Fuzzy M-continuity Mappings in \hat{S}ostak’s Fuzzy Topological Spaces

B. Vijayalakshmi, S. Bamini, M. Saraswathi and A. Vadivel

1Department of Mathematics, Government Arts College, Chidambaram, Tamil Nadu-608-002;
2Department of Mathematics, Kandaswamy Kandar’s College, P-velur, Tamil Nadu-638 182;
3Assistant Professor, Department of Mathematics, Government Arts College (Autonomous), Karur - 639 005,

Abstract

We introduce and investigate some new classes of mappings called fuzzy M-continuous, fuzzy θ-continuous and fuzzy θ-semicontinuous to the fuzzy topological spaces in \hat{S}ostak’s sense. Also, some of their fundamental properties are studied. Moreover, we investigate the relationships between fuzzy continuous, fuzzy θ-semicontinuous, fuzzy θ-continuous, fuzzy δ-semicontinuous, fuzzy δ-precontinuous, fuzzy α-continuous, fuzzy M-continuous, fuzzy e-continuous and fuzzy e^*-continuous mappings.

Keywords and phrases: fuzzy continuous, fuzzy θ-semicontinuous, fuzzy θ-continuous, fuzzy δ-semicontinuous, fuzzy δ-precontinuous, fuzzy α-continuous, fuzzy M-continuous, fuzzy e-continuous and fuzzy e^*-continuous mappings.

Introduction

\hat{S}ostak [30] introduced the fuzzy topology as an extension of Chang’s fuzzy topology[4]. It has been developed in many directions [12,13,27]. Weaker forms of fuzzy continuity between fuzzy topological spaces have been considered by many authors [2, 3, 5, 9, 11, 20, 23] using the concepts of fuzzy semi-open sets[2], fuzzy regular open sets[2], fuzzy preopen sets, fuzzy strongly semiopen sets [3], fuzzy γ-open sets[11], fuzzy δ-semiopen sets[1], fuzzy δ-preopen sets[1], fuzzy semi δ-preopen sets[34] and fuzzy e-open sets[29] Ganguly and Saha [10] introduced the notions of fuzzy δ-cluster points in Chang’s [4] fuzzy topological spaces. Kim and Park [14] introduced r-δ-cluster points and δ-closure operators in \hat{S}ostak's fuzzy topological spaces.

It is a good extension of the notions of Ganguly and Saha[10]. Park et al. [14] introduced the fuzzy semi-preopen. In 2008, the initiations of e-open sets, e^*-open sets and α-open sets in topological spaces are due to Erdal Ekici[[7],[8]]. Sobana et al. [33] defined t-fuzzy e-open sets in \hat{S}ostak's fuzzy topological space. Vadivel et al. [36] introduced t-fuzzy e^*-open sets in \hat{S}ostak's fuzzy topological space. In 1968, Velicko studied θ-open sets [35] and δ-open sets for the purpose of investigating the characterizations of H-closed topological spaces. semi-open set [17] were initiated by Levine in 1963. In 1993, Raychaudhuri and Mukherjee defined δ-preopen sets[26]. In 1997, δ-semiopen sets was obtained by Park [19] and θ-semi-open sets were obtained by Caldas in 2008[6]. Shafei introduced fuzzy θ-closed [31] and fuzzy θ-open sets in 2006. Maghrabi et al.[21] introduced the notion of M-open sets in topological spaces in 2011.
In this paper fuzzy M-continuous, fuzzy θ-continuous and fuzzy θ-semicontinuous to the fuzzy topological spaces in Šostak's sense are introduced and some of their fundamental properties are studied. Moreover, we investigate the relationships between fuzzy continuous, fuzzy θ-semicontinuous, fuzzy θ-continuous, fuzzy δ-semicontinuous, fuzzy δ-precontinuous, fuzzy a-continuous, fuzzy M-continuous, fuzzy e-continuous and fuzzy e'-continuous mappings.

1. Preliminaries

Throughout this article, we denote nonempty sets by X, Y etc., $I = [0, 1]$ and $I_0 = (0, 1]$. For $\alpha \in I$, $\tilde{\alpha}(x) = \alpha, \forall x \in X$. A fuzzy point x_i for $t \in I_0$ is an element of I^X such that $x_i(y) = \begin{cases} t & \text{if } y \text{ is equal to } x \\ 0 & \text{if } y \text{ is not equal to } x. \end{cases}$

Let $Pr(X)$ denote the set of all fuzzy points in X. A fuzzy point $x_i \in \mu$ iff $t < \mu(x)$. $\mu \in I^X$ is quasi-coincident with ν, denoted by $\mu \trianglerighteq \nu$, if $\exists x \in X$ such that $\mu(x) + \nu(x) > 1$.

If μ is not quasi-coincident with ν, we denoted $\mu \triangleright \nu$. If A is a subset of X, we define the characteristic function χ_A on X by $\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$

All notations and definitions will be standard in the fuzzy set theory.

Lemma 1.1 [30] Consider X be a nonempty set and $\mu, \nu \in I^X$. Then

(i) $\mu \trianglerighteq \nu$ iff there exists $x_i \in \mu$ such that $x_i \triangleright \nu$.

(ii) $\mu \trianglerighteq \nu$, then $\mu \land \nu \neq 0$.

(iii) $\mu \triangleright \nu$ iff $\mu \leq \tilde{1} - \nu$.

(iv) $\mu \triangleright \nu$ iff $x_i \in \mu$ implies $x_i \in \nu$ iff $x_i \triangleright \nu$ implies $x_i \triangleright \nu$.

(v) $x_i \triangleright \nu$ iff there exists $i_0 \in \mu$ such that $x_i \triangleright \nu$.

Definition 1.1 [30] A function $\tau : I^X \to I$ is called a fuzzy topology on X if it satisfies the following conditions:

1. $\tau(\tilde{0}) = \tau(\tilde{1}) = 1$,
2. $\tau(\bigvee_{i \in I} \nu_i) \geq \bigwedge_{i \in I} \tau(\nu_i)$, for any $\{\nu_i\}_{i \in I} \subset I^X$,
3. $\tau(\nu_1 \land \nu_2) \geq \tau(\nu_1) \land \tau(\nu_2)$, for any $\nu_1, \nu_2 \in I^X$.

The pair (X, τ) is called a fuzzy topological space or Šostak's fuzzy topological space or smooth topological space (for short, fts, sfts, sts).

Remark 1.1 [25] Let (X, τ) be a sfts. Then, for every $t \in I_0$, $\tau_r = \{\nu \in I^X : \tau(\nu) \geq t\}$ is a Change's fuzzy topology on X.

Theorem 1.1 [27] Let (X, τ) be a sfts. Then for each $\mu \in I^X, t \in I_0$, we define an operator $C_t : I^X \times I_0 \to I^X$ as follows:

$C_t(\mu, t) = \bigwedge\{\nu \in I^X : \mu \leq \nu, \tau(\tilde{1} - \nu) \geq t\}$.

For $\mu, \nu \in I^X$ and $t, s \in I_0$, the operator C_t satisfies the following conditions:
(1) $C_r(0,t) = 0$,
(2) $\mu \leq C_r(\mu, t)$,
(3) $C_r(\mu, t) \lor C_r(\nu, t) = C_r(\mu \lor \nu, t)$,
(4) $C_r(\mu, t) \leq C_r(\mu, s)$ if $t \leq s$,
(5) $C_r(C_r(\mu, t), t) = C_r(\mu, t)$.

Theorem 1.2 [27] Let (X, τ) be a sfts. Then for each $t \in I, \mu \in I^X$ we define an operator $I_r : I^X \times I \rightarrow I^X$ as follows:

$I_r(\mu, t) = \bigvee \{\nu \in I^X : \mu \geq \nu, \tau(\nu) \geq t\}$.

For $\mu, \nu \in I^X$ and $s, t \in I$, the operator I_r satisfies the following conditions:

(i) $I_r(\bar{1}, t) = \bar{1}$,
(ii) $\mu \geq I_r(\mu, t)$,
(iii) $I_r(\mu, t) \land I_r(\nu, t) = I_r(\mu \land \nu, t)$,
(iv) $I_r(\mu, t) \leq I_r(\mu, s)$ if $s \leq t$,
(v) $I_r(I_r(\mu, t), t) = I_r(\mu, t)$,
(vi) $I_r(1 - \mu, t) = 1 - C_r(\mu, t)$ and $C_r(1 - \mu, t) = 1 - I_r(\mu, t)$.

Definition 1.2 [15] Let (X, τ) be a sfts. Then for each $\nu \in I^X, x \in P(X)$ and $t \in nI_0$, ν is called

(i) t-open Q_{τ}-neighbourhood of x, if x, q, ν with $\tau(\nu) \geq t$.
(ii) t-open R_{τ}-neighbourhood of x, if x, q, ν with $\nu = I_r(C_r(\mu, t), t)$.

We denote $Q_{\tau}(x, t) = \{\nu \in I^X : x, q, \tau(\nu) \geq t\}$, $R_{\tau}(x, t) = \{\nu \in I^X : x, q, \nu = I_r(C_r(\mu, t), t)\}$.

Definition 1.3 [15] Let (X, τ) be a sfts. Then for each $\mu \in I^X, x \in P(X)$ and $t \in nI_0$, x is called

(i) t-τ cluster point of μ if for every $\nu \in Q_{\tau}(x, t)$, we have $v \mu$.
(ii) t-cluster point of μ if for every $\nu \in R_{\tau}(x, t)$, we have $v \mu$.
(iii) An δ-closure operator is a mapping $D_{\delta} : I^X \times I \rightarrow I^X$ defined as follows: $\delta C_r(\mu, t)$ or $D_r(\mu, t) = \bigvee \{x \in P(X) : x, i\}$ is a δ-cluster point of μ.

Definition 1.4 [17] Let (X, τ) be a sfts. For $\mu, \nu \in I^X$ and $t \in I_0$, μ is called an

(i) t-fuzzy δ-semiopen (resp. t-fuzzy δ-semiclosed) set if $\mu \leq C_r(\delta I_r(\mu, t), t)$,
(ii) t-fuzzy δ-preopen (resp. t-fuzzy δ-preclosed) set if $\mu \leq C_r(\delta I_r(\mu, t), t)$,
(iii) t-fuzzy μ-open (resp. t-fuzzy μ-closed) set if $\mu \leq I_r(C_r(\delta I_r(\mu, t), t), t)$.
(resp. \(C_r(I_r(\delta C_r(\mu, t), t), t) \leq \mu \)).

(iv) \(t \)-fuzzy \(e \)-open (resp. \(t \)-fuzzy \(e \)-closed) set if \(\mu \leq C_r(\delta I_r(\mu, t), t) \vee I_r(\delta C_r(\mu, t), t) \)
(resp. \(C_r(\delta I_r(\mu, t), t) \wedge I_r(\delta C_r(\mu, t), t) \leq \mu \)).

(v) \(t \)-fuzzy \(e \)-open (resp. \(t \)-fuzzy \(e \)-closed) set if \(\mu \leq C_r(I_r(\delta C_r(\mu, t), t), t) \)
(resp. \(I_r(C_r(\delta I_r(\mu, t), t), t) \leq \mu \)).

(v) \(t \)-fuzzy semiopen (resp. \(t \)-fuzzy semi-closed) set if \(\mu \leq C_r(I_r(\delta C_r(\mu, t), t), t) \)
(resp. \(I_r(C_r(\delta I_r(\mu, t), t), t) \leq \mu \)).

Definition 1.5 \(^{[37]}\)

(i) \(t \)-fuzzy \(\theta \)-interior (resp. \(t \)-fuzzy \(\theta \)-semi-interior and \(t \)-fuzzy \(\theta \)-pre-interior) of a subset \(\mu \) in a sfts \((X, \tau)\), \(\forall t \in I_0 \), denoted by \(\theta I_r(\mu, t) \) (resp. \(\theta sI_r(\mu, t) \) and \(\theta pI_r(\mu, t) \)) defined as \(\theta I_r(\mu, t) = \{ (v) : \mu \geq v, \tau(1-v) \leq t \}; \theta sI_r(\mu, t) = \{ sI_r(\mu) : \mu \geq v, v \text{ is r-fsc} \}; \theta pI_r(\mu, t) = \{ pI_r(\mu) : \mu \geq v, v \text{ is r-fsc} \}. \)

(ii) \(t \)-fuzzy \(\theta \)-closure (resp. \(t \)-fuzzy \(\theta \)-semi-closure and \(t \)-fuzzy \(\theta \)-pre-closure) of a subset \(\mu \) in a sfts \((X, \tau)\), \(\forall t \in I_0 \), denoted by \(\theta C_r(\mu, t) \) (resp. \(\theta sC_r(\mu, t) \) and \(\theta pC_r(\mu, t) \)) defined as \(\theta C_r(\mu, t) = \{ C_r(\nu) : \mu \leq v, \tau(v) \geq t \}; \theta sC_r(\mu, t) = \{ sC_r(\nu) : \mu \leq v, v \text{ is r-fsc} \}; \theta pC_r(\mu, t) = \{ pC_r(\nu) : \mu \leq v, v \text{ is r-fsc} \}. \)

Definition 1.6 \(^{[37]}\) Let \((X, \tau)\) be a sfts. For \(\mu, \nu \in I^X \) and \(t \in I_0 \), \(\mu \) is called an

(i) \(t \)-fuzzy \(\theta \)-open (resp. \(t \)-fuzzy \(\theta \)-closed) set if \(\mu = \theta I_r(\mu, t) \) (resp. \(\mu = \theta C_r(\mu, t) \)).

(ii) \(t \)-fuzzy \(\theta \)-semiopen (resp. \(t \)-fuzzy \(\theta \)-semiclosed) set if \(\mu \leq C_r(\theta I_r(\mu, t), t) \) (resp. \(I_r(\theta C_r(\mu, t), t) \leq \mu \)).

(iii) \(t \)-fuzzy \(\theta \)-preopen (resp. \(t \)-fuzzy \(\theta \)-preclosed) set if \(\mu \leq C_r(\theta C_r(\mu, t), t) \) (resp. \(C_r(\theta I_r(\mu, t), t) \leq \mu \)).

The family of all \(t \)-fuzzy \(\theta \)-open (resp. \(t \)-fuzzy \(\theta \)-closed), \(t \)-fuzzy \(\theta \)-semiopen, (resp. \(t \)-fuzzy \(\theta \)-semiclosed), \(t \)-fuzzy \(\theta \)-preopen (resp. \(t \)-fuzzy \(\theta \)-preclosed) sets will be denoted by \(t \)-f\(\theta \)o (resp. \(t \)-f\(\theta \)c), \(t \)-f\(\theta \)s (resp. \(t \)-f\(\theta \)sc), \(t \)-f\(\theta \)p (resp. \(t \)-f\(\theta \)pc) sets.

Lemma 1.2 \(^{[37]}\) Let \(\mu, \nu \in I^X \) and \(t \in I_0 \) in a sfts \((X, \tau)\), then

(i) \(\mu \) is \(t \)-fuzzy \(\theta \)-open iff \(\mu = \theta I_r(\mu, t) \).

(ii) If \(\mu \leq \nu \), then \(\theta I_r(\mu, t) \leq \nu \).

(iii) \(\theta I_r(\theta I_r(\mu, t)) \leq \theta I_r(\mu, t) \).

(iv) For any subset \(\mu \) of \(X \), \(\mu \leq C_r(\mu, t) \leq \delta C_r(\mu, t) \leq \theta C_r(\mu, t) \) (resp. \(\delta I_r(\mu, t) \leq \delta I_r(\mu, t) \leq I_r(\mu, t) \leq \mu \)).

(v) \(\bar{\delta} - \theta I_r(\mu, t) = \theta C_r(\bar{\delta} - \mu, t) \).

(vi) \(\bar{\delta} - \theta C_r(\mu, t) = \theta I_r(\bar{\delta} - \mu, t) \).

(vii) \(\theta I_r(\mu, t) \vee \theta I_r(\nu, t) = \theta I_r(\mu, t) \wedge \theta I_r(\nu, t) \) and \(\theta I_r(\mu, t) \vee \theta I_r(\nu, t) < \theta I_r(\mu \vee \nu, t) \).
(viii) $\theta C_r(\mu \land v, t) = \theta C_r(\mu, t) \land \theta C_r(v, t)$ and $\theta C_r(\mu \lor v, t) = \theta C_r(\mu, t) \lor \theta C_r(v, t)$.

Proposition 1.1 [37] Let $\mu \in I^X$ and $t \in I_0$ in a sfts (X, τ), then

(i) $\theta sC_r(\mu, t) = \mu \lor I_r(\theta C_r(\mu, t))$ and $\theta sI_r(\mu, t) = \mu \land C_r(\theta I_r(\mu, t), t)$.

(ii) $\delta pC_r(\mu, t) = \mu \lor C_r(\delta I_r(\mu, t))$ and $\delta pI_r(\mu, t) = \mu \land I_r(\delta C_r(\mu, t), t)$.

(iii) $I_r(\delta I_r(\mu, t)) = \delta C_r(\bar{1} - \mu, t)$ and $I_r(\bar{1} - \mu, t) = \bar{1} - \delta C_r(\mu, t)$

Lemma 1.3 [37] Let $v \in I^X$ and $t \in I_0$ in a sfts (X, τ), then

(i) $\delta pC_r(\mu, v, t) = v \lor C_r(\delta I_r(v, t), t)$ and $\delta pI_r(\mu, v, t) = v \land I_r(\delta C_r(v, t), t)$.

(ii) $\delta pC_r(\mu, v, t) = \delta pI_r(\mu, v, t) = \delta pI_r(\delta pI_r(\mu, v, t), t) \lor C_r(\delta I_r(v, t), t)$.

(iii) $\delta pI_r(\delta pC_r(\mu, v, t), t) = \delta pI_r(\mu, v, t) \land I_r(\delta C_r(v, t), t)$.

(iv) $\delta sI_r(\mu, v, t) = v \lor C_r(\delta I_r(v, t), t)$ and $\delta sC_r(\mu, v, t) = v \land I_r(\delta C_r(v, t), t)$.

Lemma 1.4 [37] Let $\nu \in I^X$ and $t \in I_0$ in a sfts (X, τ), then

(i) $C_r(\delta I_r(v, t), t) = \delta C_r(\delta I_r(v, t), t)$.

(ii) $I_r(\delta C_r(v, t), t) = \delta I_r(\delta C_r(v, t), t)$.

Definition 1.7 [37] A subset μ in a sfts (X, τ) is called a t-fuzzy locally closed set $\forall t \in I_0$, if $\mu = v \land \alpha$, where $\tau(v) \geq t$, α is t-fuzzy closed in X.

Definition 1.8 [37] Let (X, τ) be a sfts. For $\mu \in I^X$ and $t \in I_0$, then A sfts (X, τ) is t-fuzzy extremely disconnected (briefly, t-FED) if the t-fuzzy closure of every t-fuzzy open set of X is t-fuzzy open.

Definition 1.9 [37] A subset $\mu \in I^X$ and $t \in I_0$ in a sfts (X, τ) is called an t-fuzzy open

(i) M-open set if $\mu \leq C_r(\theta I_r(\mu, t), t) \land I_r(\delta C_r(\mu, t), t)$.

(ii) M-closed set if $\mu \geq I_r(\theta C_r(\mu, t), t) \land C_r(\delta I_r(\mu, t), t)$.

Definition 1.10 [37] t-fuzzy M-interior (resp. t-fuzzy M-closure) of μ in a sfts (X, τ), denote by $MI_r(\mu, t)$ (resp. $MC_r(\mu, t)$) defined as $MI_r(\mu, t) = \{v \in I^X : \mu \geq v, v \in \theta M \}$, $MC_r(\mu, t) = \{v \in I^X : \mu \leq v, v \in \delta M \}$.

Proposition 1.2 [37] Let (X, τ) be a fuzzy topological space. $\lambda \in I^X$ and $r \in I_0$, then

(i) Every θ-semiopen set is δ-preopen.

(ii) Every θ-semiopen set is δ-open.

Proposition 1.3 [37] If λ is an t-fuzzy M-open subset of a sfts (X, τ) and $\theta I_r(\lambda, t) = 0$, then λ is t-fuzzy δ-preopen.
Theorem 1.3 [37] Let \((X, \tau)\) be a fts. Let \(\lambda \in I^X\) and \(\tau \in I_o\).

(i) \(\lambda\) is \(t-fM\) o iff \(\lambda = MI_{\tau}(\lambda, \tau)\).

(ii) \(\lambda\) is \(t-fM\) c iff \(\lambda = MC_{\tau}(\lambda, \tau)\).

Theorem 1.4 [37] Let \((X, \tau)\) be a fts. For \(\lambda \in I^X\) and \(\tau \in I_o\) we have

(i) \(MI_{\tau}(1-\lambda, \tau) = 1 - (MC_{\tau}(\lambda, \tau))\).

(ii) \(MC_{\tau}(1-\lambda, \tau) = 1 - (MI_{\tau}(\lambda, \tau))\).

Theorem 1.5 [37] Let \((X, \tau)\) be a fts. Let \(\lambda \in I^X\) and \(\tau \in I_o\), the following statements hold:

(i) \(MC_{\tau}(0, \tau) = 0\) and \(MI_{\tau}(1, \tau) = 1\).

(ii) \(I_{\tau}(\lambda, \tau) \leq MI_{\tau}(\lambda, \tau) \leq \lambda \leq MC_{\tau}(\lambda, \tau) \leq C_{\tau}(\lambda, \tau)\).

(iii) \(\lambda \leq \mu \Rightarrow MI_{\tau}(\lambda, \tau) \leq MI_{\tau}(\mu, \tau)\) and \(MC_{\tau}(\lambda, \tau) \leq MC_{\tau}(\mu, \tau)\).

(iv) \(MC_{\tau}(MC_{\tau}(\lambda, \tau), \tau) = MC_{\tau}(\lambda, \tau)\) and \(MI_{\tau}(MC_{\tau}(\lambda, \tau), \tau) = MI_{\tau}(\lambda, \tau)\).

(v) \(MC_{\tau}(\lambda, \tau) \vee MC_{\tau}(\mu, \tau) < MC_{\tau}(\lambda \vee \mu, \tau)\) and \(MI_{\tau}(\lambda, \tau) \vee MI_{\tau}(\mu, \tau) < MI_{\tau}(\lambda \vee \mu, \tau)\).

(vi) \(MC_{\tau}(\lambda \wedge \mu, \tau) < MC_{\tau}(\lambda, \tau) \wedge MC_{\tau}(\mu, \tau)\) and \(MI_{\tau}(\lambda \wedge \mu, \tau) < MI_{\tau}(\lambda, \tau) \wedge MI_{\tau}(\mu, \tau)\).

Theorem 1.6 [37] Let \((X, \tau)\) be a fts. For \(\lambda, \mu \in I^X\) and \(\tau \in I_o\),

(i) \(\lambda\) is \(t-fM\) o iff \(1-\lambda\) is \(t-fM\) c.

(ii) If \(\tau(\lambda) \geq \tau\), then \(\lambda\) is \(t-fM\) o set.

(iii) \(I_{\tau}(\lambda, \tau)\) is an \(t-fM\) o set.

(iv) \(C_{\tau}(\lambda, \tau)\) is an \(t-fM\) c set.

Definition 1.11 Let \((X, \tau_1)\) and \((X, \tau_2)\) be fts's and \(f : (X, \tau_1) \rightarrow (Y, \tau_2)\) a mapping.

(i) \(f\) is called fuzzy continuous (briefly, f-cts) [25] if \(\tau_2(\mu) \leq \tau_1(f(\mu))\) for each \(\mu \in I^Y\).

(ii) \(f\) is called fuzzy semicontinuous (briefly, fs-cts) [25] if \(f^{-1}(\mu)\) is r-fso for each \(\mu \in I^X, \tau \in I_o\) with \(\tau_2(\mu) \geq \tau\).

(iii) \(f\) is called fuzzy precontinuous (briefly, fp-cts) [25] if \(f^{-1}(\mu)\) is r-fpo for each \(\mu \in I^X, \tau \in I_o\) with \(\tau_2(\mu) \geq \tau\).

Definition 1.12 Let \((X, \tau_1)\) and \((X, \tau_2)\) be fts's and \(f : (X, \tau_1) \rightarrow (Y, \tau_2)\) a mapping.

(i) \(f\) is called fuzzy \(\delta\) -seminctinuous (briefly, f\(\delta\) s-cts) [33] if \(f^{-1}(\mu)\) is r-f\(\delta\)s\(\delta\) o for each \(\mu \in I^X, \tau \in I_o\) with \(\tau_2(\mu) \geq \tau\).

(ii) \(f\) is called fuzzy \(\delta\) -precontinuous (briefly, f\(\delta\) p-cts) [33] if \(f^{-1}(\mu)\) is r-f\(\delta\)p (resp. r-fs\(\delta\)p) for each \(\mu \in I^X, \tau \in I_o\) with \(\tau_2(\mu) \geq \tau\). \(f\) is called fuzzy \(\alpha\) -continuous (or) fuzzy semi \(\delta\) -precontinuous Error! Reference source not found. if \(f^{-1}(\mu)\) is r-fao for each \(\mu \in I^X, \tau \in I_o\) with \(\tau_2(\mu) \geq \tau\).

(iii) \(f\) is called fuzzy \(e\) -continuous (briefly, fe-cts) [33] if \(f^{-1}(\mu)\) is r-fe for each \(\mu \in I^X, \tau \in I_o\) with \(\tau_2(\mu) \geq \tau\).

(iv) \(f\) is called fuzzy \(e^*\) -continuous (briefly, fe\(^*\)-cts) [33] if \(f^{-1}(\mu)\) is r-fe\(^*\) o for each
\[\mu \in I^X, \tau \in I_0 \text{ with } \tau_2(\mu) \geq \tau. \]

2. Fuzzy M-continuous Mappings

Definition 2.1 Let \((X, \tau_1)\) and \((X, \tau_2)\) be sfts's and \(f : (X, \tau_1) \rightarrow (Y, \tau_2)\) be a mapping. Then \(f\) is called

\(\text{(i)}\) fuzzy \(M\)-continuous (briefly, \(fM\)-cts) if \(f^{-1}(\mu)\) is \(\tau_2\)-fo for each \(\mu \in I^X, \tau \in I_0\) with \(\tau_2(\mu) \geq \tau\).

\(\text{(ii)}\) fuzzy \(\theta\)-continuous (briefly, \(f\theta\)-cts) if \(f^{-1}(\mu)\) is \(\tau_2\)-fo for each \(\mu \in I^X, \tau \in I_0\) with \(\tau_2(\mu) \geq \tau\).

\(\text{(iii)}\) fuzzy \(\theta\)-semicontinuous (briefly, \(f\theta\)s-cts) if \(f^{-1}(\mu)\) is \(\tau_2\)-fo for each \(\mu \in I^X, \tau \in I_0\) with \(\tau_2(\mu) \geq \tau\).

Remark 2.1 The following implications are true for \(\tau \in I_0\):

From the above definitions, it is clear that every \(f \delta \) p-cts map is \(fM\) -cts map and every fuzzy \(\theta s\)-cts map is \(fM\) -cts map. Also, it is clear that every \(fM\) -cts map is \(f e\)-cts map and \(f e^*\) -cts map. Also, every \(f \theta\)-cts map, \(f \delta\) -cts map, \(f a\) -cts map is \(fM\) -cts map. The converses need not be true in general, it is shown in the succeeding examples.

Example 2.1 Consider the identity mapping \(f : (X, \tau) \rightarrow (Y, \eta)\), where \(X = Y = \{x, y, z\}\), \(\lambda\) and \(\mu\) defined as follows
\[\lambda(x) = 0.4, \quad \lambda(y) = 0.5, \quad \lambda(z) = 0.2, \quad \mu(x) = 0.5, \quad \mu(y) = 0.4, \quad \mu(z) = 0.7. \]
Then \(\tau, \eta : I^X \rightarrow I\) defined as
\[\tau(\lambda) = \{1, 0\} \text{ if } \lambda = 0, \text{ otherwise}, \eta(\mu) = \{1, 0\} \text{ if } \mu = 0, \text{ otherwise}, \]
are fuzzy topologies on \(X\) and \(Y\). Take \(\tau = \frac{1}{2}\) and \(\eta = \frac{1}{2}\). For any \(\frac{1}{2}\)-fuzzy open set \(\mu\) in \((Y, \eta)\), \(f^{-1}(\mu) = \mu \) is \(\frac{1}{2}\)-fo in \((X, \tau)\). Then \(f\) is \(f e^*\) -cts, but \(f\) is not \(fM\) -cts, since \(f^{-1}(\mu)\) is not \(\frac{1}{2}\) -fo in \((X, \tau)\).

Example 2.2 Let \(\lambda\) and \(\mu\) be fuzzy subsets of \(X = Y = \{x, y, z\}\) defined as follows
\[\lambda(x) = 0.5, \quad \lambda(y) = 0.3, \quad \lambda(z) = 0.2; \]
\[\mu(x) = 0.5, \quad \mu(y) = 0.4, \quad \mu(z) = 0.4. \]
Then \(\tau, \eta : I^X \rightarrow I\) defined as
\[\tau(\lambda) = \{1, \]
\[\eta(\mu) = \begin{cases} 1, & \text{if } \mu = 0, \\ \frac{1}{2}, & \text{otherwise} \end{cases} \]

are fuzzy topologies on \(X \) and \(Y \). Consider the identity mapping \(f : (X, \tau) \to (Y, \eta) \). Take \(\tau = \frac{1}{2} \). For any \(\frac{1}{2} \)-fo set \(\mu \) in \((Y, \eta)\), \(f^{-1}(\mu) = \mu \) is \(\frac{1}{2} \)-feo set in \((X, \tau)\). Then \(f \) is fe-cts, but \(f \) is not f \(M \)-cts, since \(f^{-1}(\mu) \) is not \(\frac{1}{2} \)-f \(M \) o in \((X, \tau)\).

Example 2.3 Let \(\lambda \) and \(\mu \) be fuzzy subsets of \(X = Y = \{x, y, z\} \) defined as follows

\[
\lambda(x) = 0.1, \quad \lambda(y) = 0.1, \quad \lambda(z) = 0.1; \\
\mu(x) = 0.9, \quad \mu(y) = 0.9, \quad \mu(z) = 0.9.
\]

Then \(\tau, \eta : I^X \to I \) defined as

\[
\tau(\lambda) = \begin{cases} 1, \\ \frac{1}{2}, & \text{if } \lambda = 0, \\ 0, & \text{otherwise} \end{cases}
\]

are fuzzy topologies on \(X \) and \(Y \). Consider the identity mapping \(f : (X, \tau) \to (Y, \eta) \). Take \(\tau = \frac{1}{2} \). For any \(\frac{1}{2} \)-fuzzy open set \(\mu \) in \((Y, \eta)\), \(f^{-1}(\mu) = \mu \) is \(\frac{1}{2} \)-f \(M \) o set in \((X, \tau)\). Then \(f \) is f \(M \)-cts, but \(f \) is not f \(\delta \) p-cts, f \(\delta \) -cts and f \(a \) -cts, since \(f^{-1}(\mu) \) is not \(\frac{1}{2} \)-f \(\delta \) po, \(\frac{1}{2} \)-f \(\delta \) o and \(\frac{1}{2} \)-f \(a \) o sets.

Example 2.4 Let \(\lambda \) and \(\mu \) be fuzzy subsets of \(X = Y = \{x, y, z\} \) defined as follows

\[
\lambda(x) = 0.1, \quad \lambda(y) = 0.1, \quad \lambda(z) = 0.1; \\
\mu(x) = 0.9, \quad \mu(y) = 0.9, \quad \mu(z) = 0.9.
\]

Then \(\tau, \eta : I^X \to I \) defined as

\[
\tau(\lambda) = \begin{cases} 1, \\ \frac{1}{2}, & \text{if } \lambda = 0, \\ 0, & \text{otherwise} \end{cases}
\]

are fuzzy topologies on \(X \) and \(Y \). Consider the identity mapping \(f : (X, \tau) \to (Y, \eta) \). Take \(\tau = \frac{1}{2} \). For any \(\frac{1}{2} \)-fo set \(\mu \) in \((Y, \eta)\), \(f^{-1}(\mu) = \mu \) is \(\frac{1}{2} \)-f \(\delta \) so set in \((X, \tau)\). Then \(f f \) is fuzzy \(\delta \) s-cts, but \(f \) is not f \(\delta \) -cts, since \(f^{-1}(\mu) \) is not \(\frac{1}{2} \)-f \(\delta \) o set.

Example 2.5 Let \(\lambda, \mu, \omega \) be fuzzy subsets of \(X = Y = \{x, y, z\} \) defined as follows

\[
\lambda(x) = 0.3, \quad \lambda(y) = 0.4, \quad \lambda(z) = 0.5; \\
\mu(x) = 0.6, \quad \mu(y) = 0.9, \quad \mu(z) = 0.5; \\
\omega(x) = 0.7, \quad \omega(y) = 1, \quad \omega(z) = 0.5.
\]

Then \(\tau, \eta : I^X \to I \) defined as
\[
\tau(\lambda) = \{1, \frac{1}{2}\},
\]

= 0 or \(\lambda - \frac{1}{2} \), if \(\lambda = 0\), otherwise, \(\eta(\mu) = \{1, \frac{1}{2}\}, \) = 0 or \(\lambda - \frac{1}{2} \), if \(\lambda = 0\), otherwise, are fuzzy topologies on \(X \) and \(Y \). Consider the identity mapping \(f : (X, \tau) \to (Y, \eta) \). Take \(\iota = \frac{1}{2} \).

For any \(\frac{1}{2} \)-\(f \)-open set \(\omega \) in \((Y, \eta) \), \(f^{-1}(\omega) = \omega \) is \(\frac{1}{2} \)-\(f \)-open set in \((X, \tau) \). Then \(f \) is \(f \)-\(M \)-cts, but \(f \) is neither \(f \theta \)-s-cts nor \(f \delta \)-s-cts, since \(f^{-1}(\omega) \) is neither \(\frac{1}{2} \)-\(f \theta \)-so nor \(\frac{1}{2} \)-\(f \delta \)-so set.

Example 2.6 Let \(\lambda \), \(\mu \) and \(\omega \) be fuzzy subsets of \(X = Y = \{x, y, z\} \) defined as follows
\[
\begin{align*}
\lambda(x) &= 0.3, \quad \lambda(y) = 0.4, \quad \lambda(z) = 0.5; \\
\mu(x) &= 0.6, \quad \mu(y) = 0.5, \quad \mu(z) = 0.5; \\
\omega(x) &= 0.7, \quad \omega(y) = 0.6, \quad \omega(z) = 0.5.
\end{align*}
\]

Then \(\tau, \eta : I^X \to I \) defined as
\[
\tau(\lambda) = \{1, \frac{1}{2}\},
\]

= 0 or \(\lambda - \frac{1}{2} \), if \(\lambda = 0\), otherwise, \(\eta(\mu) = \{1, \frac{1}{2}\}, \) = 0 or \(\lambda - \frac{1}{2} \), if \(\lambda = 0\), otherwise, are fuzzy topologies on \(X \) and \(Y \). Consider the identity mapping \(f : (X, \tau) \to (Y, \eta) \). Take \(\iota = \frac{1}{2} \).

For any \(\frac{1}{2} \)-\(f \)-open set \(\omega \) in \((Y, \eta) \), \(f^{-1}(\omega) = \omega \) is \(\frac{1}{2} \)-\(f \)-open set in \((X, \tau) \). Then \(f \) is \(f \)-\(M \)-cts and \(f \theta \)-s-cts, but \(f \) is not \(f \theta \)-cts, since \(f^{-1}(\omega) \) is not \(\frac{1}{2} \)-\(f \theta \)-so set.

Example 2.7 Let \(\lambda \), \(\mu \) and \(\omega \) be fuzzy subsets of \(X = Y = \{x, y, z\} \) defined as follows
\[
\begin{align*}
\lambda(x) &= 0.3, \quad \lambda(y) = 0.5, \quad \lambda(z) = 0.5; \\
\mu(x) &= 0.5, \quad \mu(y) = 0.5, \quad \mu(z) = 0.5; \\
\omega(x) &= 0.7, \quad \omega(y) = 0.6, \quad \omega(z) = 0.5.
\end{align*}
\]

Then \(\tau, \eta : I^X \to I \) defined as
\[
\tau(\lambda) = \{1, \frac{1}{2}\},
\]

= 0 or \(\lambda - \frac{1}{2} \), if \(\lambda = 0\), otherwise, \(\eta(\mu) = \{1, \frac{1}{2}\}, \) = 0 or \(\lambda - \frac{1}{2} \), if \(\lambda = 0\), otherwise, are fuzzy topologies on \(X \) and \(Y \). Consider the identity mapping \(f : (X, \tau) \to (Y, \eta) \). Take \(\iota = \frac{1}{2} \).

For any \(\frac{1}{2} \)-\(f \)-open set \(\lambda \) in \((Y, \eta) \), \(f^{-1}(\lambda) = \lambda \) is \(\frac{1}{2} \)-\(f \)-open in \((X, \tau) \). Then \(f \) is \(f \)-cts, but \(f \) is not \(f \theta \)-cts and \(f \delta \)-cts, since \(f^{-1}(\lambda) \) is neither \(\frac{1}{2} \)-\(f \theta \)-so nor \(\frac{1}{2} \)-\(f \delta \)-so set.

Theorem 2.1 Let \((X, \tau_1) \) and \((Y, \tau_2) \) be \(\theta \)-s-cts and \(f : X \to Y \) be a mapping. Then the following statements are equivalent:

(i) \(f \) is \(f \)-\(M \)-cts mapping.

(ii) \(f^{-1}(\mu) \) is \(f \)-\(M \)-cts in \(X \) for each \(\mu \in I^Y \), \(\iota \in I_0 \) with \(\tau_2(1-\mu) \geq \iota \).
(iii) \(f(MC_2(\lambda, t)) \leq C_2(f(\lambda), t), \quad \forall \lambda \in I^X \) and \(r \in I_0 \).
(iv) \(MC_1(f^{-1}(\mu), t) \leq f^{-1}(C_2(\mu, t)), \forall \mu \in I^Y \) and \(r \in I_0 \).
(v) \(I_1(\theta C_1(f^{-1}(\mu), t), t) \land C_1(\delta I_1(f^{-1}(\mu), t), t) \leq f^{-1}(C_2(\mu, t)), \quad \forall \mu \in I^Y \) and \(r \in I_0 \).
(vi) \(f^{-1}(I_2(\mu, t)) \leq MI_1(f^{-1}(\mu), t), \) for each \(\mu \in I^Y \) and \(r \in I_0 \).

Proof. (i) \(\Rightarrow \) (ii): Let \(\mu \in I^Y, t \in I_0 \) with \(\tau_2(\bar{1} - \mu) \geq t \). Since \(f \) is \(fM \) -cts mapping, \(f^{-1}(\bar{1} - \mu) \) is an \(\iota \)-f-M o set of \(X \). But \(f^{-1}(\bar{1} - \mu) = \bar{1} - f^{-1}(\mu) \). Therefore \(f^{-1}(\mu) \) is an \(\iota \)-f-M c set of \(X \).
(ii) \(\Rightarrow \) (iii): Let \(\lambda \in I^X, \) \(r \in I_0 \), since \(\tau_2(\bar{1} - C_2(f(\lambda), t)) \geq t \). Then by (ii), \(f^{-1}(C_2(f(\lambda), t)) \) is an \(\iota \)-f-M c set of \(X \).

Since \(\lambda \leq f^{-1}(f(\lambda)) \leq f^{-1}(C_2(f(\lambda), t)), \)
we have \(MC_1(\lambda, t) \leq f^{-1}(C_2(f(\lambda), t)) \). Hence \(f(MC_1(\lambda, t)) \leq C_2(f(\lambda), t) \).

(iii) \(\Rightarrow \) (iv): For all \(\mu \in I^Y, t \in I_0 \), let \(\lambda = f^{-1}(\mu) \). By (iii), we have

\[
 f(MC_1(f^{-1}(\mu), t)) \leq C_2(f(f^{-1}(\mu), t)) \leq C_2(\mu, t).
\]

It implies \(MC_1(f^{-1}(\mu), t) \leq f^{-1}(C_2(\mu, t)) \).

(iv) \(\Rightarrow \) (i): Let \(\mu \in I^Y, t \in I_0 \) with \(\tau_2(\mu) \geq t \). By (iv),

\[
 MC_1(f^{-1}(\bar{1} - \mu), t) \leq f^{-1}(C_2(\bar{1} - \mu, t)) = f^{-1}(\bar{1} - \mu).
\]

By Theorem 1.4, we have \(f^{-1}(\bar{1} - \mu) \geq \bar{1} - (MI_1(f^{-1}(\mu), t)) \). Hence \(f^{-1}(\mu) \) is \(\iota \)-f-M o set in \(X \).

(ii) \(\Rightarrow \) (v): For all \(\mu \in I^Y, t \in I_0 \), since \(\tau_2(\bar{1} - C_2(\mu, t)) \geq t \). Then by (ii), we see that \(f^{-1}(C_2(\mu, t)) \) is \(\iota \)-f-M c in \(X \).

Hence

\[
 f^{-1}(C_2(\mu, t)) \geq I_1(\theta C_1(f^{-1}(C_2(\mu, t), t), t) \land C_1(\delta I_1(f^{-1}(C_2(\mu, t), t), t), t) \geq I_1(\theta C_1(f^{-1}(\mu), t), t) \land C_1(\delta I_1(f^{-1}(\mu), t), t).\]

(v) \(\Rightarrow \) (ii): For all \(\mu \in I^Y, r \in I_0 \), with \(\tau_2(\bar{1} - \mu) \geq t \). Then by (v),

\[
 I_1(\theta C_1(f^{-1}(\mu), t), t) \land C_1(\delta I_1(f^{-1}(\mu), t), t) \leq f^{-1}(C_2(\mu, t)) = f^{-1}(\mu).\]

Hence \(f^{-1}(\mu) \) is \(\iota \)-f-M c in \(X \).

(iv) \(\Rightarrow \) (vi): It is easily proved from Theorem 1.4.

(vi) \(\Rightarrow \) (i): Let \(\mu \) be \(\iota \)-fuzzy open set of \(Y \). Then \(\mu = I_1(\mu, t) \).

By (vi), \(f^{-1}(\mu) \leq MI_1(f^{-1}(\mu), t). \)

On the other hand, by Theorem (1.5),

\[
 f^{-1}(\mu) \geq MI_1(f^{-1}(\mu), t).\]

Thus, \(f^{-1}(\mu) = MI_1(f^{-1}(\mu), t) \), that is, \(f^{-1}(\mu) \) is \(\iota \)-f-M o set.

Theorem 2.2 For a map \(f : (X, \tau_1) \rightarrow (Y, \tau_2) \) the succeeding statements are equivalent:

(i) \(f \) is \(fM \) -cts mapping.

(ii) \(f^{-1}(\mu) \) is \(\iota \)-f-M c in \(X \) for each \(\lambda \in I^X, t \in I_0 \) with \(\tau_2(\bar{1} - \mu) \geq t \).

(iii) \(I_1(\theta C_1(f^{-1}(\mu), t), t) \land C_1(\delta I_1(f^{-1}(\mu), t), t) \leq f^{-1}(C_2(\mu, t)), \quad \forall \mu \in I^Y \) and \(r \in I_0 \).
(iv) \(f^{-1}(I_2(r, t)) \leq C_1(\theta I_1(f^{-1}(\mu), t)) \vee I_1(\delta C_1(f^{-1}(\mu), t), t) \) for each \(\mu \in I^y \) and \(r \in I_0 \).

Proof. (i) \(\Rightarrow \) (ii): Let \(\mu \in I^y, t \in I_0 \) with \(\tau_2(1-\mu) \geq t \). Since \(f \) is fuzzy \(M \)-continuous mapping, \(f^{-1}(1-\mu) \) is an \(\iota\text{-}fm \) o set of \(X \). But \(f^{-1}(1-\mu) = 1 - f^{-1}(\mu) \). Therefore \(f^{-1}(\mu) \) is an \(\iota\text{-}fm \) c set of \(X \).

(ii) \(\Rightarrow \) (iii): For all \(\mu \in I^y, t \in I_0 \), since \(\tau_2(1-C_2(\mu, t)) \geq t \). Then by (ii), we see that \(f^{-1}(C_2(\mu, t)) \) is \(\iota\text{-}fm \) c in \(X \). Hence

\[
f^{-1}(C_2(\mu, t)) \geq I_1(\theta C_1(f^{-1}(C_2(\mu, t)), t), t) \land C_1(\delta I_1(f^{-1}(C_2(\mu, t)), t), t)
\]

\[
\geq I_1(\theta C_1(f^{-1}(\mu), t), t) \land C_1(\delta I_1(f^{-1}(\mu), t), t).
\]

(iii) \(\Rightarrow \) (iv): For all \(\mu \in I^y, r \in I_0 \), with \(\tau_2(1-\mu) \geq t \). Then by (iii),

\[
I_1(\theta C_1(f^{-1}(\mu), t), t) \land C_1(\delta I_1(f^{-1}(\mu), t), t) \leq f^{-1}(C_2(\mu, t)).
\]

Thus (iv) is proved.

(iv) \(\Rightarrow \) (i): Let \(\mu \) be \(\iota\text{-}fuzzy \) open set of \(Y \). Then \(\mu = I_1(\mu, t) \). By (iv),

\[
f^{-1}(\mu) \leq C_1(\theta I_1(f^{-1}(\mu), t)) \land I_1(\delta C_1(f^{-1}(\mu), t), t).
\]

That is, \(f^{-1}(\mu) \) is \(\iota\text{-}fm \) o set.

Definition 2.2 A fuzzy set \(\lambda \) in a fts \((X, \tau)\) is called \(\iota\text{-}fuzzy \) dense if there exists no \(\iota\text{-}fc \) set \(\mu \) in \((X, \tau)\) such that \(\lambda < \mu < 1 \).

Definition 2.3 A fuzzy set \(\lambda \) in a fts \((X, \tau)\) is called \(\iota\text{-}fuzzy \) nowhere dense if there exists no non-zero \(\iota\text{-}fo \) set \(\mu \) in \((X, \tau)\) such that \(\mu < C_1(\lambda, t) \). That is, \(I_1(C_1(\lambda, t), t) = 0 \), in \((X, \tau)\).

Lemma 2.1 For a sfts \((X, \tau)\), every \(\iota\text{-}fuzzy \) dense set is \(\iota\text{-}fo \).

Proposition 2.1 Let \((X, \tau_1)\) and \((Y, \tau_2)\) be fts's and \(f : X \to Y \) be a mapping. An \(\delta\text{-}cts \) mapping \(f \) is \(\delta\text{-}p\text{-}cts \) if for any fuzzy subset \(\lambda \) of \(X \) is \(\iota\text{-}fuzzy \) nowhere dense.

Proof. Let \(\mu \in \tau_2 \). Since \(f \) is an \(\delta\text{-}cts \) mapping, then \(f^{-1}(\mu) \) is an \(\iota\text{-}fm \) o set in \((X, \tau_1)\). Put \(f^{-1}(\mu) = \lambda \) is \(\iota\text{-}fm \) o set in \(X \). Hence
\[\lambda \leq C_\gamma (\theta I_\gamma (\lambda, t), t) \vee_{\tau_2} I_\gamma (\Delta C_\gamma (\lambda, t), t). \]

But \(\theta I_\gamma (\lambda, t) \leq I_\gamma (\lambda, t) \leq C_\gamma (\lambda, t) \), then \(\theta I_\gamma (\lambda, t) \leq I_\gamma (C_\gamma (\lambda, t), t) \). Since \(\lambda \) is \(\tau \)-fuzzy nowhere dense and Lemma Error! Reference source not found. we have \(\theta I_\gamma (\lambda, t) = 0 \). Therefore \(f \) is \(f \delta \) p-cts.

Definition 2.4 Let \((X, \tau_1) \) and \((Y, \tau_2) \) be sfts's and \(f : (X, \tau_1) \rightarrow (Y, \tau_2) \) be a mapping. Then \(f \) is called fuzzy \(\theta \)-open map if the image of every \(\tau \)-fuzzy open set of \(X, \tau_1 \) is \(\tau \)-fuzzy \(\theta \)-open set in \((Y, \tau_2) \).

Definition 2.5 Let \((X, \tau_1) \) and \((Y, \tau_2) \) be sfts's and \(f : (X, \tau_1) \rightarrow (Y, \tau_2) \) be a mapping. Then \(f \) is called fuzzy \(\theta \)-bicontinuous if \(f \) is fuzzy \(\theta \)-open map and \(\theta \)-continuous map.

Theorem 2.3 Let \((X, \tau_1) \) and \((Y, \tau_2) \) be sfts's and \(f : (X, \tau_1) \rightarrow (Y, \tau_2) \) be a fuzzy \(\theta \)-bicontinuous mapping. Then the inverse image of each \(\tau \)-fM o set in \((Y, \tau_2) \) under \(f \) is \(\tau \)-fM o set in \((X, \tau_1) \).

Proof. Let \(f \) be a fuzzy \(\theta \)-bicontinuous mapping and \(\mu \) be a \(\tau \)-fM o set in \((Y, \tau_2) \). Then
\[
\mu \leq C_{\tau_2} (\theta I_{\tau_2} (\mu, t), t) \vee_{\tau_2} I_{\tau_2} (\Delta C_{\tau_2} (\mu, t), t).
\]

\[
f^{-1}(\mu) \leq f^{-1} (C_{\tau_2} (\theta I_{\tau_2} (\mu, t), t)) \vee_{\tau_2} f^{-1} (I_{\tau_2} (\Delta C_{\tau_2} (\mu, t), t)).
\]

\[
\leq C_{\tau_2} (f^{-1} (\theta I_{\tau_2} (\mu, t), t)) \vee_{\tau_2} f^{-1} (I_{\tau_2} (\Delta C_{\tau_2} (\mu, t), t)).
\]

Since \(f \) is an fuzzy \(\theta \)-bicontinuous mapping, then \(f \) is fuzzy \(\theta \)-open map and \(\theta \)-continuous map. Therefore \(f \) is \(f \theta \) s-cts map and \(f \theta \) p-cts map. Hence
\[
f^{-1}(\mu) \leq C_{\tau_2} (\theta I_{\tau_2} (f^{-1} (\theta I_{\tau_2} (\mu, t), t)), t) \vee_{\tau_2} I_{\tau_2} (\Delta C_{\tau_2} (f^{-1} (I_{\tau_2} (\Delta C_{\tau_2} (\mu, t), t)), t), t).
\]

\[
\leq C_{\tau_2} (\theta I_{\tau_2} (f^{-1} (\mu, t), t)) \vee_{\tau_2} I_{\tau_2} (\Delta C_{\tau_2} (f^{-1} (\mu, t), t), t).
\]

This shows that \(f^{-1}(\mu) \) is \(\tau \)-fM o set in \((X, \tau_1) \).

Remark 2.2 Let \((X, \tau_1) \) and \((Y, \tau_2) \) be sfts's and \(f : (X, \tau_1) \rightarrow (Y, \tau_2) \) be a fuzzy \(\theta \)-bicontinuous mapping. Then the inverse image of each \(\tau \)-fM o set in \((X, \tau_1) \) under \(f \) is \(\tau \)-fM o set in \((Y, \tau_2) \).

Remark 2.3 Let \((X, \tau_1) \) and \((Y, \tau_2) \) be fts's and \(f : X \rightarrow Y \) be a mapping. The composition of two \(f \) M -cts mappings need not be \(f \) M -cts as shown by the following example.

Example 2.8 Let \(\lambda, \omega \) and \(\mu \) be fuzzy subsets of \(X = Y = Z = \{a, b, c\} \) defined as follows:
\[
\lambda(x) = 0.4, \quad \lambda(y) = 0.5, \quad \lambda(z) = 0.2; \\
\omega(x) = 0.7, \quad \omega(y) = \tilde{1}, \quad \omega(z) = 0.5. \\
\mu(x) = 0.5, \quad \mu(y) = 0.4, \quad \mu(z) = 0.7.
\]

Then \(\tau_1, \tau_2 \) and \(\tau_3 : I^X \rightarrow I \) defined as
\[
\tau_1(\lambda) = \{1, \}
\]
= 0 or 1, \(\frac{1}{2} \), if \(\omega = 0 \), otherwise, \(\tau_2(\omega) = \{1, = 0 or 1, \frac{1}{2} \), if \(\mu = 0 \), otherwise, are fuzzy topologies on \(X \), \(Y \) and \(Z \). Consider the identity mapping \(f : (X, \tau_1) \rightarrow (Y, \tau_2) \) and \(g : (Y, \tau_2) \rightarrow (Z, \tau_3) \). Take \(t = \frac{1}{2} \). For any \(\frac{1}{2} \)-fo set \(\omega \) in \((Y, \tau_2) \), \(f^{-1}(\omega) = \omega \) is \(\frac{1}{2} \)-fMo set in \((X, \tau_1) \). Also, for any \(\frac{1}{2} \)-fuzzy open set \(\mu \) in \((Z, \tau_3) \), \(g^{-1}(\mu) = \mu \) is \(\frac{1}{2} \)-fMo in \((Y, \tau_2) \). Thus \(f \) is \(fM \)-cts and \(g \) is \(fM \)-cts. But \(g \circ f \) is not \(fM \)-cts, as \(\mu \) is \(\frac{1}{2} \)-fo set in \((Z, \tau_3) \), \((g \circ f)^{-1}(\mu) = f^{-1}(g^{-1}(\mu)) = \mu \) is not \(\frac{1}{2} \)-fMo in \((X, \tau_1) \).

Example 2.9 Let \((X, \tau_1) \), \((Y, \tau_2) \) and \((Z, \tau_3) \) be sfts's. If \(f : (X, \tau_1) \rightarrow (Y, \tau_2) \) and \(g : (Y, \tau_2) \rightarrow (Z, \tau_3) \) are mappings, then

(i) \(g \circ f \) is \(fM \)-cts mapping if \(f \) is \(fM \)-cts and \(g \) is \(f \)-cts.

(ii) \(g \circ f \) is \(fM \)-cts mapping if \(f \) is fuzzy \(\theta \)-bicontinuous and \(g \) is \(fM \)-cts mapping.

Proof. (i) Let \(\mu \in \tau_1 \). Since \(g \) is \(f \)-cts, then \(g^{-1}(\mu) \) is an \(\frac{1}{2} \)-fo set in \((Y, \tau_2) \). Since \(f \) is \(fM \)-cts, then \(f^{-1}(g^{-1}(\mu)) = (g \circ f)^{-1}(\mu) \) is \(\frac{1}{2} \)-fMo set in \(\tau_1 \). Hence \(g \circ f \) is \(fM \)-cts.

(ii) Let \(\mu \in \tau_3 \). Since \(g \) is \(fM \)-cts, then \(g^{-1}(\mu) \) is an \(\frac{1}{2} \)-fMo set in \((Y, \tau_2) \). Since \(f \) is fuzzy \(\theta \)-bicontinuous, by Theorem Error! Reference source not found., \((g \circ f)^{-1}(\mu) \) is \(\frac{1}{2} \)-fMo set in \(\tau_1 \). Hence \(g \circ f \) is \(fM \)-cts.

Conclusion: In this paper, \(fM \)-cts, \(f \theta \)-cts and \(f \delta s \)-cts in sfts's. Also, some of their fundamental properties are studied. Moreover, we investigate the relationships between \(f \)-cts, \(f \theta s \)-cts, \(f \theta \)-cts, \(f \delta s \)-cts, \(f \delta \)-cts, \(f a \)-cts, \(fM \)-cts, \(f e \)-cts and \(f e^* \)-cts mappings.

References

