STUDIES OF STABILITIES OF MANNICH BASE WITH METAL IONS IN MIXED SOLVENT 303.15 K BY PH-METRIC METHOD.

*Patil M.D.¹, Sonar A.N.²
* Shri V.S. Naik College, Raver

ABSTRACT
The formation of complexes of mannich base of (N-(3,4-dihydroxyphenyl) (2-oxocyclohexyl)methylisonicotinohydrazide) with metal ions at constant ionic strength (μ = 0.1M) in 70% ethanol was investigated at 303.15K by pH-metric titration. The values of proton-ligand stability constant (pK) and metal-ligand stability constant (logK) obtained from the data. It is observed that the metal ions form 1:1 and 1:2 complexes with mannich base of N-(3,4-dihydroxyphenyl) (2-oxocyclohexyl)methylisonicotinohydrazide).

Key Words: Stability Constant, pH metry, mannich base.

Introduction: -
The studies of metal-ligand complexes in solution of a number of metal ions with carboxylic acids, oximes, phenols etc. would be interesting which throw light on the mode of storage and transport of metal ion in the biological kingdom.

In the earlier number of investigators shows the data base on metal complexes with mannich base was presented. Narwade et.al[1] studies the Formation and Stability constant of thorium (IV) complex with some substituted pyrazolines. Mathieu W.A. Steenland et.al.[2] studies stability constant of Cu(II) and Ni(II) complexes of trans-dioxopentaaza macrocycles in aqueous solution by different technique. Hong-Wen Gaoet.al.[3] has studied the stability constant of Cu (II) and Co (II) complexes with CNBAC in water sample spectrophotometrically. Tuba Sismanoglu [4] have studied the stability constant of binary complexes of Nicotinamide with Mn (II) by pH metrically. He also determines change in free energy, change in enthalpy and change in entropy from stability constant at different temperature. Tekade et.al. [5] have been studied complex formation of Cu (II) and Co (II) metal ion complex with substituted isoxazolines. O.Yamauchi et.al. [6] studied stability constant of metal complexes amino acids with charged side chain by pH–metrically. Hayati Sari et.al.[7] studied the stability constant of glyoxime derivative and their Nickel, Copper, Cobalt and Zinc complexes potentiometric and theoretically. Talele[8] et. al have been studied the stability constant of Schiff base metal complexes at ionic strength.

After review of literature survey the detail study of complex under identical set of experimental condition is still lacking. It was thought of interest to study the chelating properties of mannich base under suitable condition with lanthanide by pH metrically.
Experimental:-

pH measurement were carried out with equip-tronic EQ-610 pH meter (accuracy ± 0.01 units) using combine glass electrode at room temperature. Metal ions solutions prepared in triply distill water and concentration estimated by standard method.[9] The solution of drugs prepared in solvent. The pH metric reading in 70% Ethanol – water mixture were converted to [H+] value by applying the correction proposed by Van Uitert Haas.

The overall ionic strength of solution was constant and calculated by the equation

\[\mu = \frac{1}{2} \sum C_i Z_i^2 \]

The concentration of other ion in addition to Na+ and ClO₄⁻ were also taken into consideration.

Result and discussion:-

Substituted heterocyclic drugs may be ionized as acid having replaceable H⁺ ion from -OH group. Therefore it is represented as HL i.e.

\[\text{HL} \rightarrow \text{H}^+ + \text{L}^- \]

The titration data used to construct the curves between volume of NaOH and pH. They are called acid-ligand titration curves.

It is observed from titration curves for all systems ligand start deviating from the free acid curves at pH 2.5 and deviating continuously up to pH =11. The deviation shows that dissociation of proton in drug.

The average number of proton associated with the ligand (nA) was determined from free acid and acid – ligand titration curves employing the equation of Irving and Rossotti [10]. The Pk values were determined from formation curves (nA ν P[H]) by noting the pH at which nA = 0.5. The accurate values of pk were calculated by point wise calculations which are presented in table -1.

<table>
<thead>
<tr>
<th>Table-1</th>
<th>Determination of proton-ligand stability constant(pK) of AT 0.1M ionic strength.</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Constant pK</td>
</tr>
<tr>
<td></td>
<td>Half integral</td>
</tr>
<tr>
<td>Ligand-1</td>
<td>9.75</td>
</tr>
</tbody>
</table>

METAL -LIGAND STABILITY CONSTANT (Log k):-

Metal-ligand stability constant of transition metal chelate with some 4-(4-benzhydryloxy-1-piperidyl)-1-(4-tert-butylphenyl) butan-1-one drug were determined by employing Bjerrum calvin pH metric titration method as adopted by Irving and Rossotti. The formation of complexes between transition metal ions with drug were indicated by the significant separation starting from pH =2.5 for all systems.

The change of colour from colourless to faint yellow colour complex form.
Table-2

Determination of metal –ligand stability constant (logK) of transition metal ions with some ligand at 0.1M ionic strength.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>System</th>
<th>Logk₁</th>
<th>Logk₂</th>
<th>Logk₂ - Logk</th>
<th>Logk₂/Logk₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu (II)</td>
<td>4.55</td>
<td>8.55</td>
<td>4.00</td>
<td>1.8791</td>
<td></td>
</tr>
<tr>
<td>Zn (II)</td>
<td>4.30</td>
<td>7.15</td>
<td>2.85</td>
<td>1.6628</td>
<td></td>
</tr>
<tr>
<td>Ni (II)</td>
<td>4.70</td>
<td>7.45</td>
<td>2.75</td>
<td>1.5851</td>
<td></td>
</tr>
<tr>
<td>Mg (II)</td>
<td>3.90</td>
<td>6.95</td>
<td>3.05</td>
<td>1.7821</td>
<td></td>
</tr>
<tr>
<td>Fe (II)</td>
<td>4.65</td>
<td>7.10</td>
<td>2.45</td>
<td>1.5269</td>
<td></td>
</tr>
</tbody>
</table>

The result shows the ratio of Logk₁ / Logk₂ is positive in all cases. This implies that there is little or no steric hindrance to the addition of secondary ligand molecule. The smaller difference may be due to trans structure.

Acknowledgements

The Authors are thankful to Principal and Head of department, D.D.N. Bhole College, Bhusaval for providing necessary facilities.

References:

8. R.D. Talele and A.N. Sonar, Studies of stabilities of Schiff base of (5 - hydroxy - 3 -methyl - 1 - (2, 4- dinitrophenyl) – pyrazole – 4 - yl) (phenyl)methanone and 4-amino antipyrine complex with metal ions in mixed solvent at 0.1M ionic strength and 303K by pH metric method, *International Journal of Basic and Applied Chemical Sciences*, 2014 Vol. 4 (3) July-September, pp.13-15
