M-open Sets in Bitopological Spaces

VADIVEL¹, R. VENUGOPAL² and M. SHANThI³

¹,³Post Graduate and Research Department of Mathematics, Government Arts College(Autonomous), Karur- 639 005, India.
¹,²Department of Mathematics, Annamalai University, Annamalainagar

Abstract

The aim of this paper is to introduce and investigate the concept of \(\tau_i \tau_j \cdot M \)-closed sets which are introduced in a bitopological space in analogy with \(M \)-closed sets in topological spaces. Also \(M \)-closure and \(M \)-interior operators in bitopological spaces are introduced. In addition, several properties of these notions and connections to several other known ones are provided.

Keywords and phrases: \(\tau_i \tau_j \cdot M \)-closed set, \(\tau_i \tau_j \cdot Mcl(A) \), \(\tau_i \tau_j \cdot Mint(A) \).

1 Introduction and Preliminaries

Levine in 1963 initiated a new types of open set called semiopen set [8]. A subset \(A \) of a space \((X, \tau)\) is called regular open (resp., regular closed) [10] if \(A = \text{int}(\text{cl}(A)) \) (resp., \(A = \text{cl}(\text{int}(A)) \)). The delta interior [3] of a subset \(A \) of \((X, \tau)\) is the union of all regular open sets of \(X \) contained in \(A \) and is denoted by \(\delta \text{int}(A) \). A subset \(A \) of a space \((X, \tau)\) is called \(\delta \)-open [9] if \(A = \delta \text{int}(A) \). The complement of \(\delta \)-open set is called \(\delta \)-closed. Alternatively, a set \(A \) of \((X, \tau)\) is called \(\delta \)-closed [3] if \(A = \delta \text{cl}(A) \), where \(\delta \text{cl}(A) = \{ x \in X : A \cap \text{int}(\text{cl}(U)) \neq \phi, U \in \tau \} \). A subset \(A \) of a space \(X \) is called \(\theta \)-open [1] if \(A = \theta \text{int}(A) \), where \(\theta \text{int}(A) = \{ U : U \subseteq A, \ U \in \tau \} \), and a subset \(A \) is called \(\theta \)-semiopen [2] (resp., \(\delta \)-preopen [9], \(e \)-open [4] and \(M \)-open [5]) if \(A \subseteq \text{cl}(\theta \text{int}(A)) \) (resp., \(A \subseteq \text{cl}(\delta \text{int}(A)) \)) and \(A \subseteq \text{cl}(\theta \text{int}(A)) \cup \text{int}(\delta \text{cl}(A)) \). Clearly \(A \) is \(\delta \)-interior, \(\delta \)-interior, \(\delta \)-interior and \(\delta \)-closure operations, respectively. The notion of bitopological spaces (in short, Bts’s) was first introduced by kelly [6].

Through out this paper, Let \((X, \tau_1, \tau_2)\) or simply \(X \) be a Bts and \(i, j \in \{1,2\} \). A subset \(S \) of a Bts \(X \) is said to be \(\tau_{1,2} \)-open [7] if \(S = A \cup B \) where \(A \in \tau_1 \) and \(B \in \tau_2 \). A subset \(S \) of \(X \) is said to be \(\tau_{1,2} \)-closed if the complement of \(S \) is \(\tau_{1,2} \)-open. and \(\tau_{1,2} \)-clopen if \(S \) is both \(\tau_{1,2} \)-open and \(\tau_{1,2} \)-closed. For a subset \(A \) of \(X \), the interior (resp., closure) of \(A \) with respect to \(\tau_i \) will be denoted by \(\text{int}_i(A) \) (resp., \(\text{cl}_i(A) \)) for \(i = 1,2 \). In this paper, we introduce and investigate the concept of \(\tau_i \tau_j \cdot M \)-closed sets which are introduced in a bitopological spaces in analogy with \(M \)closed sets in topological spaces. Also introduce \(M \)closure and \(M \)interior operators in bitopological spaces. In addition, several properties of these notions and connections to several other known ones are provided.

2 \(M \)-open sets and their properties in bitopological spaces

Definition 2.1 Let \((X, \tau_1, \tau_2)\) be a Bts. A subset \(A \) of \(X \) is called \(\tau_i \tau_j \cdot M \)-open (briefly, \(\tau_i \tau_j \cdot M \)-o) if \(A \subseteq \text{cl}_i(\theta \text{int}_i(A)) \cup \text{int}_i(\delta \text{cl}_i(A)) \) and \(A \) is a \(\tau_i \tau_j \cdot M \)-closed (in short, \(\tau_i \tau_j \cdot M \)-c) if \(X \setminus A \) is \(\tau_i \tau_j \cdot M \)-o. A is pairwise \(M \)-open if it is both \(\tau_i \tau_j \cdot M \)-o and \(\tau_j \tau_i \cdot M \)-o. Clearly \(A \) is \(\tau_i \tau_j \cdot M \)-c if and only if \(\text{int}_j(\theta \text{cl}_j(A)) \cap \text{cl}_j(\delta \text{int}_j(A)) \subseteq A \). We denote the family of all \((i,j) \cdot M \)-o (resp., \((i,j) \cdot M \)-o) sets in a Bts \((X, \tau_1, \tau_2)\) by \(D_{MC}(\tau_i, \tau_j) \) (resp., \(D_{MO}(\tau_i, \tau_j) \)).
Definition 2.2 Let \((X,\tau_1,\tau_2)\) be a Bts. A subset \(A\) of \(X\) is called \(\tau_i\theta\)-semiopen (briefly, \(\tau_i\theta\)-so) if \(A \subseteq cl_i(\theta t_i(A))\), \(\tau_i\delta\)-preopen (briefly, \(\tau_i\delta\)-po) if \(A \subseteq int_i(\delta cl_i(A))\), \(\tau_i\text{-}e\)-open if \(A \subseteq cl_i(\delta int_i(A)) \cup int_i(\delta cl_i(A))\).

Proposition 2.1 The following implications hold:

1. \(\tau_i\text{-}o \Rightarrow \tau_i\text{-}so \Rightarrow \tau_i\text{-}M-o \Rightarrow \tau_i\text{-}e-o\).
2. \(\tau_i\text{-}o \Rightarrow \tau_i\text{-}\delta-po \Rightarrow \tau_i\text{-}M-o\).

The converse of these implications need not be true as shown by the following examples,

Example 2.1 In Bts's \((X,\tau_1,\tau_2)\) and \((X,\tau_3,\tau_4)\), \(X = \{a,b,c,d\}\), \(\tau_1 = \{\phi,X,\{a\},\{b\},\{a,b\},\{a,b,c\}\}\), \(\tau_2 = \{\phi,X,\{a\},\{b\},\{a,b\},\{d\},\{a,d\},\{b,c\}\}\) and \(\tau_3 = \{\phi,X,\{a\},\{b\},\{a,b\},\{a,c\},\{a,b,d\}\}\). Then the set \(\{b,c\}\) is a \(\tau_1\text{-}o\) set that is not a \(\tau_1\text{-}\theta\)-set; \(\{b,c\}\) is a \(\tau_1\tau_2\text{-}so\) set that is not a \(\tau_1\text{-}\theta\)-set; \(\{a,d\}\) is a \(\tau_1\tau_2\text{-}\delta\)-po set that is not a \(\tau_1\text{-}o\) set; \(\{a,b\}\) is a \(\tau_1\tau_2\text{-}M\)-o set that is not a \(\tau_1\tau_2\text{-}\theta\)-so set; \(\{a,c\}\) is a \(\tau_1\tau_2\text{-}e\)-o set that is not a \(\tau_1\tau_2\text{-}M\)-o set; \(\{a,b,d\}\) is a \(\tau_3\tau_4\text{-}M\)-o set that is not a \(\tau_3\tau_4\text{-}\delta\)-po set.

Remark 2.1 \(\tau_1\tau_2\text{-}o\) sets and \(\tau_1\tau_2\text{-}M\)-o sets are independent of each other as seen from this following example.

Example 2.2 In Example 2.1, the subsets \(\{b,d\}\) is \(\tau_1\tau_2\text{-}o\) but not \(\tau_1\tau_2\text{-}M\)-o set and the subsets \(\{a,b\}\) is \(M\)-o but not \(\tau_1\tau_2\text{-}o\) set.

Remark 2.2 According the Definitions 2, 2 and Proposition 2, the following diagram holds for a subset \(A\) of a space \(X\):

![Diagram](https://via.placeholder.com/150)

Note: \(A \rightarrow B\) denotes \(A\) implies \(B\), but not conversely.

Theorem 2.1 In Bts \((X,\tau_1,\tau_2)\), (1) Arbitrary union of \(\tau_1\tau_2\text{-}M\)-o sets are \(\tau_1\tau_2\text{-}M\)-o. (2) The intersection of an \(\tau_1\tau_2\text{-}M\)-o set with an \(\tau_1\text{-}o\) set is an \(\tau_1\tau_2\text{-}M\)-o set. (3) The intersection of arbitrary \(\tau_1\tau_2\text{-}M\)-o sets is \(\tau_1\tau_2\text{-}M\)-o.

Proof. (1) Let \(\{A_i,i \in I\}\) be a family of \(\tau_1\tau_2\text{-}M\)-o sets. Then \(A_i \subseteq cl_i(\theta t_i(A_i)) \cup int_i(\delta cl_i(A_i))\), hence \(U_i A_i \subseteq U_i \{cl_i(\theta t_i(A_i)) \cup int_i(\delta cl_i(A_i))\} \subseteq cl_i(\theta t_i(U_i A_i)) \cup int_i(\delta cl_i(U_i A_i))\), for all \(i \in I\). Thus \(U_i A_i\) is \(\tau_1\tau_2\text{-}M\)-o.

(2) and (3) are obvious.

Remark 2.3 The intersection of any two \(\tau_1\tau_2\text{-}M\)-o sets is not \(\tau_1\tau_2\text{-}M\)-o set, in Example 2(`)@, the sets \(A = \{a,b,c\}\) and \(B = \{a,c,d\}\) are \(\tau_1\tau_2\text{-}M\)-o sets but \(A \cap B = \{a,c\}\) is not \(\tau_1\tau_2\text{-}M\)-o set.

Remark 2.4 The family \(D_{MC}(\tau_1,\tau_2)\) is generally not equal to the family \(D_{MC}(\tau_2,\tau_1)\) as seen from the following example.
Example 2.3 In Example 2.1 the family $D_{MC}(\tau_3, \tau_4) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{c, d\}, \{b, c\}, \{a, d\}, \{a, c\}, \{a, b\}, \{d, c\}, \{a, d\}, \{b, c\}, \{a, c\}, \{b, d\}\} \cap \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{b, d\}\}$. Therefore $D_{MC}(\tau_1, \tau_2) \neq D_{MC}(\tau_2, \tau_1)$.

Theorem 2.2 In a Bts (X, τ_1, τ_2), $\tau_1 \subseteq \tau_2$ and M-open $(X, \tau_1) \subseteq M$-open (X, τ_2) then $D_{MC}(\tau_2, \tau_1) \subseteq D_{MC}(\tau_1, \tau_2)$.

Proof. Let $A \in D_{MC}(\tau_2, \tau_1)$ that is A is an M-c set. To prove that $A \in D_{MC}(\tau_1, \tau_2)$. Let $G \in M$-open (X, τ_1) be such that $A \subseteq G$. Since M-open $(X, \tau_1) \subseteq M$-open (X, τ_2), we have $G \in M$-open (X, τ_2). As A is a (τ_2, τ_1)-M-c set, we have $\tau_1 \delta pcl(A) \subseteq G$. Since $\tau_1 \subseteq \tau_2$, we have $\tau_2 \delta pcl(A) \subseteq \tau_1 \delta pcl(A)$ and it follows that $\tau_2 \delta pcl(A) \subseteq G$. Hence A is a (τ_1, τ_2)-M-c. That is $A \in D_{MC}(\tau_1, \tau_2)$. Therefore $D_{MC}(\tau_2, \tau_1) \subseteq D_{MC}(\tau_1, \tau_2)$.

Theorem 2.3 Let A and B be subsets of (X, τ_1, τ_2) such that $A \subseteq B$. If A is an τ_{12}-M-o set in (X, τ_1, τ_2), then A is an τ_{12}-M-o set in $(B, \tau_1 \setminus B, \tau_2 \setminus B)$.

Proof. If A is an τ_{12}-M-o set in X,

$$A \subseteq int_1(cl_1(A)) \cup cl_1(int_1(A))$$

$$A = int_1(B) \cup cl_1(int_1(A)) \cap B \cup (cl_1(int_1(A)) \cap B)$$

Hence A is an τ_{12}-M-open set in $(B, \tau_1 \setminus B, \tau_2 \setminus B)$.

The converse of the Theorem 2.3 need not be true as shown by the following example, even when $A \in \tau_i$.

Example 2.4 In Example 2.1, $A = \{d\} \in \tau_1 \setminus B$ where $B = \{a, b, d\}$. Hence A is an τ_{12}-M-o set in $(B, \tau_1 \setminus B, \tau_2 \setminus B)$, but not an τ_{12}-M-o set in (X, τ_1, τ_2).

Definition 2.3 Let A be a subset of (X, τ_1, τ_2). Then

1. The intersection of all τ_{1j}-M-c sets containing A is called the τ_{1j}-M closure of A, denoted by $\tau_{1j}cli(A)$, i.e., $\tau_{1j}cli(A) = \bigcap \{U: A \subseteq U, U \in D_{MC}(\tau_{1j}, \tau_j)\}$.
2. The union of all τ_{1j}-M-o sets contained in A is called the τ_{1j}-M interior of A, denoted by $\tau_{1j}ini(A)$, i.e., $\tau_{1j}ini(A) = \bigcup \{U: U \subseteq A, U \in D_{MO}(\tau_{1j}, \tau_j)\}$.

Theorem 2.4 Let A and B be subsets of (X, τ_1, τ_2) and $x \in X$. Then,

1. A is τ_{1j}-M-c if and only if $\tau_{1j}cli(A) = A$.
2. A is τ_{1j}-M-o if and only if $\tau_{1j}ini(A) = A$.
3. $x \in \tau_{1j}cli(A)$ if and only if for every τ_{1j}-M-o set U containing x, $U \cap A \neq \phi$.
4. $x \in \tau_{1j}ini(A)$ if and only if there exists an τ_{1j}-M-o set U such that $x \in U \subseteq A$.
5. If $A \subseteq B$, then $\tau_{1j}ini(A) \subseteq \tau_{1j}ini(B)$ and $\tau_{1j}cli(A) \subseteq \tau_{1j}cli(B)$.

Theorem 2.5 Let $\{A_\alpha: \alpha \in \Delta\}$ be a family of subsets of X. Then

1. $\tau_{1j}cli(\bigcap \{A_\alpha: \alpha \in \Delta\}) \subseteq \phi \cap \{\tau_{1j}cli(A_\alpha): \alpha \in \Delta\}$.
2. $\bigcup \{\tau_{1j}cli(A_\alpha: \alpha \in \Delta\}) \subseteq \tau_{1j}cli(\bigcup \{A_\alpha: \alpha \in \Delta\})$.

Theorem 2.6 The following are equivalent for a subset A of X:

1. A is τ_{1j}-M-o.
2. $A = \tau_{1j}-\delta int(A) \cup \tau_{1j}-\delta sint(A)$.
3. $A \subseteq \tau_{1j}-\delta pcl(\tau_{1j}-\delta int(A))$.

Proof. (1) \Rightarrow (2): Let A be an τ_{1j}-M-o set. Then $A \subseteq cl_1(\theta int_1(A)) \cup int_1(\delta cl_1(A))$ and $\tau_{1j}-\delta int(A) \cup \tau_{1j}-\delta sint(A) = (A \cap cl_1(\theta int_1(A))) \cup (A \cap int_1(\delta cl_1(A))) = A \cap (cl_1(\theta int_1(A)) \cup int_1(\delta cl_1(A))) = A$. Hence (2) holds.

(2) \Rightarrow (3): $A = \tau_{1j}-\delta int(A) \cup \tau_{1j}-\delta sint(A) = \tau_{1j}-\delta int(A) \cup (A \cap cl_1(\theta int_1(A))) \subseteq$
\[\tau_i \tau_j - \text{dpint}(A) \cup cl_j(\theta \text{int}_i(A)). \] Now since \(\tau_i \tau_j - \text{dpint}(A) \subseteq \tau_i \tau_j - \text{dpcl}(\tau_i \tau_j - \text{dpint}(A)) \), \(cl_j(B) \subseteq \tau_i \tau_j - \text{dpcl}(B) \) and \(\text{int}_i(B) \subseteq \tau_i \tau_j - \text{dpcl}(B) \) for every subset \(B \subseteq X \), then \(A \subseteq \tau_i \tau_j - \text{dpcl}(\tau_i \tau_j - \text{dpint}(A)) \). Thus (3) holds.

(3) \Rightarrow (1): We have \(A \subseteq \tau_i \tau_j - \text{dpcl}(\tau_i \tau_j - \text{dpint}(A)) = \tau_i \tau_j - \text{dpint}(A) \cup cl_j(\theta \text{int}_i(A)) \subseteq cl_j(\theta \text{int}_i(A)) \cup \text{int}_i(\delta \text{cl}_j(A)). \) Thus (1) holds.

Corollary 2.1 The following are equivalent for a subset \(A \) of \(X \):
1. \(A \) is \(\tau_i \tau_j - \text{M-c} \).
2. \(A = \tau_i \tau_j - \text{dpcl}(A) \cup \tau_i \tau_j - \text{scl}(A) \).
3. \(A \subseteq \tau_i \tau_j - \text{dpint}(\tau_i \tau_j - \text{dpcl}(A)) \).

Corollary 2.2 The following hold:
1. Every \(\tau_i \tau_j - \text{M-o} \)-set is a disjoint union of an \(\tau_i \tau_j - \text{\delta-po} \)-set and an \(\tau_i \tau_j - \theta \)-so set.
2. If \(A \) is an \(\tau_i \tau_j - \text{M-o} \)-set and \(\theta \text{int}_i(A) = \phi \), then \(A \) is an \(\tau_i \tau_j - \text{\delta-po} \)-set.

Proof. 1. follows from part (2) of Corollary 3(*) and the fact that,
\[\tau_i \tau_j - \text{dpint}(A) \cap \tau_i \tau_j - \text{\deltaint}(A) = \tau_i \tau_j - \text{dpint}(A) \setminus (A \cap \text{cl}_j(\theta \text{int}_i(A))) \]
\[= \tau_i \tau_j - \text{dpint}(A) \setminus (\text{cl}_j(\theta \text{int}_i(A))) \],
which is \(\tau_i \tau_j - \text{\delta-po} \).
2. Obvious.

Theorem 2.7 For a subset \(A \) of \(X \):
1. \(\tau_i \tau_j - \text{Mcl}(A) = \tau_i \tau_j - \text{scl}(A) \cap \tau_i \tau_j - \text{dpcl}(A) \).
2. \(\tau_i \tau_j - \text{Mint}(A) = \tau_i \tau_j - \text{\deltaint}(A) \cup \tau_i \tau_j - \text{dpint}(A) \).

Proof. We only prove part (1), as the proof of (2) is similar. Clearly, \(\tau_i \tau_j - \text{Mcl}(A) \subseteq \tau_i \tau_j - \text{scl}(A) \cap \tau_i \tau_j - \text{dpcl}(A) \). Moreover, as \(\tau_i \tau_j - \text{Mcl}(A) \) is \(\tau_i \tau_j - \text{\M-c} \), \(\tau_i \tau_j - \text{Mcl}(A) \supseteq \text{int}_i(\theta \text{cl}_j(\tau_i \tau_j - \text{Mcl}(A))) \cap \text{clj}(\delta \text{int}(\tau_i \tau_j - \text{Mcl}(A))) \) \supseteq \text{int}_i(\theta \text{cl}_j(A)) \cap \text{clj}(\delta \text{int}(A)). \) Thus \(\tau_i \tau_j - \text{Mcl}(A) \supseteq A \cup \text{int}(\theta \text{cl}_j(A)) = \tau_i \tau_j - \text{scl}(A) \cap \tau_i \tau_j - \text{dcl}(A) \).

Corollary 2.3 For a subset \(A \) of \(X \):
1. \(\tau_i \tau_j - \text{Mcl}(\theta \text{int}_i(A)) = \theta \text{int}_i(\tau_i \tau_j - \text{Mcl}(A)) = \theta \text{int}_i(\text{cl}_j(\theta \text{int}_i(A))) \).
2. \(\tau_i \tau_j - \text{Mint}(\delta \text{cl}_j(A)) = \delta \text{cl}_j(\tau_i \tau_j - \text{Mint}(A)) = \delta \text{cl}_j(\text{int}_i(\delta \text{cl}_j(A))) \).
3. \(\tau_i \tau_j - \text{Mcl}(\tau_i \tau_j - \text{\deltaint}(A)) = \tau_i \tau_j - \text{scl}(\tau_i \tau_j - \text{\deltaint}(A)) \).
4. \(\tau_i \tau_j - \text{Mint}(\tau_i \tau_j - \text{\deltaint}(A)) = \tau_i \tau_j - \text{\deltaint}(\tau_i \tau_j - \text{\deltaint}(A)) \).
5. \(\tau_i \tau_j - \text{dint}(\tau_i \tau_j - \text{Mcl}(A)) = \tau_i \tau_j - \text{\deltaint}(\tau_i \tau_j - \text{\deltaint}(A)) \).
6. \(\tau_i \tau_j - \text{dcl}(\tau_i \tau_j - \text{Mcl}(A)) = \tau_i \tau_j - \text{\deltaint}(\tau_i \tau_j - \text{\deltaint}(A)) \).
7. \(\tau_i \tau_j - \text{dint}(\tau_i \tau_j - \text{Mcl}(A)) = \tau_i \tau_j - \text{Mcl}(\tau_i \tau_j - \text{dint}(A)) = \tau_i \tau_j - \text{dint}(\tau_i \tau_j - \text{dcl}(A)) \).
8. \(\tau_i \tau_j - \text{dcl}(\tau_i \tau_j - \text{Mint}(A)) = \tau_i \tau_j - \text{Mint}(\tau_i \tau_j - \text{dcl}(A)) = \tau_i \tau_j - \text{dcl}(\tau_i \tau_j - \text{dint}(A)) \).
9. \(\tau_i \tau_j - \text{dint}(\tau_i \tau_j - \text{Mcl}(A)) = \tau_i \tau_j - \text{Mcl}(\tau_i \tau_j - \text{dint}(A)) = \tau_i \tau_j - \text{dint}(\tau_i \tau_j - \text{dcl}(A)) \).
10. \(\tau_i \tau_j - \text{dcl}(\tau_i \tau_j - \text{Mint}(A)) = \tau_i \tau_j - \text{Mint}(\tau_i \tau_j - \text{dcl}(A)) = \tau_i \tau_j - \text{dcl}(\tau_i \tau_j - \text{dint}(A)) \).
11. \(\tau_i \tau_j - \text{Mint}(\tau_i \tau_j - \text{Mcl}(A)) = \tau_i \tau_j - \text{Mcl}(\tau_i \tau_j - \text{Mint}(A)) \).

Theorem 2.8. If \(A \) and \(B \) be subsets of \(X \). Then
1. \(\tau_i \tau_j - \text{Mcl}(X) = X \) and \(\tau_i \tau_j - \text{Mcl}(\phi) = \phi \).
2. \(A \subseteq \tau_i \tau_j - \text{Mcl}(A) \).
3. If \(B \) is any \(\tau_i \tau_j - \text{\M-c} \)-set containing \(A \), then \(\tau_i \tau_j - \text{Mcl}(A) \subseteq B \).

Proof. Follows from Definition 2(*)@
Theorem 2.9. Let A and B be subsets of X and i, j ∈ {1, 2} be fixed integers. If A ⊆ B, then \(\tau_{ij} \cdot \text{Mcl}(A) \subseteq \tau_{ij} \cdot \text{Mcl}(B) \).

Proof. Let A ⊆ B. By Definition 2(8) \(\tau_{ij} \cdot \text{Mcl}(B) = \bigcap \{F : B \subseteq F \in D_{MC}(\tau_{ij})\} \). If B ⊆ F ∈ D_{MC}(\tau_{ij}), since A ⊆ B, A ⊆ B ⊆ F ∈ D_{MC}(\tau_{ij})}, we have \(\tau_{ij} \cdot \text{Mcl}(A) \subseteq F \). Therefore \(\tau_{ij} \cdot \text{Mcl}(A) \subseteq \bigcap \{F : B \subseteq F \in D_{MC}(\tau_{ij})\} = \tau_{ij} \cdot \text{Mcl}(B) \). That is \(\tau_{ij} \cdot \text{Mcl}(A) \subseteq \tau_{ij} \cdot \text{Mcl}(B) \).

Theorem 2.10. Let A be a subset of X. If \(\tau_1 \subseteq \tau_2 \) and M-o \((X, \tau_1) \subseteq M-o \((X, \tau_2) \), then \((\tau_1, \tau_2) \cdot \text{Mcl}(A) \subseteq (\tau_2, \tau_1) \cdot \text{Mcl}(A) \).

Proof. By Definition 2.3, \((\tau_1, \tau_2) \cdot \text{Mcl}(A) = \bigcap \{F : A \subseteq F \in D_{MC}(\tau_1, \tau_2)\} \). Since \(\tau_1 \subseteq \tau_2 \) and M-open \((X, \tau_1) \subseteq M \cdot \text{open} \((X, \tau_2) \) in \((X, \tau_1, \tau_2) \) then \(D_{MC}(\tau_2, \tau_1) \subseteq D_{MC}(\tau_1, \tau_2) \). Therefore \(\bigcap \{F : A \subseteq F \in D_{MC}(\tau_1, \tau_2)\} \subseteq \bigcap \{F : A \subseteq F \in D_{MC}(\tau_2, \tau_1)\} = (\tau_2, \tau_1) \cdot \text{Mcl}(A) \). Hence \((\tau_1, \tau_2) \cdot \text{Mcl}(A) \subseteq (\tau_2, \tau_1) \cdot \text{Mcl}(A) \).

Theorem 2.11. Let A be a subset of X and i, j ∈ {1, 2} be fixed integers, then \(\tau_{ij} \cdot \text{Mcl}(A) \subseteq \tau_{i} \cdot \text{cl}(A) \).

Proof. By Definition 2.3, it follows that \(\tau_{ij} \cdot \text{Mcl}(A) \subseteq \tau_{i} \cdot \text{cl}(A) \). Now to prove that \(\tau_{ij} \cdot \text{Mcl}(A) \subseteq \tau_{i} \cdot \text{cl}(A) \). By Definition of closure, \(\tau_{i} \cdot \text{cl}(A) = \{F \subseteq X : A \subseteq F \) and \(F \) is \(\tau_{i} \cdot \text{c} \). If \(A \subseteq F \) and \(F \) is \(\tau_{i} \cdot \text{c} \), then \(\tau_{ij} \cdot \text{Mcl}(A) \subseteq \{F \subseteq X : A \subseteq F \) and \(F \) is \(\tau_{i} \cdot \text{c} \). Therefore \(\tau_{ij} \cdot \text{Mcl}(A) \subseteq \bigcap \{F \subseteq X : A \subseteq F \) and \(F \) is \(\tau_{i} \cdot \text{c} \} = \tau_{i} \cdot \text{cl}(A) \).

Example 2.5. Let \(X = \{a, b, c, d\} \), \(\tau_1 = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}\} \) and \(\tau_2 = \{\phi, X, \{a\}, \{b, d\}\} \). Then \(\tau_2 \cdot \text{c} \) sets are \(\{X, \phi, \{a, c\}, \{a, c, d\}\} \) and \((12) \cdot \text{c} \) sets are \(\{\phi, X, \{a\}, \{a, c\}, \{a, c, d\}\} \). Take \(A = \{b\} \). Then \(\tau_2 \cdot \text{cl}(A) = X \) and \((12) \cdot \text{Mcl}(A) = \{b, c, d\}. \) Now \(A \subseteq (12) \cdot \text{Mcl}(A) \), but \(A \not\subseteq (12) \cdot \text{Mcl}(A) \).

Theorem 2.12. Let A be a subset of X and i, j ∈ {1, 2} be fixed integers. If A is \(\tau_{ij} \cdot \text{M} \), then \(\tau_{ij} \cdot \text{Mcl}(A) = A \).

Proof. Let A be a \(\tau_{ij} \cdot \text{M} \) subset of X. We know that \(A \subseteq \tau_{ij} \cdot \text{Mcl}(A) \). Also \(A \subseteq A \) and \(A \) is \(\tau_{ij} \cdot \text{M} \). By Theorem 11(8)(iii), \(\tau_{ij} \cdot \text{Mcl}(A) \subseteq A \). Hence \(\tau_{ij} \cdot \text{Mcl}(A) = A \).

Theorem 2.13. The operator \(\tau_{ij} \cdot \text{Mcl} \) in Definition 2, (i) is the Kuratowski closure operator on X.

Proof. (i) \(\tau_{ij} \cdot \text{Mcl}(\phi) = \phi \), by Theorem 11(8)(i).

(ii) \(E \subseteq \tau_{ij} \cdot \text{Mcl}(E) \) for any subset E in X by Theorem 11(8)(i).

(iii) Suppose E and F are two subsets of X. It follows from Theorem 3(8)(ii), that \(\tau_{ij} \cdot \text{Mcl}(E \cup F) \subseteq \tau_{ij} \cdot \text{Mcl}(E) \cup \tau_{ij} \cdot \text{Mcl}(F) \) and that \(\tau_{ij} \cdot \text{Mcl}(E) \subseteq \tau_{ij} \cdot \text{Mcl}(E \cup F) \). Hence we have \(\tau_{ij} \cdot \text{Mcl}(E) \subseteq \tau_{ij} \cdot \text{Mcl}(E \cup F) \) and \(\tau_{ij} \cdot \text{Mcl}(F) \subseteq \tau_{ij} \cdot \text{Mcl}(E \cup F) \). Now if \(x \not\in \tau_{ij} \cdot \text{Mcl}(E) \cup \tau_{ij} \cdot \text{Mcl}(F) \), then \(x \not\in (i, j) \cdot \text{Mcl}(E) \) and \(x \not\in (i, j) \cdot \text{Mcl}(F) \), it follows that there exist \(A, B \in D_{MC}(\tau_{ij}) \) such that \(E \subseteq A, x \not\in A \) and \(F \subseteq B, x \not\in B \). Hence \(E \cup F \subseteq A \cup B, x \not\in A \cup B \). Since \(A \cup B \) is \(\tau_{ij} \cdot \text{M} \) and \(A, B \in D_{MC}(\tau_{ij}) \), then \(A \cup B \in D_{MC}(\tau_{ij}) \) so \(x \not\in \tau_{ij} \cdot \text{Mcl}(E \cup F) \). Then we have \(\tau_{ij} \cdot \text{Mcl}(E \cup F) \subseteq \tau_{ij} \cdot \text{Mcl}(E) \cup \tau_{ij} \cdot \text{Mcl}(F) \). From the above discussions we have \(\tau_{ij} \cdot \text{Mcl}(E \cup F) = \tau_{ij} \cdot \text{Mcl}(E) \cup \tau_{ij} \cdot \text{Mcl}(F) \).

(iv) Let E be any subset of X. By the definition of \(\tau_{ij} \cdot \text{Mcl}, \tau_{ij} \cdot \text{Mcl}(E) = \bigcap \{A : E \subseteq A \in D_{MC}(\tau_{ij})\} \). If \(A \subseteq E \in D_{MC}(\tau_{ij}) \), then \(\tau_{ij} \cdot \text{Mcl}(E) \subseteq A \). Since A is a \(\tau_{ij} \cdot \text{M} \) set containing \(\tau_{ij} \cdot \text{Mcl}(E) \), by Theorem 11(8)(iii), \(\tau_{ij} \cdot \text{Mcl}(\tau_{ij} \cdot \text{Mcl}(E)) \subseteq A \). Hence \(\tau_{ij} \cdot \text{Mcl}(E) \subseteq \tau_{ij} \cdot \text{Mcl}(\tau_{ij} \cdot \text{Mcl}(E)) \) is true by Theorem 11(8)(iii). Then we have \(\tau_{ij} \cdot \text{Mcl}(E) = \tau_{ij} \cdot \text{Mcl}(\tau_{ij} \cdot \text{Mcl}(E)) \). Hence \(\tau_{ij} \cdot \text{Mcl} \) is a Kuratowski closure operator on X.

From this theorem \(\tau_{ij} \cdot \text{Mcl} \) defines the new topology on X.

Definition 2.4. Let i, j ∈ {1, 2} be two fixed integers. Let \(\tau_{ij} \cdot \text{M} \) be topology on X.
generated by \((\tau_i, \tau_j) - M\ cl\) in the usual manner. That is \(\tau_M - (\tau_i, \tau_j) = \{E \subseteq X: (\tau_i, \tau_j) - M\ cl(E^c) = E^c\}.

Theorem 2.14. Let \(X\) be a Bts and \(i, j \in \{1, 2\}\) be two fixed integers, then \(\tau_i \subseteq \tau_M(\tau_i, \tau_j)\).

Proof. Let \(G \in \tau_i\), it follows that \(G^c\) is \(\tau_i\)-c. By Proposition 2 (ii), \(G^c\) is \((\tau_i, \tau_j) - M\)-c. Therefore \((\tau_i, \tau_j) - M\ cl(G^c) = G^c\), by Theorem 3(')@. That is \(G \in \tau_M(\tau_i, \tau_j)\) and hence \(\tau_i \subseteq \tau_M(\tau_i, \tau_j)\).

Remark 2.5. Containment relation in the above Theorem 3(')@ may be proper as seen from the following Example.

Example 2.6 Let \(X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\} \) and \(\tau_2 = \{\phi, X, \{b\}, \{b, d\}\}\). Then \((\tau_1, \tau_2) - M\ c\ sets\ are\ \{\phi, X, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{b, c, d\}, \{a, b, c, d\}\} \) and \(\tau_M(\tau_1, \tau_2) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{b, c, d\}, \{a, b, d\}\}\). Clearly \(\tau_2 \subseteq \tau_M(\tau_1, \tau_2)\) but \(\tau_2 \neq \tau_M(\tau_1, \tau_2)\).

Theorem 2.15 Let \((X, \tau_1, \tau_2)\) be a Bts and \(i, j \in \{1, 2\}\) be two fixed integers. If a subset \(E\) of \(X\) is \(\tau_i\tau_j\-M\ c\) then \(E\) is \(\tau_M(\tau_i, \tau_j)\).

Proof. Let a subset \(E\) of \(X\) be \(\tau_i\tau_j\-M\ c\). By Theorem 3('@) \(\tau_i\tau_j\-M\ cl(E) = E\). That is \(\tau_i\tau_j\-M\ cl\{E^c\} = (E^c)^c\), it follows that \(E^c \in \tau_M(\tau_i, \tau_j)\). Therefore \(E\) is \(\tau_M(\tau_i, \tau_j)\).

Example 2.7 For \((X, \tau_1, \tau_2)\) of Example 2.6, the subset \(A = \{b, c\}\) is \(\tau_M(\tau_1, \tau_2)\), but not \(\tau_1\tau_2\-M\ c\).

Theorem 2.16. If \(\tau_1 \subseteq \tau_2\) and \(M\-open\ \(X, \tau_1) \subseteq M\-open\ \(X, \tau_2)\) in \(X\), then \(\tau_M(\tau_2, \tau_1) \subseteq \tau_M(\tau_1, \tau_2)\).

Proof. Let \(G \in \tau_M(\tau_2, \tau_1)\), then \((\tau_2, \tau_1) - M\ cl(G^c) = G^c\). To prove that \(G \in \tau_M(\tau_1, \tau_2)\). That is to prove \((\tau_1, \tau_2) - M\ cl(G^c) = G^c\). Now \((\tau_1, \tau_2) - M\ cl(G^c) = \cap \{F \subseteq X: G^c \subseteq F \in D_M(\tau_1, \tau_2)\}\). Since \(\tau_1 \subseteq \tau_2\) and \(M\-open\ \(X, \tau_1) \subseteq M\-open\ \(X, \tau_2)\), by Therom 2('@) \(D_M(\tau_2, \tau_1) \subseteq D_M(\tau_1, \tau_2)\). Thus \(\cap \{F \subseteq X: G^c \subseteq F \in D_M(1,2)\} \subseteq \cap \{F \subseteq X: G^c \subseteq F \in D_M(2,1)\}\). That is \((\tau_1, \tau_2) - M\ cl(G^c) \subseteq (\tau_2, \tau_1) - M\ cl(G^c)\), and so \((\tau_1, \tau_2) - M\ cl(G^c) \subseteq G^c\). Conversely \(G^c \subseteq (\tau_1, \tau_2) - M\ cl(G^c)\) is true by the Theorem 11('@) (ii). Then we have \((\tau_1, \tau_2) - M\ cl(G^c) = G^c\). That is \(G \in \tau_M(\tau_1, \tau_2)\) and hence \(\tau_M(\tau_2, \tau_1) \subseteq \tau_M(\tau_1, \tau_2)\).

References

