Fuzzy e-closed and Generalized Fuzzy e-closed Sets in Double Fuzzy Topological Spaces

1P. Periyasamy, 2V. Chandrasekar, 3G. Saravanakumar and 4A. Vadivel
1Department of Mathematics, Kandaswamy Kandar’s College, P-velur, Tamil Nadu-638 182
2Department of Mathematics, Kandaswamy Kandar’s College, P-velur, Tamil Nadu-638 182,
3Department of Mathematics, Annamalai University, Annamalainagar, Tamil Nadu-608 002
4Department of Mathematics, Government Arts College (Autonomous), Karur, Tamil Nadu-639 005

Abstract

The purpose of this paper is to introduce and study a new class of fuzzy sets called (r,s)-generalized fuzzy e-closed sets in double fuzzy topological spaces. Furthermore, the relationship between the new concepts are introduced and established with some interesting examples.

Keywords and phrases: Double fuzzy topology (r,s)-generalized fuzzy e-closed sets.

AMS (2000) subject classification: 54A40, 03E72, 45D05

1. Introduction

A progressive development of fuzzy sets [9] has been made to discover the fuzzy analogues of the crisp sets theory. On the other hand, the ideal of intuitionistic fuzzy sets was first introduced by Atanassov [2]. Later on, Coker [3] presented the notion of intuitionistic fuzzy topology. Samanta and Mondal [7], introduced and characterized the intuitionistic gradation of openness of fuzzy sets which is a generalization of smooth topology and the topology of intuitionistic fuzzy sets. The name "intuitionistic" is disconnected in mathematics and applications. Gracia and Rodabaugh [5] concluded that they word under the name "double". In 2008, Erdal Ekici [4] introduced e-open sets in general topology. In 2014, Seenivasan et. al [8] introduce fuzzy e-open sets in fuzzy topological spaces. As a generalization of the results in References [4, 8], we introduce and study (r,s)-fuzzy e-closed sets and (r,s)-generalized fuzzy e-closed sets in double fuzzy topological spaces. Also the relationship between (r,s)-fuzzy e-closed (resp. (r,s)-generalized fuzzy e-closed) sets and and some other sets are introduced and established with some interesting couter examples.

2. Preliminaries

Throughout this paper, X will be a non-empty set, $I = [0,1], I_0 = (0,1]$ and $I_1 = [0,1)$. A fuzzy set A is quasi-coincident with a fuzzy set B (denoted by, A_{qB}) iff there exists $x \in X$ such that $A(x) + B(x) > 1$ and they are not quasi-coincident otherwise (denoted by, $A_{q}B$). The family of all fuzzy sets on X is denoted by I^X. By 0 and 1, we denote the smallest and the greatest fuzzy sets on X. For a fuzzy set $A \in I^X$, $1 - A$ denotes its complement. All other notations are standard notations of fuzzy set theory.

Now, we recall the following definitions which are useful in the sequel.

Definition 2.1 [7] A double fuzzy topology $(T,T^\bar{a})$ on X is a pair of maps $T,T^\bar{a} : I^X \rightarrow I$, which satisfies the following properties:

(i) $T(A) \leq 1 - T^\bar{a}(A)$ for each $A \in I^X$.

(ii) $T(A_1 \land A_2) \geq T(A_1) \land T(A_2)$ and $T^\bar{a}(A_1 \land A_2) \leq T^\bar{a}(A_1) \lor T^\bar{a}(A_2)$, for each $A_1, A_2 \in I^X$.

The triplet $(X, T, T^\#)$ is called a double fuzzy topological space (briefly, dfts). A fuzzy set A is called an (r, s)-fuzzy open (briefly, (r, s)-fo) if $T(A) \geq r$ and $T^\#(A) \leq s$. A fuzzy set A is called an (r, s)-fuzzy closed (briefly, (r, s)-fc) set iff $1 - A$ is an (r, s)-fo set.

Theorem 2.1 [6] Let $(X, T, T^\#)$ be a dfts. Then double fuzzy closure operator and double fuzzy interior operator of $A \in I^X$ are defined by

$$C_{T, T^\#}(A, r, s) = \big\{ B \in I^X \mid A \subseteq B, T(1 - B) \geq r, T^\#(1 - B) \leq s \big\}.$$ $$I_{T, T^\#}(A, r, s) = \big\{ B \in I^X \mid A \supseteq B, T(B) \geq r, T^\#(B) \leq s \big\}.$$

Where $r \in I_0$ and $s \in I_1$ such that $r + s \leq 1$.

Definition 2.2 [1] Let $(X, T, T^\#)$ be a dfts. For each $A \in I^X$, $r \in I_0$ and $s \in I_1$, a fuzzy set A is called an (r, s)-generalized fuzzy closed (briefly, (r, s)-gfc) if $C_{T, T^\#}(A, r, s) \subseteq B$, $A \subseteq B$, $T(B) \geq r$ and $T^\#(B) \leq s$. A is called an (r, s)-generalized fuzzy open (briefly, (r, s)-gfo) iff $1 - A$ is (r, s)-gfc set.

3. (r, s) fuzzy e-closed and (r, s)-generalized fuzzy e-closed sets

Definition 3.1 Let $(X, T, T^\#)$ be a dfts. Then for each $A \in I^X$, $r \in I_0$ and $s \in I_1$, a fuzzy set A is called an (r, s)-fuzzy regular open (briefly, (r, s)-fro) if $A = I_{T, T^\#}(C_{T, T^\#}(A, r, s), r, s)$ and (r, s)-fuzzy regular closed (briefly, (r, s)-frc) if $A = C_{T, T^\#}(I_{T, T^\#}(A, r, s), r, s)$.

Definition 3.2 Let $(X, T, T^\#)$ be a dfts. Then for each $A \in I^X$, $r \in I_0$ and $s \in I_1$, we define operators $\delta C_{T, T^\#}$ and $\delta I_{T, T^\#}: I^X \times I_0 \times I_1 \to I^X$ as follows:

$$\delta C_{T, T^\#}(A, r, s) = \big\{ B \in I^X \mid A \subseteq B, T(B) \geq r, T^\#(B) \leq s \big\}.$$ $$\delta I_{T, T^\#}(A, r, s) = \big\{ B \in I^X \mid A \supseteq B, T(B) \geq r, T^\#(B) \leq s \big\}.$$

Definition 3.3 Let $(X, T, T^\#)$ be a dfts. Then for each $A \in I^X$, $r \in I_0$ and $s \in I_1$, a fuzzy set A is called an

(i) (r, s)-fuzzy δ semiopen (briefly, (r, s)-f δ so) if $A \leq \delta C_{T, T^\#}(A, r, s)$ and (r, s)-fuzzy δ semi closed (briefly, (r, s)-f δ sc) if $A \geq \delta I_{T, T^\#}(A, r, s)$.

(ii) (r, s)-fuzzy δ pre open (briefly, (r, s)-f δ po) if $A \leq I_{T, T^\#}(\delta C_{T, T^\#}(A, r, s), r, s)$ and (r, s)-fuzzy δ pre closed (briefly, (r, s)-f δ pc) if $A \geq C_{T, T^\#}(\delta I_{T, T^\#}(A, r, s), r, s)$.

(iii) (r, s)-fuzzy β open (briefly, (r, s)-f β o) if $A \leq C_{T, T^\#}(I_{T, T^\#}(A, r, s), r, s) r, s$ and (r, s)-fuzzy β closed (briefly, (r, s)-f β c) if $A \geq I_{T, T^\#}(C_{T, T^\#}(A, r, s), r, s)$.

(iv) (r, s)-fuzzy e-open (briefly, (r, s)-feo) if $A \leq C_{T, T^\#}(\delta I_{T, T^\#}(A, r, s), r, s) \lor I_{T, T^\#}(\delta C_{T, T^\#}(A, r, s), r, s)$ and (r, s)-fuzzy e-closed (briefly, (r, s)-feco) if $A \geq I_{T, T^\#}(\delta C_{T, T^\#}(A, r, s), r, s) \land C_{T, T^\#}(\delta I_{T, T^\#}(A, r, s), r, s)$.

Definition 3.4 Let $(X, T, T^\#)$ be a dfts. Then for each $A \in I^X$, $r \in I_0$ and $s \in I_1$, we define operators $eC_{T, T^\#}$ (resp. $\delta SC_{T, T^\#}$, $\delta PC_{T, T^\#}$ and $\beta C_{T, T^\#}$) and

$$e I_{T, T^\#}(\delta S I_{T, T^\#}, \delta P I_{T, T^\#} and \beta I_{T, T^\#}) : I^X \times I_0 \to I^X$$ $$e C_{T, T^\#}(\delta S C_{T, T^\#}, \delta P C_{T, T^\#} and \beta C_{T, T^\#})(A, r, s) = \big\{ B \in I^X : A \subseteq B, B \text{ is } (r, s) - e \text{ closed (resp. } f \delta sc, f \delta pc \text{ and } f \beta c) \big\}$$.
\[e_{I,J}^{T} (r,s) = (A,r,s) = \]
\[\{ B \in I^X : B \leq A, B \text{ is } (r,s) \text{-feo} \} \].

Definition 3.5 Let \((X,T,T')\) be a dfts, \(A \in I^X\), \(r \in I_0\) and \(s \in I_1\), \(A\) is called an \((r,s)\)-fuzzy \(e\)-\(Q\) -neighborhood of \(x \in P(X)\) if there exists an \((r,s)\)-feo set \(B \in I^X\) such that \(x \in B\) and \(B \leq A\).

The family of all \((r,s)\)-fuzzy \(e\)-\(Q\)-neighborhood of \(x_i\) denoted by \(e\)-\(Q(x_i,r,s)\).

Theorem 3.1 Let \((X,T,T')\) be a dfts. Then for each \(A \in I^X\), \(r \in I_0\) and \(s \in I_1\), the operator \(e_{I,J}^{T} (r,s)\) satisfies the following statements:

(i) \(e_{I,J}^{T} (Q,r,s) = \emptyset, \; e_{I,J}^{T} (1,r,s) = 1\).
(ii) \(A \leq e_{I,J}^{T} (A,r,s) \).
(iii) If \(A \leq B\), then \(e_{I,J}^{T} (A,r,s) \leq e_{I,J}^{T} (B,r,s)\).
(iv) If \(A\) is an \((r,s)\)-fc set, then \(A = e_{I,J}^{T} (A,r,s)\).
(v) If \(A\) is an \((r,s)\)-feo set, then \(BqA\) if \(BqC_{I,J}^{T} (A,r,s)\).
(vi) \(e_{I,J}^{T} (e_{I,J}^{T} (A,r,s),r,s) = e_{I,J}^{T} (A,r,s)\).
(vii) \(e_{I,J}^{T} (A,r,s) \lor e_{I,J}^{T} (B,r,s) \leq e_{I,J}^{T} (A \lor B,r,s)\).
(viii) \(e_{I,J}^{T} (A,r,s) \land e_{I,J}^{T} (B,r,s) \geq e_{I,J}^{T} (A \land B,r,s)\).

Proof. (i), (ii), (iii) and (iv) are proved easily.

(v) Let \(BqA\) and \(B\) is an \((r,s)\)-feo set, then \(A \leq 1 - B\). But we have, \(BqA\) if \(BqC_{I,J}^{T} (A,r,s)\) and \(e_{I,J}^{T} (A,r,s) \leq e_{I,J}^{T} (1 - B,r,s) = 1 - B\), so \(BqC_{I,J}^{T} (A,r,s)\), which is contradiction. Then \(BqA\) if \(BqC_{I,J}^{T} (A,r,s)\).

(vi) Let \(x_i\) be a fuzzy point such that \(x_i \in e_{I,J}^{T} (A,r,s)\). Then there is an \((r,s)\)-fuzzy \(e\)-\(Q\)-neighborhood \(B\) of \(x_i\) such that \(BqA\). But by (v), we have an \((r,s)\)-fuzzy \(e\)-\(Q\)-neighborhood \(B\) of \(x_i\) such that \(BqC_{I,J}^{T} (A,r,s)\). Also, \(x_i \in e_{I,J}^{T} (e_{I,J}^{T} (A,r,s),r,s)\). Then \(e_{I,J}^{T} (e_{I,J}^{T} (A,r,s),r,s) \leq e_{I,J}^{T} (A,r,s)\). But we have, \(e_{I,J}^{T} (e_{I,J}^{T} (A,r,s),r,s) \geq e_{I,J}^{T} (A,r,s)\). Therefore \(e_{I,J}^{T} (e_{I,J}^{T} (A,r,s),r,s) = e_{I,J}^{T} (A,r,s)\).

(vii) and (viii) are obvious.

Similarly the other operators (i.e) \(\delta SC_{I,J}^{T}, \delta PC_{I,J}^{T}\) and \(\beta C_{I,J}^{T}\) satisfies the above conditions.

Theorem 3.2 Let \((X,T,T')\) be a dfts. Then for each \(A \in I^X\), \(r \in I_0\) and \(s \in I_1\), the operator \(e_{I,J}^{T} (r,s)\) satisfies the following statements:

(i) \(e_{I,J}^{T} (1 - A,r,s) = 1 - e_{I,J}^{T} (A,r,s)\), \(e_{I,J}^{T} (1 - A,r,s) = 1 - e_{I,J}^{T} (A,r,s)\).
(ii) \(e_{I,J}^{T} (0,r,s) = 0, \; e_{I,J}^{T} (1,r,s) = 1\).
(iii) \(e_{I,J}^{T} (A,r,s) \leq A\).
(iv) If \(A\) is an \((r,s)\)-fc set, then \(A = e_{I,J}^{T} (A,r,s)\).
(v) If \(A \leq B\), then \(e_{I,J}^{T} (A,r,s) \leq e_{I,J}^{T} (B,r,s)\).
(vi) \(e_{I,J}^{T} (e_{I,J}^{T} (A,r,s),r,s) = e_{I,J}^{T} (A,r,s)\).
(vii) \(e_{I,J}^{T} (A \lor B,r,s) \geq e_{I,J}^{T} (A,r,s) \lor e_{I,J}^{T} (B,r,s)\).
(viii) \(el_{T,T}^\delta (A \vee B, r, s) \leq el_{T,T}^\delta (A, r, s) \land el_{T,T}^\delta (B, r, s) \).

Proof. It is similar to Theorem 3.1. Similarly the other operators (i.e) \(\delta SI_{T,T}^\delta \), \(\delta PI_{T,T}^\delta \) and \(\beta I_{T,T}^\delta \) satisfies the above conditions.

Definition 3.6 Let \((X,T,T^\delta)\) be a dfts. Then for each \(A \in I^X \), \(r \in I_0 \) and \(s \in I_1 \): a fuzzy set \(A \) is called

(i) \((r,s)\)-generalized fuzzy \(\delta \) semiopen (briefly, \((r,s)\)-gf \(\delta \) sc) if \(B \leq \delta SI_{T,T}^\delta (A, r, s) \) whenever \(B \leq A \) and \(T(1-B) \geq r, T^\delta (1-B) \leq s \).

(ii) \((r,s)\)-generalized fuzzy \(\delta \) preopen (briefly, \((r,s)\)-gf \(\delta \) p o) if \(B \leq \delta PI_{T,T}^\delta (A, r, s) \) whenever \(B \leq A \) and \(T(1-B) \geq r, T^\delta (1-B) \leq s \).

(iii) \((r,s)\)-generalized fuzzy \(\beta \) -open (briefly, \((r,s)\)-gf \(\beta \) o) if \(B \leq \beta I_{T,T}^\delta (A, r, s) \) whenever \(B \leq A \) and \(T(1-B) \geq r, T^\delta (1-B) \leq s \).

(iv) \((r,s)\)-generalized fuzzy \(e \) -open (briefly, \((r,s)\)-gf \(e \) o) if \(B \leq el_{T,T}^\delta (A, r, s) \) whenever \(B \leq A \) and \(T(1-B) \geq r, T^\delta (1-B) \leq s \).

(v) \((r,s)\)-generalized fuzzy \(\delta \) semiclosed (briefly, \((r,s)\)-gf \(\delta \) s c) if \(\delta SC_{T,T}^\delta (A, r, s) \leq B \) whenever \(A \leq B \) and \(T(B) \geq r, T^\delta (B) \leq s \).

(vi) \((r,s)\)-generalized fuzzy \(\delta \) preclosed (briefly, \((r,s)\)-gf \(\delta \) p c) if \(\delta PC_{T,T}^\delta (A, r, s) \leq B \) whenever \(A \leq B \) and \(T(B) \geq r, T^\delta (B) \leq s \).

(vii) \((r,s)\)-generalized fuzzy \(\beta \) -closed (briefly, \((r,s)\)-gf \(\beta \) c) if \(\beta C_{T,T}^\delta (A, r, s) \leq B \) whenever \(A \leq B \) and \(T(B) \geq r, T^\delta (B) \leq s \).

(viii) \((r,s)\)-generalized fuzzy \(e \) -closed (briefly, \((r,s)\)-gf \(e \) c) if \(eC_{T,T}^\delta (A, r, s) \leq B \) whenever \(A \leq B \) and \(T(B) \geq r, T^\delta (B) \leq s \).

Example 3.1 Let \(X = \{x,y\} \). Defined \(B, C, D \) and \(E \) by \(B(x) = 0.3, B(y) = 0.4; C(x) = 0.4, C(y) = 0.5; D(x) = 0.8, D(y) = 0.8; E(x) = 0.4, E(y) = 0.6; F(x) = 0.4, F(y) = 0.4 \).

\[
T(A) = \begin{cases}
1, & \text{if } A \in [0,1], \\
1/2, & \text{if } A \in \{B,C\}, \\
0, & \text{otherwise.}
\end{cases}
T^\delta (A) = \begin{cases}
1, & \text{if } A \in [0,1], \\
1/2, & \text{if } A \in \{B,C\}, \\
1, & \text{otherwise.}
\end{cases}
\]

(i) \(C \) is an \(\left(\frac{1}{2},\frac{1}{2}\right)\)-f \(\delta \) sc (resp. \(\left(\frac{1}{2},\frac{1}{2}\right)\)-gf \(\delta \) sc) but not an \(\left(\frac{1}{2},\frac{1}{2}\right)\)-fc (resp. \(\left(\frac{1}{2},\frac{1}{2}\right)\)-gfc).

(ii) \(C \) is an \(\left(\frac{1}{2},\frac{1}{2}\right)\)-f ec (resp. \(\left(\frac{1}{2},\frac{1}{2}\right)\)-gfe c) but not an \(\left(\frac{1}{2},\frac{1}{2}\right)\)-f pc (resp. \(\left(\frac{1}{2},\frac{1}{2}\right)\)-gf pc).

(iii) \(D \) is an \(\left(\frac{1}{2},\frac{1}{2}\right)\)-f pc, \(\left(\frac{1}{2},\frac{1}{2}\right)\)-e c but not an \(\left(\frac{1}{2},\frac{1}{2}\right)\)-fc, \(\left(\frac{1}{2},\frac{1}{2}\right)\)-\(\delta \) sc.

(iv) \(E \) is an \(\left(\frac{1}{2},\frac{1}{2}\right)\)-f \(\beta \) c but not an \(\left(\frac{1}{2},\frac{1}{2}\right)\)-f ec.

(v) \(F \) is an \(\left(\frac{1}{2},\frac{1}{2}\right)\)-gf \(e \) c, \(\left(\frac{1}{2},\frac{1}{2}\right)\)-g \(\delta \) pc but not an \(\left(\frac{1}{2},\frac{1}{2}\right)\)-gf \(\delta \) sc, \(\left(\frac{1}{2},\frac{1}{2}\right)\)-gfc.
Example 3.2 Let \(X = \{ x, y \} \). Defined \(G, H, I, J, K \) and \(L \) by \(G(x) = 0.1, G(y) = 0.3; H(x) = 0.3, H(y) = 0.2; I(x) = 0.1, I(y) = 0.2; J(x) = 0.3, J(y) = 0.3; K(x) = 0.7, K(y) = 0.6; L(x) = 0.4, L(y) = 0.3).\n
\[
T(A) = \begin{cases}
1, & \text{if } A \in \{0,1\}, \\
\frac{1}{2}, & \text{if } A \in \{G, H, I, J, K\}, \\
0, & \text{otherwise}.
\end{cases}
\]

\[
T^a(A) = \begin{cases}
\frac{1}{2}, & \text{if } A \in \{G, H, I, J, K\}, \\
1, & \text{otherwise}.
\end{cases}
\]

(i) \(L \) is an \((\frac{1}{2}, \frac{1}{2})\)-gf \(\beta \) c but not an \((\frac{1}{2}, \frac{1}{2})\)-gf e sc.

Theorem 3.3 Let \((X, T, T^a) \) be a dfts, \(A \in I^X \), is \((r, s)\)-gfeo set \(r \in I_0 \) and \(s \in I_1 \), if and only if \(B \leq eI_{T,T^a}(A, r, s) \) whenever \(B \leq A \), \(T(1-B) \geq r \) and \(T^a(1-B) \leq s \).

Proof. Suppose that \(A \) is an \((r, s)\)-gfeo set in \(I^X \), and let \(T(1-B) \geq r \) and \(T^a(1-B) \leq s \) such that \(B \leq A \). By the definition, \(1-A \) is an \((r, s)\)-gfec set in \(I^X \). So, \(eC_{T,T^a}(1-A, r, s) \leq 1-B \). Also, \(1-eI_{T,T^a}(A, r, s) \leq 1-B \). And then, \(B \leq eI_{T,T^a}(A, r, s) \). Conversely, let \(B \leq A, T(1-B) \geq r \) and \(T^a(1-B) \leq s, r \in I_0 \) and \(s \in I_1 \), such that \(B \leq eI_{T,T^a}(A, r, s) \). Now \(1-eI_{T,T^a}(A, r, s) \leq 1-B \). Thus \(eC_{T,T^a}(1-A, r, s) \leq 1-B \). That is, \(1-A \) is an \((r, s)\)-gfec set, then \(A \) is an \((r, s)\)-gfeo set.

Theorem 3.4 Let \((X, T, T^a) \) be a dfts, \(A \in I^X \), is \((r, s)\)-gfeo set \(r \in I_0 \) and \(s \in I_1 \), if \(A \) is an \((r, s)\)-gfec set, then

(i) \(eC_{T,T^a}(A, r, s) - A \) does not contain any non-zero \((r, s)\)-fc sets.

(ii) \(A \) is an \((r, s)\)-fc iff \(eC_{T,T^a}(A, r, s) - A \) is \((r, s)\)-fc.

(iii) \(B \) is \((r, s)\)-gfec set for each set \(B \in I^X \) such that \(A \leq B \leq eC_{T,T^a}(A, r, s) \).

(iv) For each \((r, s)\)-fo set \(B \in I^X \) such that \(B \leq A \), \(B \) is an \((r, s)\)-gfec relative to \(A \) if and only if \(B \) is an \((r, s)\)-gfec in \(I^X \).

(v) For each \((r, s)\)-fo set \(B \in I^X \) such that \(eC_{T,T^a}(A, r, s) - B \) iff \(\bar{A}qB \).
Proof. (i) Suppose that $T(1-B) \geq r$ and $T^A(1-B) \leq s$, $r \in I_0$ and $s \in I_1$, such that $B \leq eC_{T,T^A}(A,r,s) - A$ whenever $A \in I^X$ is an (r,s)-gfec set. Since $1-B$ is an (r,s)-fo set,

$$A \leq (1-B) \Rightarrow eC_{T,T^A}(A,r,s) \leq (1-B)$$

$$\Rightarrow B \leq (1-eC_{T,T^A}(A,r,s))$$

$$\Rightarrow B \leq (1-eC_{T,T^A}(A,r,s)) \land (eC_{T,T^A}(A,r,s) - A)$$

$$= 0$$

and hence $B = 0$ which is a contradiction. Then $eC_{T,T^A}(A,r,s) - A$ does not contain any non-zero (r,s)-fc sets.

(ii) Let A be an (r,s)-gfec set. So, for each $r \in I_0$ and $s \in I_1$ if A is an (r,s)-fec set then, $eC_{T,T^A}(A,r,s) - A = 0$ which is an (r,s)-fc set.

Conversely, suppose that $eC_{T,T^A}(A,r,s) - A$ is an (r,s)-fc set. Then by (i), $eC_{T,T^A}(A,r,s) - A$ does not contain any non-zero an (r,s)-fc set. But $eC_{T,T^A}(A,r,s) - A$ is an (r,s)-fc set, then $eC_{T,T^A}(A,r,s) - A = 0 \Rightarrow A = eC_{T,T^A}(A,r,s)$. So, A is an (r,s)-fec set.

(iii) Suppose that $T(C) \geq r$ and $T^A(C) \leq s$ where $r \in I_0$ and $s \in I_1$ such that $B \leq C$ and let A be an (r,s)-gfec set such that $A \leq C$. Then $eC_{T,T^A}(A,r,s) \leq C$. So, $eC_{T,T^A}(A,r,s) = eC_{T,T^A}(B,r,s)$. Therefore $eC_{T,T^A}(B,r,s) \leq C$. So, B is an (r,s)-gfec set.

(iv) Let A be an (r,s)-gfec and $T(A) \geq r$ and $T^A(A) \leq s$, where $r \in I_0$ and $s \in I_1$. Then $eC_{T,T^A}(A,r,s) \leq A$. But, $B \leq A$ so, $eC_{T,T^A}(B,r,s) \leq eC_{T,T^A}(A,r,s)$. Also, since B is an (r,s)-gfec relative to A, then $A \land eC_{T,T^A}(A,r,s) = eC_{T,T^A}(B,r,s)$ so $eC_{T,T^A}(A,r,s) = eC_{T,T^A}(B,r,s) \leq A$.

Now, if B is an (r,s)-gfec relative to A and $T(C) \geq r$ and $T^A(C) \leq s$ where $r \in I_0$ and $s \in I_1$ such that $B \leq C$, then for each an (r,s)-fo set $C \land A = B \land A \leq C \land A$. Hence B is an (r,s)-gfec relative to A. $eC_{T,T^A}(B,r,s) = eC_{T,T^A}(A,r,s) \leq (C \land A) \leq C$. Therefore, B is an (r,s)-gfec in I^X.

Conversely, let B be an (r,s)-gfec set in I^X and $T(C) \geq r$ and $T^A(C) \leq s$ whenever $C \leq A$ such that $B \leq A$, $r \in I_0$ and $s \in I_1$. Then for each an (r,s)-fo set $D \in I^X$, $C = D \land A$. But we have, B is an (r,s)-gfec set in I^X such that $B \leq D$.

$eC_{T,T^A}(B,r,s) \leq D \Rightarrow eC_{T,T^A}(B,r,s) = eC_{T,T^A}(B,r,s) \land A \leq D \land A = C$. That is, B is an (r,s)-gfec relative to A.

(v) Suppose B is an (r,s)-fo and $\bar{A}qB$, $r \in I_0$ and $s \in I_1$. Then $A \leq (1-B)$. Since $(1-B)$ is an (r,s)-fo set of I^X and A is an (r,s)-gfec set, then $eC_{T,T^A}(A,r,s)\bar{q}B$.

Conversely, let B be an (r,s)-fbc set of I^X such that $A \leq B$, $r \in I_0$ and $s \in I_1$. Then $\bar{A}q(1-B)$. But $eC_{T,T^A}(A,r,s)\bar{q}(1-B) \Rightarrow eC_{T,T^A}(A,r,s) \leq B$. Hence A is an (r,s)-gfec.

Proposition 3.1 Let (X,T,T^A) be a dfts, $A \in I^X$, $r \in I_0$ and $s \in I_1$.

(i) If A is an (r,s)-gfec and an (r,s)-fo set, then A is an (r,s)-fs set.

(ii) If A is an (r,s)-fo and an (r,s)-gfec, then $A \land B$ is an (r,s)-gfec set whenever $B \leq eC_{T,T^A}(A,r,s)$.

Proof. (i) Suppose A is an (r,s)-gfec and an (r,s)-fo set such that $A \leq B$, $r \in I_0$ and $s \in I_1$. Then
But we have, \(A \leq eC_{T,r,s} (A, r, s) \). Then, \(A = eC_{T,r,s} (A, r, s) \). Therefore, \(A \) is an \((r, s)\)-fec set.

(ii) Suppose that \(A \) is an \((r, s)\)-fo and an \((r, s)\)-gfec set, \(r \in I_0 \) and \(s \in I_1 \). Then
\[
\begin{align*}
eC_{T,r,s} (A, r, s) & \leq A \Rightarrow A \text{ is an } (r, s)\text{-fec set} \\
& \Rightarrow A \wedge B \text{ is an } (r, s)\text{-fec}
\end{align*}
\]

\(A \wedge B\) is an \((r, s)\)-gfec.

References