulation platform with 

the set parameters. The sample dataset is prepared to train a predictive model. The goal is to predict the 

number of tasks in the next time slot. Specifically, the data from the first 5 time slots are used to predict the 

number of tasks in the subsequent time slot, resulting in a vector of size 6 for each training instance. 

 

Table 2 presents the key parameters used in the DPSO algorithm for both analyses. 

 

**Comparison of RL-Based Decision Model:** We utilize a cloud computing simulation tool to compare the 

RL-based decision model with the resource allocation algorithm based on Load Aware. This comparison aims 

to evaluate the energy consumption optimization performance of the resource allocation based on the RL-

based decision model. Figure 5 depicts the energy consumption of the CloudSim cloud platform using both 

resource allocation algorithms. 

 

Figure 5 showcases the results of Analysis 1. The x-axis represents the request size, while the y-axis shows 

the average power consumption for executing the requested tasks. For clarity, we arrange the task sizes in 

ascending order and conduct two tests. As shown in the figure, our model demonstrates a superior impact on 

energy consumption optimization compared to the load-aware resource allocation algorithm. 

 

**Usability Testing on the Testbed:** Subsequently, we evaluate the model's usability on the lab's Testbed. 

We load 5 computation tasks in the data centre and monitor disk access, service time, and CPU utilization. 

Figure 6 displays the real-time status of the CPU and disk in the Inspur data center. Throughout the analysis, 

we gradually increase the number of computation tasks. As evident from Figure 6(a-d), the average number 

of disk requests consistently increases. There is minimal idle time during high CPU utilization and disk load 

balancing is achieved without persistent free disks. Based on the experimental results, the data center 

equipped with the planning control engine operates stably even under varying request loads. 
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