ON THE LATTICE OF (δ, γ) - FUZZY IDEALS OF A LATTICE

X. Arul Selvaraj^{1,2} ¹Department of Mathematics, Govt. Arts and Science College for Women, Bargur- 635104., Krishnagiri Dt.

> ²Mathematics Wing, D.D.E., Annamalai University, Annamalainagar- 608 002, India.

Abstract

In this paper we prove that for a lattice X, the family of all (δ, γ) -fuzzy ideals are also lattices. We further claim that the lattice of all (δ, γ) -fuzzy ideals is infact a sublattice of the lattice of all (δ, γ) -fuzzy sublattices.

Key words and phrases: (δ, γ) -fuzzy sets, (δ, γ) -fuzzy sublattices, (δ, γ) -fuzzy subnear-ring, fuzzy two-sided *N*-subgroup.

1. Introduction

The notions of fuzzy ideals were introduced by S-Abou-Zaid in 1991 [8,1]. The notion of fuzzy subgroup was introduced by A. Rosenfeld [5] in his pioneering paper. Subsequently the definition of fuzzy subgroup was generalized by Negoita and Ralescu [7]. Fuzzy ideals of a ring were first introduced by Liu[13]. T. Ali and A.K. Ray [2] studied the concepts of fuzzy sublattices and fuzzy ideals of a lattice. The notions of fuzzy subnear-ring, fuzzy ideal and fuzzy *R*-subgroup of a near-ring were introduced by Salah Abou-Zahid [8] and it has been studied by several authors [11,12, 3, 4] and also ,we introduce the notion of a (δ, γ) -fuzzy ideals of two homomorphic lattices. This is an extension of the result of M. J. Rani [10] and T. Manikantan [9].

2. Preliminaries

In this section We recall some definitions and results that will be needed in the sequel. The interval [0,1] is a lattice and this entity ([0,1], \leq) is denoted by I.

Definition 2.1[10] Let $\mu, \nu \in I^A$. If $\mu(x) \le \nu(x), \forall x \in X$, then we say that μ is contained in ν and we write $\mu \le \nu$. Clearly the inclusion relation \le is a partial ordering on I^A .

Definition 2.2[10] Let $\mu, \nu \in I^A$. Difine $\mu \cup \nu$ and $\mu \cap \nu$ as follows.

 $\forall x \in A, (\mu \cup \nu)(x) = \mu(x) \lor \nu(x) \text{ and } (\mu \cap \nu)(x) = \mu(x) \land \nu(x)$

Then $(\mu \cup \nu)$ and $(\mu \cap \nu)$ are respectively the lub and glb and they are called the union and intersection of μ and ν respectively. It is also known that under the natural ordering, I^A is a complete lattice for any nonempty set A. Its largest and smallest element are 1_A (where $1_A(x) = 1 \forall x \in A$) and 0_A (where $0_A(x) = 0 \forall x \in A$)

Definition 2.3[10] A fuzzy subset μ of X is said to be a fuzzy sublattice of X if $\forall x, y \in X$, (i) $\mu(x \lor y) \ge \mu(x) \land \mu(y)$,

(ii) $\mu(x \wedge y) \ge \mu(x) \wedge \mu(y)$.

Definition 2.4[10] Let $\mu \in I^X$, then μ is called a fuzzy ideal of X if $\forall x, y \in X$,

 $(I_1). \ \mu(x \lor y) \ge \mu(x) \land \mu(y),$

 $(I_2). \ \mu(x \wedge y) \ge \mu(x) \wedge \mu(y).$

If I_2 holds, then $\mu(x \wedge y) \ge \mu(x) \wedge \mu(y)$. Thus by I_1 and $I_2, \mu \in FL(X)$, (i.e) a fuzzy ideal of X is fuzzy sublattice of X.

Definition 2.5[8] A fuzzy sub set A of N is called a fuzzy subnear-ring of N if $\forall x, y \in N$, (i) $A(x-y) \ge min\{A(x), A(y)\}$,

(ii) $A(xy) \ge min\{A(x), A(y)\}.$

Definition 2.6[5] A fuzzy subset A of a group (G, +) is said to be a fuzzy subgroup of G if $\forall x, y \in G$,

(i) $A(x+y) \ge \min\{A(x), A(y)\},\$

(ii) A(-x) = A(x), or equivalently $A(x-y) \ge min\{A(x), A(y)\}$.

If A is a fuzzy subgroup of a group G, then $A(0) \ge A(x \forall x \in G)$.

Definition 2.7[8] A fuzzy sub set A of N is said to be a fuzzy two-sided N-subgroup of N if

(i) A is a fuzzy subgroup of (N, +),

(ii) $A(xy) \ge A(x) \forall x, y \in N$,

(iii) $A(xy) \ge A(y) \forall x, y \in N$.

If A satisfies (i),(ii) then A is called a fuzzy right N-subgroup of N. If A satisfies (i) and (iii), then A is called a fuzzy left N-subgroup of N.

Definition 2.8 [8] A fuzzy sub set A of N is said to be a fuzzy ideal of N if

(i) A is a fuzzy subnear-ring of N,

(ii) $A(y+x-y) = A(x) \forall x, y \in N$,

(iii) $A(xy) \ge A(y) \forall x, y \in N$.

(iv) $A(a(b+i)-ab) \ge A(i) \forall a, b, i \in N.$

A fuzzy subset with (i),(ii) and (iii) is called a fuzzy right ideal of N whereas a fuzzy subset with (i),(ii) and (iv) is called a fuzzy left ideal of N.

3. (δ, γ) -Fuzzy ideals of a lattice

Based on the notion of (λ, μ) -fuzzy ideals introduced by B. You [6]. In this section we introduce (δ, γ) -fuzzy ideals of lattice. In the following discussion, we always assume that $0 \le \delta < \gamma \le 1$.

Definition 3.1 A (δ, γ) -fuzzy subset β of X is said to be a (δ, γ) -fuzzy sublattice of X if $\forall x, y \in X$,

- (i) $\beta(x \lor y) \lor \delta \ge \beta(x) \land \beta(y) \land \gamma$,
- (ii) $\beta(x \wedge y) \lor \delta \ge \beta(x) \land \beta(y) \land \gamma$.

Definition 3.2 Let $\beta, \nu \in I^A_{(\delta,\gamma)}$. Difine $\beta \cup \nu$ and $\beta \cap \nu$ as follows. $\forall x \in A, ((\beta \cup \nu)(x)) \lor \delta = (\beta(x) \lor \nu(x)) \land \gamma$ and $((\beta \cap \nu)(x)) \lor \delta = (\beta(x) \land \nu(x)) \land \gamma$ Then $(\beta \cup \nu)$ and $(\beta \cap \nu)$ are respectively the lub and glb and they are called the union and intersection of β and ν respectively. It is also known that under the natural ordering, $I^A_{(\delta,\gamma)}$ is a complete lattice for any nonempty set A. Its largest and smallest element are 1_A (where $1_A(x) = 1 \forall x \in A$) and 0_A (where $0_A(x) = 0 \forall x \in A$)

Definition 3.3 Let $\beta, \nu \in I^A_{(\delta,\gamma)}$. If $\beta(x) \le \nu(x), \forall x \in X$, then we say that β is contained in ν and we write $\beta \le \nu$. Clearly the inclusion relation \le is a partial ordering on $I^A_{(\delta,\gamma)}$.

Example 3.4 If X is any lattice and $t \in I$, then $\beta(x) \lor \delta = t \land \gamma, \forall x \in X$ is a (δ, γ) -fuzzy sublattice of X.

Example 3.5 If X is any subset of N with usual ordering and $\beta \in I_{(\delta,\gamma)}^X$ is given by $\beta(x) \lor \delta = 1/x \land \gamma$ then β is a (δ, γ) -fuzzy sublattice of X.

Notation 3.6 $FL_{(\delta, \gamma)}(X)$ denotes the set of all (δ, γ) -fuzzy sublattice of X.

Result 3.7 If $\beta \in FL_{(\delta,\gamma)}(X)$, then the set $\beta^* = \{x \in X, \beta(x) \lor \delta > 0 \land \gamma\}$ is a (δ, γ) -fuzzy sublattice of X.

Proof. Omitted.

Let $\beta \in I^X$, then β is called a (δ, γ) -fuzzy ideal of X if $\forall x, y \in X$,

(*I*₁). $\beta(x \lor y) \lor \delta \ge \beta(x) \land \beta(y) \land \gamma$,

(*I*₂). $\beta(x \wedge y) \lor \delta \ge \beta(x) \land \beta(y) \land \gamma$.

If I_2 holds, then $\beta(x \wedge y) \vee \delta \ge \beta(x) \wedge \beta(y) \wedge \gamma$. Thus by I_1 and $I_2, \beta \in FL_{(\delta,\gamma)}(X)$, (i.e) a (δ, γ) -fuzzy ideal of X is (δ, γ) -fuzzy sublattice of X.

Notation 3.9 The set of all (δ, γ) -fuzzy ideals of X is denoted by $FI_{(\delta,\gamma)}(X)$. Let $\beta \in I_{(\delta,\gamma)}^{X}$ satisfies I_{2} if and only if $\beta(x \land y) \lor \delta \ge \beta(x) \land \gamma, \forall x, y \in X$. Since from $I_{2}, \beta(x \land y) \lor \delta \ge \beta(x) \land \gamma$ and conversely if $\beta(x \land y) \lor \delta \ge \beta(x) \land \gamma, \forall x \in X$, then $\beta(x \land y) \lor \delta = \beta(y \land x) \lor \delta \ge \beta(y) \land \gamma, \forall x, y \in X$. Thus I_{2} is equivalent to (I_{3}) . $\beta(x \land y) \lor \delta \ge \beta(x) \land \gamma, \forall x \in X$. Hence a (δ, γ) -fuzzy sublattice β of X is (δ, γ) -fuzzy ideal of X if and only if $\beta(x \land y) \lor \delta \ge \beta(x) \land \gamma, \forall x \in X$. **Example 3.10** Consider the lattice $X = \{a, b, c, d\}$ where a > c > d, a > b > d and b, c are non comparable. Where $\delta = 0.1$ and $\gamma = 0.9$. Define $\beta \in I_{(\delta, \gamma)}^{X}$ as follows. $\beta(a) = 0.1, \beta(b) = 0.2, \beta(c) = 0.4, \beta(d) = 0.5$ then β is a (δ, γ) -fuzzy ideal of X.

Example 3.11 If X and Y with a smallest element 0 be lattice and f a lattice homomorphism of X onto Y, then ker $f = \{x \in X \mid f(x) = 0\}$ is an ideal of X and χ_{kerf} is a fuzzy ideal of X (from) and also χ_{kerf} is a (δ, γ) -fuzzy ideal of X.

Theorem 3.12 Let $A \subseteq X$. Then A is an (δ, γ) -fuzzy ideal of X if and only if χ_A is a (δ, γ) -fuzzy ideal of X. **Proof.** Suppose A is an (δ, γ) -fuzzy ideal of X. Therefore A is a (δ, γ) -fuzzy sublattice of X.

© 2019 JETIR March 2019, Volume 6, Issue 3

Proof. Suppose $x, y \in X$ be elements of A. Therefore both $x \wedge y$ and $x \vee y \in A$. Then $\chi_A(x) \lor \delta = 1 \land \gamma, \ \chi_A(y) \lor \delta = 1 \land \gamma, \ \chi_A(x \land y) \lor \delta = 1 \land \gamma \text{ and } \ \chi_A(x \lor y) \lor \delta = 1 \land \gamma.$ Then $\chi_A(x \lor y) \lor \delta \ge \chi_A(x) \land \chi_A(y) \land \gamma = 1 \land \gamma$ and $\chi_A(x \wedge y) \lor \delta \ge \chi_A(x) \lor \chi_A(y) \land \gamma = 1 \land \gamma$ Therefore χ_A is (δ, γ) -fuzzy ideal of X. Suppose $x \in A$ and $y \notin A$. Then $\chi_A(x) \lor \delta = 1 \land \gamma, \chi_A(y) \lor \delta = 0 \land \gamma$. But, since A is an ideal, $(x \land y) \lor \delta \in A \land \gamma$. Now since $\chi_A(y) \lor \delta = 0 \land \gamma, \chi_A(x \lor y) \lor \delta \ge \chi_A(x) \land \chi_A(y) \land \gamma = 1 \land \gamma$ and $\chi_A(x \wedge y) \lor \delta \ge \chi_A(x) \lor \chi_A(y) \land \gamma = 1 \land \gamma.$ Thus χ_A is a (δ, γ) -fuzzy ideal of X. Conversely, suppose that χ_A is a (δ, γ) -fuzzy ideal of X. Let $x, y \in A$ then $\chi_A(x) \lor \delta = 1 \land \gamma, \ \chi_A(y) \lor \delta = 1 \land \gamma$. Since $\chi_A(x \lor y) \lor \delta \ge \chi_A(x) \land \chi_A(y) \land \gamma = 1 \land \gamma, \ \chi_A(x \lor y) \lor \delta = 1.$ Therefore $(x \land y) \lor \delta \in A \land \gamma$. Similarly $\chi_A(x \lor y) \lor \delta = 1 \land \gamma$. Therefore $x \land y \in A$ Therefore A is a (δ, γ) -fuzzy sub lattice of X. Let $x \in A$ and $y \in X$. Therefore $\chi_A(x) \lor \delta = 1 \land \gamma$. Then, since $\chi_A(x \wedge y) \lor \delta \ge \chi_A(x) \lor \chi_A(y) \land \gamma = 1 \land \gamma, \ x \land y \in A.$ Therefore A is an (δ, γ) -fuzzy ideal of X.

Theorem 3.13 $\mu \in FL_{(\delta,\gamma)}(X)$ is a (δ,γ) -fuzzy ideal of X, when $\beta(x \lor y) \lor \delta \ge a \land \gamma$ holds if and only if $\beta(x) \lor \delta \ge a \land \gamma$ and $\beta(y) \lor \delta \ge a \land \gamma, \forall a \in I$.

Proof. Suppose that $\beta(x \lor y) \lor \delta \ge a \land \gamma$ holds if and only if $\beta(x) \lor \delta \ge a \land \gamma$ and $\beta(y) \lor \delta \ge a \land \gamma, \forall a \in I$. Let $x, y \in X$. Let $(\beta(x) \land \beta(y)) \lor \delta = a \land \beta$. Then $\beta(x) \lor \delta \ge a \land \gamma$ and $\beta(y) \lor \delta \ge a \land \gamma$. Therefore by assumption $\beta(x \lor y) \lor \delta \ge a \land \gamma$.

That is $\beta(x \lor y) \lor \delta \ge (\beta(x) \land \beta(y)) \lor \delta$. Thus (I_1) .

Let $\beta(x) = b$. Then $x \in \beta_b$. Now since X is a lattice, $x \lor \delta = (x \lor (x \land y)) \lor \delta$

Therefore $(x \lor (x \land y)) \lor \delta \in \beta_b$ That is $\beta((x \lor (x \land y)) \lor \delta) \ge b \land \gamma$

Therefore $\beta(x \lor y) \lor \delta \ge b \land \gamma$ by assumption that is $\beta(x \lor y) \lor \delta \ge \beta(x) \land \gamma$. Thus I_3 . Hence $\beta \in FL_{(\delta,\gamma)}(X)$.

Theorem 3.14 Let $\beta \in FL_{(\delta, \gamma)}(X)$. Then

(i) If X has a smallest Elament 0, then $\beta(0) \lor \delta \ge \beta(x) \land \gamma \forall x$. (ii) If X has a greatest Elament 1, then $\beta(1) \lor \delta \ge \beta(x) \land \gamma \forall x \in X$. (iii) β is an (δ, γ) -fuzzy ideal of X. **Proof.** (i) $\beta(0) \lor \delta = \beta(0 \land x) \lor \delta = \beta(x \land 0) \lor \delta \ge \beta(x) \land \gamma$ by I_3 . (ii) $\beta(1) \lor \delta = \beta(1 \land x) \lor \delta = \beta(x \land 1) \lor \delta \ge \beta(x) \land \gamma$ by I_3 . Therefore $\beta(x) \le (X)$ (iii) By definition of (δ, γ) -fuzzy sublattice of X., $\beta^* = \{x \mid \beta(x) \lor \delta > 0 \land \beta\}$. Let $x, y \in \beta^*$. Then both $\beta(x) \lor \delta > 0 \land \gamma$ and $\beta(y) \lor \delta > 0 \land \gamma$, since

 $(\beta(x) \lor \beta(y)) \lor \delta = max\{\beta(x), \beta(y), \delta\}$ and $(\beta(x) \land \beta(y)) \lor \delta = min\{\beta(x), \beta(y), \gamma\}$ in *I*. Now

© 2019 JETIR March 2019, Volume 6, Issue 3

 $(x \lor y) \lor \delta \ge (\beta(x) \land \beta(y)) \lor \delta > 0, \text{ since } \beta \in FI_{(\delta,\gamma)}(X)$ Therefore $x \lor y \in \beta^*$ Also $(\beta(x \land y)) \lor \delta \ge (\beta(x) \lor \beta(y)) \land \gamma > 0$ Therefore $x \land y \in \beta^*$. Suppose $z \notin \beta^*$ Therefore $\beta(Z) = 0. \ x \land z \in \beta^*$. Thus β^* is an ideal of X.

References

[1] S. Abou-Zaid, on Fuzzy ideals and Fuzzy quotient ring, Fuzzy sets and systems 59 (1993), 205-210.

[2] Tazid Ali, On direct product of fuzzy subrings The Journal of Fuzzy Mathematics, Vol.17,No.2,2009,481-485.

[3] A.L. Narayanan, Contribution to the algebraic structures in fuzzy theory, Ph.D. Thesis, Annamalai university, India,(2001).

[4] A.L. Narayanan, Fuzzy ideals on strongly regular near-rings, The journal of the Indian Math. Soc: Vol.69. Nos.1-4,(2002),193-199.

[5] A. Rosenfeld, Fuzzy groups, J. Math. Anal. And Appl., 35 (1971),512-517.

[6] Bingxue Yao (λ, μ) -fuzzy subrings and (λ, μ) -fuzzy ideals, The Journal of Fuzzy Mathematics Vol. 15, No. 4, (2007), 981-987.

[7] C. V. Negoita and D. A. Ralescu, Applications of fuzzy sets to system analysis, John wiley and sons, New York, Toronto, (1975).

[8] Salah Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Sets and Systems, 44(1991), 139-146.

[9] T.Manikantan, Fuzzy Bi-ideals of Near-rings, The Journal of Fuzzy Mathematics, Vol.17, No.3, (2009), 659-671.

[10] M. J. Rani, On The Lattice of Fuzzy Ideals of A Lattice, The Journal of Fuzzy Mathematics, Vol.16, No.4,(2008),981-989.

[11] Kyung Ho Kim and Young Bae Jun, On fuzzy *R*-subgroups of near-rings, J. Fuzzy Mathematics, II(3)(2003), 567-580.

[12] Kyung Ho Kim and Young Bae Jun, Normal fuzzy *R*-subgroups in near-rings, Fuzzy Sets and Systems, 121(2001), 341-345.

[13] Wang-jin-Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133-139.