ON THE LATTICE OF $((\delta, \gamma))$ - FUZZY IDEALS OF A LATTICE

X. Arul Selvaraj1,2

1Department of Mathematics, Govt. Arts and Science College for Women, Bargur- 635104., Krishnagiri Dt.

2Mathematics Wing, D.D.E., Annamalai University, Annamalainagar- 608 002, India.

Abstract

In this paper we prove that for a lattice X, the family of all $((\delta, \gamma))$-fuzzy ideals are also lattices. We further claim that the lattice of all $((\delta, \gamma))$-fuzzy ideals is in fact a sublattice of the lattice of all $((\delta, \gamma))$-fuzzy sublattices.

Key words and phrases: $((\delta, \gamma))$-fuzzy sets, $((\delta, \gamma))$-fuzzy sublattices, $((\delta, \gamma))$-fuzzy subnear-ring, fuzzy two-sided N-subgroup.

1. Introduction

The notions of fuzzy ideals were introduced by S-Abou-Zaid in 1991 [8,1]. The notion of fuzzy subgroup was introduced by A. Rosenfeld [5] in his pioneering paper. Subsequently the definition of fuzzy subgroup was generalized by Negoita and Ralescu [7]. Fuzzy ideals of a ring were first introduced by Liu[13]. T. Ali and A.K. Ray [2] studied the concepts of fuzzy sublattices and fuzzy ideals of a lattice. The notions of fuzzy subnear-ring, fuzzy ideal and fuzzy R-subgroup of a near-ring were introduced by Salah Abou-Zahid [8] and it has been studied by several authors [11,12, 3, 4] and also we introduce the notion of a $((\delta, \gamma))$-fuzzy ideal of a near-ring and we prove a correspondence theorem between the families of $((\delta, \gamma))$-fuzzy ideals of two homomorphic lattices. This is an extension of the result of M. J. Rani [10] and T. Manikantan [9].

2. Preliminaries

In this section We recall some definitions and results that will be needed in the sequel. The interval $[0,1]$ is a lattice and this entity $(([0,1],[\leq])$ is denoted by I.

Definition 2.1[10] Let $\mu, \nu \in I^A$. If $\mu(x) \leq \nu(x) \forall x \in X$, then we say that μ is contained in ν and we write $\mu \leq \nu$. Clearly the inclusion relation \leq is a partial ordering on I^A.

Definition 2.2[10] Let $\mu, \nu \in I^A$. Define $\mu \cup \nu$ and $\mu \cap \nu$ as follows.

$\forall x \in A, (\mu \cup \nu)(x) = \mu(x) \vee \nu(x)$ and $(\mu \cap \nu)(x) = \mu(x) \wedge \nu(x)$

Then $(\mu \cup \nu)$ and $(\mu \cap \nu)$ are respectively the lub and glb and they are called the union and intersection of μ and ν respectively. It is also known that under the natural ordering, I^A is a complete lattice for any nonempty set A. Its largest and smallest element are 1_A (where $1_A(x) = 1 \forall x \in A$) and 0_A (where $0_A(x) = 0 \forall x \in A$).
Definition 2.3[10] A fuzzy subset μ of X is said to be a fuzzy sublattice of X if $\forall x, y \in X$,
(i) $\mu(x \lor y) \geq \mu(x) \land \mu(y)$,
(ii) $\mu(x \land y) \geq \mu(x) \land \mu(y)$.

Definition 2.4[10] Let $\mu \in I^X$, then μ is called a fuzzy ideal of X if $\forall x, y \in X$,
(1) $\mu(x \lor y) \geq \mu(x) \land \mu(y)$,
(2) $\mu(x \land y) \geq \mu(x) \land \mu(y)$.

If I_2 holds, then $\mu(x \land y) \geq \mu(x) \land \mu(y)$. Thus by I_1 and I_2, $\mu \in FL(X)$, (i.e) a fuzzy ideal of X is fuzzy sublattice of X.

Definition 2.5[8] A fuzzy subset A of N is called a fuzzy subnear-ring of N if $\forall x, y \in N$,
(i) $A(x - y) \geq \min\{A(x), A(y)\}$,
(ii) $A(xy) \geq \min\{A(x), A(y)\}$.

Definition 2.6[5] A fuzzy subset A of a group $(G, +)$ is said to be a fuzzy subgroup of G if $\forall x, y \in G$,
(i) $A(x + y) \geq \min\{A(x), A(y)\}$,
(ii) $A(-x) = A(x)$, or equivalently $A(x - y) \geq \min\{A(x), A(y)\}$.

If A is a fuzzy subgroup of a group G, then $A(0) \geq A(x \forall x \in G.)$

Definition 2.7[8] A fuzzy subset A of N is said to be a fuzzy two-sided N-subgroup of N if
(i) A is a fuzzy subgroup of $(N, +)$,
(ii) $A(xy) \geq A(x) \forall x, y \in N$,
(iii) $A(xy) \geq A(y) \forall x, y \in N$.

If A satisfies (i),(ii) then A is called a fuzzy right N-subgroup of N. If A satisfies (i) and (iii), then A is called a fuzzy left N-subgroup of N.

Definition 2.8[8] A fuzzy subset A of N is said to be a fuzzy ideal of N if
(i) A is a fuzzy subnear-ring of N,
(ii) $A(y + x - y) = A(x) \forall x, y \in N$,
(iii) $A(xy) \geq A(y) \forall x, y \in N$.
(iv) $A(a(b + i) - ab) \geq A(i) \forall a, b, i \in N$.

A fuzzy subset with (i),(ii) and (iii) is called a fuzzy right ideal of N whereas a fuzzy subset with (i),(ii) and (iv) is called a fuzzy left ideal of N.

3. (δ, γ)-Fuzzy ideals of a lattice
Based on the notion of (λ, μ)-fuzzy ideals introduced by B. You [6]. In this section we introduce (δ, γ)-fuzzy ideals of lattice. In the following discussion, we always assume that $0 \leq \delta < \gamma \leq 1$.

Definition 3.1 A (δ, γ)-fuzzy subset β of X is said to be a (δ, γ)-fuzzy sublattice of X if $\forall x, y \in X$,
(i) $\beta(x \lor y) \lor \delta \geq \beta(x) \land \beta(y) \land \gamma$,
(ii) $\beta(x \land y) \lor \delta \geq \beta(x) \land \beta(y) \land \gamma$.
Definition 3.2 Let $\beta, \nu \in I^{A}_{(\delta, \gamma)}$. Define $\beta \cup \nu$ and $\beta \cap \nu$ as follows.

\[\forall x \in A, ((\beta \cup \nu(x)) \vee \delta = (\beta \vee \nu(x)) \wedge \gamma \text{ and } ((\beta \cap \nu(x)) \vee \delta = (\beta \wedge \nu(x)) \wedge \gamma} \]

Then $(\beta \cup \nu)$ and $(\beta \cap \nu)$ are respectively the lub and glb and they are called the union and intersection of β and ν respectively. It is also known that under the natural ordering, $I^{A}_{(\delta, \gamma)}$ is a complete lattice for any nonempty set A. Its largest and smallest element are 1_A (where $1_A(x) = 1 \forall x \in A$) and 0_A (where $0_A(x) = 0 \forall x \in A$).

Definition 3.3 Let $\beta, \nu \in I^{A}_{(\delta, \gamma)}$. If $\beta(x) \leq \nu(x), \forall x \in X$, then we say that β is contained in ν and we write $\beta \leq \nu$. Clearly the inclusion relation \leq is a partial ordering on $I^{A}_{(\delta, \gamma)}$.

Example 3.4 If X is any lattice and $t \in I$, then $\beta(x) \vee \delta = t \wedge \gamma, \forall x \in X$ is a (δ, γ)-fuzzy sublattice of X.

Example 3.5 If X is any subset of N with usual ordering and $\beta \in I^{x}_{(\delta, \gamma)}$ is given by

$\beta(x) \vee \delta = 1/x \wedge \gamma$ then β is a (δ, γ)-fuzzy sublattice of X.

Notation 3.6 $FL_{(\delta, \gamma)}(X)$ denotes the set of all (δ, γ)-fuzzy sublattice of X.

Result 3.7 If $\beta \in FL_{(\delta, \gamma)}(X)$, then the set $\beta^* = \{x \in X, \beta(x) \vee \delta > 0 \wedge \gamma\}$ is a (δ, γ)-fuzzy sublattice of X.

Proof. Omitted.

Let $\beta \in I^X$, then β is called a (δ, γ)-fuzzy ideal of X if $\forall x, y \in X$,

(i). $\beta(x \vee y) \vee \delta \geq \beta(x) \wedge \beta(y) \wedge \gamma$,

(ii). $\beta(x \wedge y) \vee \delta \geq \beta(x) \wedge \beta(y) \wedge \gamma$.

If I_2 holds, then $\beta(x \wedge y) \vee \delta \geq \beta(x) \wedge \beta(y) \wedge \gamma$. Thus by I_1 and $I_2, \beta \in FL_{(\delta, \gamma)}(X)$, (i.e) a (δ, γ)-fuzzy ideal of X is (δ, γ)-fuzzy sublattice of X.

Notation 3.9 The set of all (δ, γ)-fuzzy ideals of X is denoted by $FL_{(\delta, \gamma)}(X)$. Let $\beta \in I^x_{(\delta, \gamma)}$ satisfies I_2 if and only if $\beta(x \wedge y) \vee \delta \geq \beta(x) \wedge \gamma, \forall x, y \in X$. Since from $I_2, \beta(x \wedge y) \vee \delta \geq \beta(x) \wedge \gamma$ and conversely if $\beta(x \wedge y) \vee \delta \geq \beta(x) \wedge \gamma, \forall x \in X$, then $\beta(x \wedge y) \vee \delta = \beta(y \wedge x) \vee \delta \geq \beta(y) \wedge \gamma, \forall x, y \in X$. Thus I_2 is equivalent to (I_1). $\beta(x \wedge y) \vee \delta \geq \beta(x) \wedge \gamma, \forall x \in X$. Hence a (δ, γ)-fuzzy sublattice β of X is (δ, γ)-fuzzy ideal of X if and only if $\beta(x \wedge y) \vee \delta \geq \beta(x) \wedge \gamma, \forall x \in X$.

Example 3.10 Consider the lattice $X = \{a, b, c, d\}$ where $a > c > d, a > b > d$ and b, c are non comparable. Where $\delta = 0.1$ and $\gamma = 0.9$. Define $\beta \in I^x_{(\delta, \gamma)}$ as follows.

$\beta(a) = 0.1, \beta(b) = 0.2, \beta(c) = 0.4, \beta(d) = 0.5$ then β is a (δ, γ)-fuzzy ideal of X.

Example 3.11 If X and Y with a smallest element 0 be lattice and f a lattice homomorphism of X onto Y, then $ker\ f = \{x \in X | f(x) = 0\}$ is an ideal of X and $\chi_{ker\ f}$ is a fuzzy ideal of X (from χ) and also $\chi_{ker\ f}$ is a (δ, γ)-fuzzy ideal of X.

Theorem 3.12 Let $A \subseteq X$. Then A is an (δ, γ)-fuzzy ideal of X if and only if χ_A is a (δ, γ)-fuzzy ideal of X. Proof. Suppose A is an (δ, γ)-fuzzy ideal of X. Therefore A is a (δ, γ)-fuzzy sublattice of X.
Proof. Suppose \(x, y \in X \) be elements of \(A \). Therefore both \(x \land y \) and \(x \lor y \in A \). Then

\[
\chi_A(x) \lor \delta = 1 \land \gamma, \quad \chi_A(y) \lor \delta = 1 \land \gamma, \quad \chi_A(x \lor y) \lor \delta = 1 \land \gamma \quad \text{and} \quad \chi_A(x \lor y) \lor \delta = 1 \land \gamma.
\]

Then

\[
\chi_A(x \lor y) \lor \delta \geq \chi_A(x) \land \chi_A(y) \lor \gamma = 1 \land \gamma
\]

Therefore \(\chi_A \) is a \((\delta, \gamma)\)-fuzzy ideal of \(X \).

Suppose \(x \in A \) and \(y \in A \). Then \(\chi_A(x) \lor \delta = 1 \land \gamma \) and \(\chi_A(y) \lor \delta = 0 \land \gamma \).

But, since \(A \) is an ideal, \((x \land y) \lor \delta \in A \land \gamma \).

Now since \(\chi_A(y) \lor \delta = 0 \land \gamma \) and \(\chi_A(x \lor y) \lor \delta \geq \chi_A(x) \land \chi_A(y) \lor \gamma = 1 \land \gamma \) and \(\chi_A(x \land y) \lor \delta \geq \chi_A(x) \lor \chi_A(y) \lor \gamma = 1 \land \gamma \).

Thus \(\chi_A \) is a \((\delta, \gamma)\)-fuzzy ideal of \(X \).

Conversely, suppose that \(\chi_A \) is a \((\delta, \gamma)\)-fuzzy ideal of \(X \).

Let \(x, y \in A \) then \(\chi_A(x) \lor \delta = 1 \land \gamma, \chi_A(y) \lor \delta = 1 \land \gamma \).

Since \(\chi_A(x \lor y) \lor \delta \geq \chi_A(x) \land \chi_A(y) \lor \gamma = 1 \land \gamma \), \(\chi_A(x \lor y) \lor \delta = 1 \land \gamma \).

Therefore \((x \lor y) \lor \delta \in A \land \gamma \).

Similarly \(\chi_A(x \lor y) \lor \delta = 1 \land \gamma \).

Therefore \(x \land y \in A \).

Therefore \(A \) is a \((\delta, \gamma)\)-fuzzy sub lattice of \(X \).

Let \(x \in A \) and \(y \in X \). Therefore \(\chi_A(x) \lor \delta = 1 \land \gamma \). Then, since

\[
\chi_A(x \lor y) \lor \delta \geq \chi_A(x) \lor \chi_A(y) \lor \gamma = 1 \land \gamma, \quad x, y \in A.
\]

Therefore \(A \) is an \((\delta, \gamma)\)-fuzzy ideal of \(X \).

Theorem 3.13 \(\mu \in FL_{(\delta, \gamma)}(X) \) is a \((\delta, \gamma)\)-fuzzy ideal of \(X \), when \(\beta(x \lor y) \lor \delta \geq a \land \gamma \) holds if and only if \(\beta(x) \lor \delta \geq a \land \gamma \) and \(\beta(y) \lor \delta \geq a \land \gamma \), \(\forall a \in I \).

Proof. Suppose that \(\beta(x \lor y) \lor \delta \geq a \land \gamma \) holds if and only if \(\beta(x) \lor \delta \geq a \land \gamma \) and \(\beta(y) \lor \delta \geq a \land \gamma \), \(\forall a \in I \). Let \(x, y \in X \). Let \(\beta(x) \land \beta(y) \lor \delta = a \land \beta \). Then \(\beta(x) \lor \delta \geq a \land \gamma \) and \(\beta(y) \lor \delta \geq a \land \gamma \). Therefore by assumption \(\beta(x \lor y) \lor \delta \geq a \land \gamma \).

That is \(\beta(x \lor y) \lor \delta \geq (\beta(x) \land \beta(y)) \lor \delta \). Thus \((I_1) \).

Let \(\beta(x) = b \). Then \(x \in B_b \). Now since \(X \) is a lattice, \(x \lor \delta = (x \lor (x \land y)) \lor \delta \)

Therefore \((x \lor (x \land y)) \lor \delta \in B_b \). That is \(\beta((x \lor (x \land y)) \lor \delta) \geq b \land \gamma \)

Therefore \(\beta(x \lor y) \lor \delta \geq b \land \gamma \) by assumption that is \(\beta(x \lor y) \lor \delta \geq \beta(x) \land \gamma \). Thus \(I_3 \).

Hence \(\beta \in FL_{(\delta, \gamma)}(X) \).

Theorem 3.14 Let \(\beta \in FL_{(\delta, \gamma)}(X) \). Then

(i) If \(X \) has a smallest element \(0 \), then \(\beta(0) \lor \delta \geq \beta(x) \land \gamma \forall x \).

(ii) If \(X \) has a greatest element \(1 \), then \(\beta(1) \lor \delta \geq \beta(x) \land \gamma \forall x \in X \).

(iii) \(\beta \) is an \((\delta, \gamma)\)-fuzzy ideal of \(X \).

Proof. (i) \(\beta(0) \lor \delta = \beta(0 \land x) \lor \delta = \beta(x \land 0) \lor \delta \geq \beta(x) \land \gamma \) by \(I_3 \).

(ii) \(\beta(1) \lor \delta = \beta(1 \land x) \lor \delta = \beta(x \land 1) \lor \delta \geq \beta(x) \land \gamma \) by \(I_3 \).

Therefore \(\beta(x) \leq (X) \)

(iii) By definition of \((\delta, \gamma)\)-fuzzy sublattice of \(X \).. \(\beta^* = \{x | \beta(x) \lor \delta > 0 \land \beta \} \).

Let \(x, y \in \beta^* \). Then both \(\beta(x) \lor \delta > 0 \land \gamma \) and \(\beta(y) \lor \delta > 0 \land \gamma \)

Therefore \((\beta(x) \lor \beta(y)) \lor \delta > 0 \land \gamma \) and \((\beta(x) \land \beta(y)) \lor \delta > 0 \land \gamma \), since \((\beta(x) \lor \beta(y)) \lor \delta = \max\{\beta(x), \beta(y), \delta\} \) and \((\beta(x) \land \beta(y)) \lor \delta = \min\{\beta(x), \beta(y), \gamma\} \) in \(I \). Now

\((x \lor y) \lor \delta \geq (\beta(x) \land \beta(y)) \lor \delta > 0\), since \(\beta \in FI_{(\delta, \gamma)}(X)\)

Therefore \(x \lor y \in \beta^*\)

Also \((\beta(x \land y)) \lor \delta \geq (\beta(x) \lor \beta(y)) \land \gamma > 0\)

Therefore \(x \land y \in \beta^*\). Suppose \(z \notin \beta^*\).

Therefore \(\beta(Z) = 0\), \(x \land z \in \beta^*\). Thus \(\beta^*\) is an ideal of \(X\).

References

