
© 2023 JETIR November 2023, Volume 10, Issue 11                                                www.jetir.org (ISSN-2349-5162) 

JETIR2311166 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b559 
 

STEM CELL THERAPY FOR DIABETES 

COMPLICATIONS: CURRENT EVIDENCE 

AND POTENTIAL ROLE IN DIABETIC 

NEPHROPATHY 
Kahini Roy1, Suresh Janadri*2, Nandana R. Das3, Krishnakhi Das4, Manjunath PM5, 

M. Pharm1, PhD2, M. Pharm3, M. Pharm4, PhD5 

1Department of Pharmacology, 

1Acharya & BM Reddy College of Pharmacy, Bengaluru, India 

 

*Corresponding author 

Dr. Suresh Janadri 

 

Abstract 

A metabolic condition known as diabetes is characterized by elevated blood sugar levels, brought on by 

deviations in insulin synthesis, and action. The kidney condition known as diabetic nephropathy (DN) often 

appears among individuals with diabetes for 10 to 20 years. Diabetes nephropathy may be treatable with stem 

cell therapy. It is critical to discover a novel therapeutic approach to treat DN because existing treatments, 

such as hyperglycemia and blood pressure management, can only partially halt the development of the disease. 

Adipose-derived stem cell (ADSC) transplantation has been established to enhance the capacity for cell repair 

and restoration, and adult mesenchymal stem cells (MS) have been attributed to the reduction of DN. There 

is evidence that oxidative stress is an underlying process in the progression of diabetic problems. 
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1. Introduction 

 

As the world's elderly population grows, as does the occurrence of diabetes, kidney disorders cardiovascular 

disease, and hypertension are becoming increasingly serious worldwide public health issues.1 A metabolic 

condition known as diabetes is characterized by elevated blood sugar levels, which are brought on by 

deviations in insulin synthesis, and action. Chronically elevated blood sugar from diabetes has been linked to 

abnormalities, damage, and failure of several organs such as kidneys, eyes, nerves, heart, and blood vessels.2 
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Diabetes prevalence in Chinese people has increased to 9.7% in recent years.3 A significant percentage of 

people across the world are affected by diabetes. Changes in renal and lipid parameters due to diabetes are 

important risk factors for diabetic complications including diabetic nephropathy and cardiovascular illnesses.4 

End-stage renal disease is mostly brought on by diabetic nephropathy (DN), a major consequence of diabetes 

that has a death rate of 30–40%. Renal fibrosis and increasing abnormalities in renal function are features of 

DN. It is critical to discover a novel therapeutic approach to treat DN because existing treatments, such as 

hyperglycemia and blood pressure management, can only partially halt the development of the disease.5 

In complicated genetic illnesses, several more genes may contribute to nephropathy's development. Two 

distinct methods—case-control association studies and family studies—represent the strategy used to find 

genes.6 Currently, there are roughly 200 million diabetic patients worldwide, and by 2025, there will be 3 

billion DN sufferers. In Western societies, DN is also a key risk factor for end-stage renal disease (ESRD), 

which affects those 65 and older and whose prevalence is rising as the population ages faster.7 The main 

clinical symptoms of this condition which has become a prevalent chronic consequence of diabetes, are 

increasing renal failure and elevated urine protein levels. Glomerulosclerosis, renal fibrosis, and glomerular 

basement membrane thickening are the major characteristics of renal pathology in patients with DN. At this 

time, DN incidence is still gradually rising. Although there are numerous DN treatments available.8 

Elevated blood lipids, smoking, and the quantity and source of dietary protein also are risk factors for this 

disease.9 The observed proteinuria in glomerular disorders is said to be caused by the loss of the glomerular 

filtration barrier's size-selective or charge-selective features.10 The transforming growth factor (TGF-) 

receptor signalling is an established mechanism that results in DN. As the most potent profibrogenic cytokine, 

TGF-1 promotes ECM build up, which is usually regarded as one of the most significant pathogenic features 

of DN.11 

However, the precise molecular pathways driving the advancement of DN are still not completely understood. 

As a result, there aren't many effective drugs for treating DN. angiotensin receptor blockers, ACE inhibitors, 

or aldosterone blockers are being used as the mainstays of DN treatment to ensure that the renin-angiotensin-

aldosterone (RAAS) system is kept under optimal control (spironolactone or finerenone).12 In the complicated 

genetic illness known as diabetic nephropathy, several more genes may contribute to the nephropathy's 

development. Two distinct methods—case-control association studies and family studies—represent the 

strategy used to find genes.13 

1.1  Stem Cells: 

Stem cell therapy for cardiac illness is predicated on the hypothesis that the body's own self-repair 

mechanisms, although capable of renewing the myocardium, may be insufficient to fully repair the damaged 

heart muscle after infarction.14 The human body is brimming with undifferentiated cells called stem cells. 

Treatments based on stem cells have developed into a highly sophisticated and promising research field in 

recent years.15 These cells can be divided into various categories according to their ability to differentiate.16 

Despite the fact that stem cells have been promised to cure human diseases, there are still various obstacles to 

be overcome.17 Stem cells were first found by Becker et al. (1963), who injected bone marrow cells into 

treated mice and saw that a proportional number of nodules grew in the spleens of the animals.18 

1.1.1 Types of Stem cells: (Figure A.1) 

Adipose-derived stem cell (ADSC) transplantation has been found to enhance the capacity for cell repair and 

redevelopment, hence reducing the severity of acute kidney injury.19 The gut has recently gained significant 

attention as a model system for stem cell research. To identify intestinal stem cells a specific marker gene, 

Lgr5, can be used. Miniature organoids encompassing all intestine cell types were generated using a transgenic 

mouse model in which intestinal stem cells expressed green fluorescent protein, allowing for their 

identification, separation, molecular characterization, and use in the production of organoids.20 

The reduction of diabetic nephropathy (DN) has been attributed to mesenchymal stem cells (MSCs); however, 

the precise mediator of this effect and its function have not been fully described. According to some theories, 

the primary mechanism of action of MSC treatment for DN involves the different paracrine actions of the 

trophic substances produced by MSCs.21 PSCs or Pluripotent stem cells possess the capacity to proliferate 

endlessly and create cells in all three germ layers. For the treatment of a broad variety of diseases and injuries, 

PSCs are desirable sources of cell therapies for a wide range of illnesses and injuries.22 
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In 1998, the first human embryonic stem cell lines (HESCs) were established. Due to their capacity to 

differentiate between all cell types and their pluripotent nature, they have been considered a cell source for 

regenerative medicine. Since then, extensive research has been conducted on the variables that regulate 

differentiation and pluripotency.23 The bone marrow contains both mesenchymal stem cells, which can 

differentiate into fat, bone, and cartilage, and hematopoietic stem cells, which can differentiate into both red 

and white blood cells.24 The constant replenishment of adult differentiated cells from the stem cell 

compartment is essential to preserve the structural and functional reliability of many tissues and organs, 

including the haematological system, gut, and epidermis.25 

Mature mammalian neural stem cells are unique in that they can differentiate, self-renew, and quiesce, and 

they only exist in the subgranular zone and subventricular zone of the hippocampus's dentate gyrus, two 

separate niches.26 Human amniotic epithelium, unlike other components of the placenta, is produced from 

pluripotent epiblasts. A tiny hollow form within the blastocyst's inner cell mass from the 14th day of 

pregnancy.27 Melanocyte stem cells (MeSCs) renew the pigment-producing melanocytes that give our skin 

and hair their unique colours, epidermal stem cells (EpSCs) regenerate the epidermis that covers us, and hair 

follicle stem cells (HFSCs) fuel the cyclic development of the hair follicle to make hair shafts.28 

The regeneration of skeletal muscle is a coordinated process that triggers a variety of cellular and molecular 

responses. Satellite cells are essential to this process as they are skeletal muscle stem cells. Self-renewing 

satellite cell proliferation also produces a large number of myogenic cells, which multiply, differentiate, fuse, 

and generate new myofibers to restore a functional contractile apparatus. The intricate activity of satellite cells 

during skeletal muscle regeneration is tightly regulated by the dynamic interaction between internal variables 

in satellite cells and exterior components that comprise the muscle stem cell niche or microenvironment.29 

Somatic stem cell populations help their host tissues grow and regenerate. Because stem cells are contained 

in skeletal and non-muscle stem cell populations, skeletal muscle can regenerate entirely. Its regenerating 

capability, however, is diminished in severe myopathic disorders like Duchenne Muscular Dystrophy.30 

1.2  Pathophysiology of Disease: 

The true cost of diabetes, in terms of both dollars and human misery, is not in day-to-day care, but in the 

disease's numerous consequences.31 The pathogenesis of diabetic complications has been linked to oxidative 

stress caused by the excessive generation of reactive oxygen species (ROS).32 There are three types of 

complications, each with its own mechanism of development, while some variables are shared by all. Elevated 

blood glucose levels are the one thing that all problems have in common. Complications are classified into 

three types: macrovascular, microvascular, and neurologic.31 

Genetics and obesity play significant roles in the development of diabetes in people over the age of 40. The 

hypothesis that there are two forms of human diabetes mellitus indicates that the pathophysiology of the 

diabetic syndrome is not the same in all individuals.33 

Autoimmune breakdown of pancreatic β-cells produces type 1 diabetes. A steady decrease in endogenous 

insulin synthesis characterizes the natural course of this condition. This is affected by both hereditary and the 

surrounding environment.34 

 DN is more likely to strike close relatives, suggesting a hereditary risk and the extent of genetic similarity to 

the proband are correlated. HLA gene variations confer 50 to 60 percent of the genetic risk by altering HLA 

protein binding to antigenic peptides and antigen presentation to T cells.35 Alcohol has an inhibiting effect on 

both gluconeogenesis and glycogenolysis in the liver. With these physiological processes disrupted, in an 

individual with diabetes blood glucose concentrations can decline for several hours after consuming alcohol 

and, eventually, can become life-threatening, especially when combined with insulin therapy.36 

A complicated network of risk factors influences the prevalence of DN, including genetic, metabolic, and 

environmental factors. Epidemiology studies have indicated that addressing the key modifiable risk factors, 

such as obesity, inactivity, and poor nutrition, may prevent many cases of DN.37 Recent research has shown 

that foetal sex plays an essential role in pregnancy for predicting the possibility of acquiring gestational 

diabetes mellitus and the subsequent risk of developing T2DM after pregnancy. Women carrying a boy in 

their first pregnancy have a 3 to 4% increased risk of GDM, and a 7% increased risk in their second pregnancy. 

Mothers carrying a girl child during the first pregnancy are at lower risk of developing GDM.38 

The illness progresses at a faster rate, leading to the development of the cooccurrence of diseases at a younger 

age, emphasizing the importance of early identification at the stage of pre-diabetes. There are various flaws 

http://www.jetir.org/


© 2023 JETIR November 2023, Volume 10, Issue 11                                                www.jetir.org (ISSN-2349-5162) 

JETIR2311166 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b562 
 

in the existing management strategy. Insofar as the passage from insulin resistance to T2DM is a continuum; 

a fundamental challenge is determining how to avoid or treat IR early.39 (Figure A.2) 

Notably, published information on the possibility of avoiding development from normal to micro-albuminuria 

in T2D is more consistent than in T1D. A preliminary study in a small group of hypertensive type 2 

normoalbuminuric diabetes found that 3 years of ACE inhibitor therapy slightly improved GFR and reduced 

the risk of progression to microalbuminuria, which is consistent with experimental evidence that early ACE 

inhibition therapy, i.e., at the stage of diabetes induction, may completely prevent the onset of nephropathy.40 

Only a small percentage of DN cases are diagnosed with a kidney biopsy, although the usual histological 

findings are defined in an international categorization system. Classifications I through IV are distinguished 

by glomerular basement membrane thickness, mesangial expansion, nodular sclerosis (Kimmelstiel-Wilson 

lesion), and severe glomerulosclerosis, respectively. In addition to these distinctive glomerular characteristics, 

interstitial fibrosis and tubular atrophy (IFTA), interstitial fibrosis, arteriolar hyalinosis, and arteriosclerosis 

is usually present. 41 

The natural course of diabetic nephropathy yielded just a 5–7-year survival rate. Several developments in 

treatment and lifestyle have happened during the last several decades. The prognosis of diabetic nephropathy 

with stronger management of blood pressure (including increasing use of long-term renin-angiotensin system 

inhibition), lipids, and glycemia, as well as decreased smoking and other lifestyle and treatment developments, 

has not been well studied. 42 

Oxidative stress is increased by hyperglycemia and thus the production of reactive oxygen species, which 

have a vital role in the pathophysiology of DN.43 Recent findings suggest that hyperglycemia makes target 

organs to blood pressure-induced damage and that local renin-angiotensin systems play a role in the genesis 

and progression of diabetic nephropathy.44 

1.3  Epidemiology: 

According to global diabetes mellitus statistics from 2013, over 382 million people worldwide have this 

condition, with type 2 diabetes accounting for approximately 90% of cases. Both men and women are affected 

equally (8.3% of the adult population) by this. Diabetes was the eighth biggest cause of death in the globe in 

2012 and 2013, killing 1.5-5.1 million people per year.45 Type 1 diabetes represents 7%-12% of the global 

diabetes burden.46 

Persistent microalbuminuria, with an albumin excretion rate between 20 and 200 g/min or 30-300 mg/24 h, 

or a spot urine albumin to creatinine ratio between 30-300 mg/g (3.5-35 mg/mmol) in men and 20 and 200 

mg/g (2.5 and 25 mg/mmol) in females, may be indicative of early diabetic nephropathy (DN). Proteinuria 

above 500 mg/24 h or albuminuria over 300 mg/24 h is diagnostic with overt DN. Overt DN may also show 

as an estimated glomerular filtration rate (eGFR) below 60 ml/min/1.73 m2. 47 

Diabetes nephropathy (DN) is a kind of chronic kidney disease that worsens with time and is most common 

in those who have had diabetes for ten to twenty years. In a minority of people with modest diabetes-induced 

renal impairment, DN may remain clinically asymptomatic for the remainder of their lives.48 

1.4  Risk factors: 

The major risk factors for the onset of diabetes are blood pressure, lipid parameters like cholesterol 

triglycerides, HDL, LDL, heart rate, body weight, and uric acid.49 Those who are elderly, fat, and sedentary 

are at the greatest risk for developing DN. Minority populations are much more susceptible to danger, because 

of the history of their family and genetics as well as their capacity to adapt to the impacts of the American 

environment, such as their bad eating and lack of physical exercise habits.50 As a result, identifying and 

managing risk factors for diabetic nephropathy, as well as rapid diagnosis and management of the disease, are 

critical for effective therapy.51 

When it comes to persons who have diabetes, cardiovascular disease is still the main cause of both morbidity 

and mortality. The mortality rate almost doubles when diabetes mellitus is combined with myocardial 

infarction or stroke, resulting in a 12-year reduction in life expectancy.52 

Hypertension, blood pressure, and lipids are examples of classical CVD risk variables that have been shown 

to have a strong correlation with both overall CVD and major adverse cardiovascular events (MACE). Mean 
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HbA1c was also responsible for this, however, it was less effective than other independent risks, with the 

exception of LDL for total CVD. An insulin sensitivity-determined metric GDR was found to be more 

significantly associated with total CVD than LDL or GFR in alternative models. Insulin sensitivity may be a 

greater predictor of milder CVD endpoints in type 1 diabetes since the model with GDR revealed a worse fit 

for MACE than the main model with HbA1c.53 

New therapeutic and preventative approaches must be developed in response to the T2DM epidemic in order 

to slow the spread of this crippling condition. There is evidence connecting the circadian system to several 

pathophysiological and therapeutic facets of diabetes.54 The type of stem cells, their proliferation capacity, 

differentiation status the route of administration, the intended location, in vitro culture and other manipulation 

steps, irreversibility of treatment, the need for concurrent tissue regeneration in case of irreversible tissue loss, 

and long-term survival of engrafted cells, all influence the risk profile of stem cell-based pharmaceuticals. 

These components work together to determine the risk profile of the pharmaceuticals.55 

1.5  Stem cells therapy in Diabetes Nephropathy: 

There are two main characteristics that cells must have in order to be considered "stem cells." Stem cells must 

first be capable of indefinite self-renewal in order to make clones of their parent cell. Stem cell division is 

well-regulated, whereas cancer cells divide uncontrollably. As a result, it is crucial to underline that stem cells 

must also be capable of producing a specialized cell type that will become a member of the healthy animal.56 

(Figure A.3) 

To replace the function of injured pancreatic beta cells, islet transplantation is the most widely utilized 

procedure. But it does have serious boundaries. HPSCs have the ability to create an infinite number of 

pancreatic cells capable of secreting insulin in response to high blood glucose levels.57 Regular blood glucose 

monitoring and numerous insulin injections often with an insulin pump are the current therapies for insulin-

dependent persons. The availability of customized insulins, each having a different peak of action, has 

improved diabetes management.58 

In addition to Regular injections of insulin and oral hypoglycemic agents, physicians are aiming to improve 

patient care by employing cell therapies utilizing induced pluripotent stem cells (iPSC), embryonic stem cells 

(ESC), and mesenchymal stem cells (MSC).59 Diabetic medications nowadays mostly focus on sensitizing β-

cells to produce insulin in order to lower blood glucose levels. However, many medications have undesirable 

side effects, prompting research into alternate treatments.60 Among the most intriguing ideas to have arisen in 

nephrology during the past ten years are therapies addressing kidney injury using stem cells and regenerative 

medicine.61 

Renal cells may be differentiated from ESCs in the presence of certain growth factors such as retinoic acid, 

activin A, BMP-2, BMP-7, and FGF-7. Multiple studies have shown that iPSCs can be effectively 

differentiated into renal cells, which may be used to enhance DNP properties. In addition, MSCs have been 

used to heal renal damage and regenerate insulin-secreting cells in an STZ-induced diabetic rat, while the 

release of stromal cell-derived factor (SDF-1) in the kidneys facilitated the homing of MSCs. 62 

Stem cell therapies for kidney injury have shown promise in pre-clinical models, but stronger evidence of 

their clinical usefulness is still pending. The tolerability and safety of stem cell therapies, especially those 

based on MSCs, in people with renal disorders and those who have undergone kidney transplants, have been 

established via numerous clinical trials. To completely eliminate the chance of cancer and the emergence of 

anti-HLA antibodies, however, long-term surveillance is advised.63 

Important features of HESCs include the theoretical capacity to develop into any cell type and the potential 

for almost infinite proliferation, so there has been an extensive effort towards emerging protocols to produce 

β-like cells from HESCs for drug development and transplantation.64 

Over the last decade, studies have clearly established that replicating embryonic development is the most 

successful technique to create specific cell types from iPSCs in vitro. This technique was successful, revealing 

that multiple signalling channels and transcription factors regulate pancreatic embryonic development.65 

(Figure A.4) 
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1.5.1 Stem cell Therapy in Other Diseases: 

Embryonic and adult are the two types of stem cells. These cells may also be classified as totipotent, 

multipotent, or unipotent. So far, stem cell use in the treatment of numerous blood disorders has been 

investigated. Alzheimer's disease, Amyotrophic lateral sclerosis, Parkinson's disease, Stroke, Spinal Cord 

Injury, Radiation Induced Intestinal Injury, Multiple Sclerosis, Inflammatory Bowel Disease, Liver Disease, 

Duchenne Muscular Dystrophy, Diabetes, Heart Disease, Renal Disease, Bone Disease, Graft-Versus-Host 

Disease, Sepsis, and respiratory disease are all being studied as potential cell therapy applications.66 

Heart failure is a major global health problem, and Current treatments simply slow the disease's development. 

Current clinical trials and laboratory investigations show that cell-based therapy may enhance heart function, 

and the possibilities for cardiac regeneration are quite exciting. Progenitor cells produced from bone marrow 

and other progenitor cells may develop into vascular cell types, restoring blood flow. Recent research has 

demonstrated that resident cardiac stem cells may develop into a variety of cell types seen in the heart, 

including cardiac muscle cells, demonstrating that the heart is not terminally differentiated.67 

Under various culturing conditions, human ESC produces insulin. Techniques not requiring murine feeder 

cells have been devised, allowing for single species ESC multiplication and minimizing the possibility of 

zoonotic infection of clinically relevant cells.68 

Clinical trials using stem cells have recently opened up many opportunities for the developing field. Others 

are working to develop and broaden the role of bone marrow and cord blood stem cells for their cutting-edge 

applications in immune and blood disorders, while still others are looking to expand the uses of the various 

stem cell types found in the bone marrow and cord blood, particularly mesenchymal stem cells, to uses other 

than replacing cells in their own lineage.69 

HESC expresses well-known pluripotency-associated genes like octamer-binding transcription factor 3/4 

(OCT3/4), and NANOG is positive for pluripotent stem cell surface antigens like stage specific embryonic 

antigens 3 and 4 (SSEA-3 and SSEA-4), TRA-1-60, and TRA-1-81. These markers are used to verify the 

maintenance of the pluripotent state in mature HESC and the successful isolation of a new HESC line.70 

Clinical trials of drugs based on cell therapy are now underway, and recent advances in stem cell research 

have shown encouraging results. Patients at high risk of postoperative acute kidney damage after cardiac 

surgery were successfully treated with allogeneic mesenchymal stem cells in our phase 1 clinical research. By 

incorporating biomarkers, current stem cell-based treatments may provide a new set of diagnostic and 

therapeutic tools for detecting AKI at an earlier stage and treating the condition more effectively.71 

Preclinical studies have revealed that marrow mesenchymal cell transplantation has the potential to repair 

hereditary bone, cartilage, and muscle abnormalities.72 During the past ten years, much progress has been 

made in recreating pancreatic development in vitro making use of HESCs with the support of the vast 

information accumulated from studies on pancreatic organogenesis in model animals.64  

Other options for treating spinal cord damage include recruiting endogenous neural stem cells or transplanting 

NSCs. These cells are multipotent and can be cultured in vitro; they can differentiate into neurons, astrocytes, 

oligodendrocytes. The spinal cord may be a source for these cells and have distinct features from NSCs 

derived from the forebrain.73 

An alternative antiviral treatment may be established by a combination of genetic modification and HSC 

transplantation. Altering HSC is a great method for creating infection-resistant immune cell populations since 

they are the source of all hematopoietic cell types that are vulnerable to HIV infection. Gene therapies based 

on HSCs have developed as a viable avenue, as these self-renewing progenitor cells may be modified to be 

resistant to HIV. If the altered HSCs are successfully engrafted, they will produce a steady stream of 

genetically modified cells with enhanced anti-viral activity or resistance to HIV infection. If all viral reservoirs 

are eradicated and the host is repopulated with an HIV-resistant hematopoietic system, then the patient will 

be cured permanently.74 

1.6 Conclusion:   

Cells derived from human embryos have the important characteristics of infinite proliferation and the potential 

capacity to differentiate to any cell type, much effort has been made into creating methods for producing β-

like cells from HESCs for transplantation and drug development. Treatments for diabetes include islet 
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transplantation, human pluripotent stem cells (HPSCs), and cell therapies utilizing embryonic stem cells 

(ESC). Treatments based on stem cells are expected to deliver a totally new group of therapeutic and 

diagnostic tools. Preclinical studies have revealed that mesenchymal stem cell transplantation has the potential 

to repair hereditary bone, cartilage, and muscle abnormalities. Other options for treating spinal cord damage 

include recruiting endogenous neural stem cells or transplanting NSCs. Stem cells have the potential to 

generate every tissue in the human body, making them ideal for future therapeutic applications in tissue repair 

and regeneration. Stem cell therapies for kidney injury have shown promise in pre-clinical models, but 

stronger evidence of their clinical usefulness is still pending. 

 

 

                                                                        Fig A.1: Types of Stem Cells 

 

 

                                                            Fig A.2: Insulin resistance in Type 2 diabetes 

 

http://www.jetir.org/


© 2023 JETIR November 2023, Volume 10, Issue 11                                                www.jetir.org (ISSN-2349-5162) 

JETIR2311166 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b566 
 

 

 

 

 

 

                                                                        Fig A.3: Stem cell differentiation 

 

 

 

                                                           Fig A.4: Autologous cell therapy for diabetes 
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