Fuzzy *M* -continuity Mappings in ^ Sostak's Fuzzy Topological Spaces

B. Vijayalakshmi1 *, S. Bamini2 ⁺, M. Saraswathi3 [‡] and A. Vadivel4§ ¹Department of Mathematics, Government Arts College, Chidambaram, Tamil Nadu-608-002;

^{2,3}Department of Mathematics, Kandaswamy Kandar's College, P-velur, Tamil Nadu-638 182,
 ³Assistant Professor, Department of Mathematics, Government Arts College (Autonomous), Karur - 639 005,

Abstract

We introduce and investigate some new classes of mappings called fuzzy M -continuous, fuzzy θ -continuous and fuzzy θ -semicontinuous to the fuzzy topological spaces in \hat{S} ostaký sense. Also, some of their fundamental properties are studied. Moreover, we investigate the relationships between fuzzy continuous, fuzzy θ -semicontinuous, fuzzy θ -continuous, fuzzy δ - semicontinuous, fuzzy δ -precontinuous, fuzzy a-continuous, fuzzy M- continuous, fuzzy e-continuous and fuzzy e^* -continuous mappings.

Keywords and phrases: fuzzy continuous, fuzzy θ -semicontinuous, fuzzy θ -continuous, fuzzy δ -semicontinuous, fuzzy δ -precontinuous, fuzzy a-continuous, fuzzy M- continuous, fuzzy e-continuous and fuzzy e^* -continuous mappings. **AMS (2000) subject classification:** 54A40.

AIVIS (2000) Subject classification: 54A40

1.

Introduction

 \hat{S} ostak [30] introduced the fuzzy topology as an extension of Chang's fuzzy topology[4]. It has been developed in many directions [12,13,27]. Weaker forms of fuzzy continuity between fuzzy topological spaces have been considered by many authors [2, 3, 5, 9, 11, 20, 23] using the concepts of fuzzy semi-open sets[2], fuzzy regular open sets[2], fuzzy preopen sets, fuzzy strongly semiopen sets [3], fuzzy γ -open sets[11], fuzzy δ -semiopen sets[1], fuzzy δ -preopen sets[1], fuzzy semi δ -preopen sets [34] and fuzzy e-open sets [29] Ganguly and Saha [10] introduced the notions of fuzzy δ -cluster points in Chang's [4] fuzzy topological spaces. Kim and Park [14] introduced r- δ -cluster points and δ -closure operators in \hat{S} ostak's fuzzy topological spaces.

It is a good extension of the notions of Ganguly and Saha[10]. Park et al. [14] introduced the fuzzy semi-preopen. In 2008, the initiations of e-open sets, e^* -open sets and a-open sets in topological spaces are due to Erdal Ekici[[7],[8]]. Sobana et al. [33] defined ι -fuzzy e-open sets in \hat{S} ostak's fuzzy topological space. Vadivel et al. [36] introduced ι -fuzzy e^* -open sets in \hat{S} ostak's fuzzy topological space. In 1968, Velicko studied θ -open sets [35] and δ -open sets for the purpuse of investigating the characherizations of H-closed topological spaces. semi-open sets [17] were initiated by Levine in 1963. In 1993, Raychaudhuri and Mukherjee defined δ -preopen sets[26]. In 1997, δ -semiopen sets was obtained by Park [19] and θ -semi-open sets were obtained by Caldas in 2008[6]. Shafei introduced fuzzy θ -closed [31] and fuzzy θ -open sets in 2006. Maghrabi et al.[21] introduced the notion of M-open sets in topological spaces in 2011.

In this paper fuzzy M -continuous, fuzzy θ -continuous and fuzzy θ -semicontinuous to the fuzzy topological spaces in \hat{S} ostak's sense are introduced and some of their fundamental properties are studied. Moreover, we investigate the relationships between fuzzy continuous, fuzzy θ -semicontinuous, fuzzy θ -continuous, fuzzy δ - semicontinuous, fuzzy δ -precontinuous, fuzzy a-continuous, fuzzy M - continuous, fuzzy e-continuous and fuzzy e^* -continuous mappings.

1.

Preliminaries

Throughout this article, we denote nonempty sets by X, Y etc., I = [0,1] and $I_0 = (0,1]$. For $\alpha \in I, \overline{\alpha}(x) = \alpha$, $\forall x \in X$. A fuzzy point x_t for $t \in I_0$ is an element of I^X such that $x_t(y) = \begin{cases} t & \text{if y is equal to x} \\ 0 & \text{if y is not equal to x.} \end{cases}$

Let Pt(X) denote the set of all fuzzy points in X. A fuzzy point $x_t \in \mu$ iff $t < \mu(x)$. $\mu \in I^X$ is quasi-coincident with ν , denoted by $\mu q \nu$, if $\exists x \in X$ such that $\mu(x) + \nu(x) > 1.$

If μ is not quasi-coincident with ν , we denoted $\mu \bar{q} \nu$. If A is a subset of X, we define the characteristic function χ_A on X by $\chi_A(x) = \{1 x | A, 0 \text{ if } x | A. All notations and$ definitions will be standard in the fuzzy set theory.

Lemma 1.1 [30] Consider X be a nonempty set and $\mu, \nu \in I^X$. Then

- (i) μqv iff there exists $x_i \in \mu$ such that $x_i qv$.
- (ii) $\mu q v$, then $\mu \wedge v \neq 0$.
- (iii) $\mu \overline{q} v$ iff $\mu \leq \overline{1} v$.
- (iv) $\mu \le v$ iff $x_t \in \mu$ implies $x_t \in v$ iff $x_t q \mu$ implies $x_t \overline{q} \mu$.
- (v) $x_t \overline{q} \nabla v_i$ iff there exists $i_0 \in \mu$ such that $x_t \overline{q} v_{i_0}$.

Definition 1.1 [30] A function $\tau: I^X \to I$ is called a fuzzy topology on X if it satisfies the following conditions:

- (1) $\tau(\bar{0}) = \tau(\bar{1}) = 1$,
- (2) $\tau(\bigvee_{i\in\Gamma}v_i) \ge \bigwedge_{i\in\Gamma}\tau(v_i)$, for any $\{v_i\}_{i\in\Gamma} \subset I^X$,
- (3) $\tau(v_1 \wedge v_2) \ge \tau(v_1) \wedge \tau(v_2)$, for any $v_1, v_2 \in I^X$.

The pair (X, τ) is called a fuzzy topological space or \hat{S} ostak's fuzzy topological space or smooth topological space (for short, fts, sfts, sts).

Remark 1.1 [25] Let (X, τ) be a sfts. Then, for every $\iota \in I_0$, $\tau_r = \{v \in I^X : \tau(v) \ge \iota\}$ is a Change's fuzzy topology on X.

Theorem 1.1 [27] Let (X, τ) be a sfts. Then for each $\mu \in I^X$, $\iota \in I_0$, we define an operator $C_{\tau}: I^X \times I_0 \rightarrow I^X$ as follows: $C_{\tau}(\mu, t) = \bigwedge \{ \nu \in I^X : \mu \leq \nu, \tau(\overline{1} - \nu) \geq t \}.$ For $\mu, \nu \in I^X$ and $\iota, s \in I_0$, the operator C_{τ} satisfies the following conditions:

- (1) $C_{\tau}(\bar{0},t) = \bar{0}$,
- (2) $\mu \leq C_{\tau}(\mu, \iota)$,
- (3) $C_{\tau}(\mu, \iota) \vee C_{\tau}(\nu, \iota) = C_{\tau}(\mu \vee \nu, \iota),$
- (4) $C_{\tau}(\mu, \iota) \leq C_{\tau}(\mu, s)$ if $\iota \leq s$,
- (5) $C_{\tau}(C_{\tau}(\mu, t), t) = C_{\tau}(\mu, t).$

Theorem 1.2 [27] Let (X, τ) be a sfts. Then for each $\iota \in I_0, \mu \in I^X$ we define an operator $I_{\tau}: I^X \times I_0 \rightarrow I^X$ as follows: $I_{\tau}(\mu, \iota) = \bigvee \{ \nu \in I^X : \mu \ge \nu, \tau(\nu) \ge \iota \}.$ For $\mu, \nu \in I^X$ and $\iota, s \in I_0$, the operator I_τ satisfies the following conditions:

- (i) $I_{\tau}(\bar{1},t) = \bar{1}$,
- (ii) $\mu \ge I_{z}(\mu, \iota)$,
- (iii) $I_{\tau}(\mu, t) \wedge I_{\tau}(\nu, t) = I_{\tau}(\mu \wedge \nu, t),$
- (iv) $I_{\tau}(\mu, t) \le I_{\tau}(\mu, s)$ if $s \le t$, (v) $I_{\tau}(I_{\tau}(\mu, t), t) = I_{\tau}(\mu, t)$,
- (vi) $I_{\tau}(\bar{1}-\mu,t) = \bar{1}-C_{\tau}(\mu,t)$ and $C_{\tau}(\bar{1}-\mu,t) = \bar{1}-I_{\tau}(\mu,t)$

Definition 1.2 [15] Let (X, τ) be a sfts. Then for each $v \in I^X$, $x_t \in P_t(X)$ and $\iota \in nI_0$, v is called

- (i) *i*-open Q_r -neighbourhood of x_t if $x_t qv$ with $\tau(v) \ge i$.
- (ii) *i*-open R_r -neighbourhood of x_t if $x_t qv$ with $v = I_r(C_r(\mu, t), t)$.

We denote $Q_{\tau}(x, t) = \{v \in I^X : x, qv, \tau(v) \ge t\}, R_{\tau}(x, t) = \{v \in I^X : x, qv = I_{\tau}(C_{\tau}(\mu, t), t)\}.$

Definition 1.3 [15] Let (X, τ) be a sfts. Then for each $\mu \in I^X$, $x_t \in P_t(X)$ and $\iota \in nI_0$, x_t is called

(i) $\iota - \tau$ cluster point of μ if for every $v \in Q_{\tau}(x_{\iota}, \iota)$, we have $vq\mu$.

(ii) $\iota - \delta$ cluster point of μ if for every $v \in R_{\tau}(x_{\iota}, \iota)$, we have $vq\mu$.

(iii) An δ -closure operator is a mapping $D_{\tau}: I^X \times I \to I^X$ defined as follows: $\delta C_{\tau}(\mu, \iota)$ or $D_r(\mu, \iota) = \bigvee \{x_t \in P_t(X) : x_t \text{ is } r \cdot \delta \text{ -cluster point of } \mu\}$

Definition 1.4 [17] Let (X, τ) be a sfts. For $\mu, \nu \in I^X$ and $\iota \in I_0$, μ is called an

(i) ι -fuzzy δ -semiopen (resp. ι -fuzzy δ -semiclosed)**Error! Reference source not found.** set if $\mu \leq C_{\tau} (\delta I_{\tau}(\mu, \iota), \iota)$ (resp. $I_{\tau}(\delta C_{\tau}(\mu, \iota), \iota) \leq \mu$).

(ii) ι -fuzzy δ -preopen (resp. ι -fuzzy δ -preclosed)**Error! Reference source not found.** set if $\mu \leq I_{\tau}(\delta C_{\tau}(\mu, \iota), \iota)$

(resp. $C_{\tau}(\delta I_{\tau}(\mu, \iota), \iota) \leq \mu$).

(iii) *i*-fuzzy *a*-open (resp. *i*-fuzzy a-closed)Error! Reference source not found. set if $\mu \leq I_{\tau}(C_{\tau}(\delta I_{\tau}(\mu, t), t), t)$

(resp. $C_{\tau}(I_{\tau}(\delta C_{\tau}(\mu, \iota), \iota), \iota) \leq \mu)$.

(iv) *t*-fuzzy *e*-open (resp. *t*-fuzzy *e*-closed)**Error! Reference source not found.** set if $\mu \leq C_{\tau}(\delta I_{\tau}(\mu, t), t) \vee I_{\tau}(\delta C_{\tau}(\mu, t), t)$

(resp. $C_{\tau}(\delta I_{\tau}(\mu, \iota), \iota) \wedge I_{\tau}(\delta C_{\tau}(\mu, \iota), \iota) \leq \mu$).

(v) ι -fuzzy e^* -open (resp. ι -fuzzy e^* -closed)**Error! Reference source not found.** set if $\mu \leq C_{\tau}(I_{\tau}(\delta C_{\tau}(\mu, t), t), t)$

(resp. $I_{\tau}(C_{\tau}(\delta I_{\tau}(\mu, t), t), t) \leq \mu)$.

(v) *i*-fuzzy semiopen (resp. *i*-fuzzy semi-closed) **Error! Reference source not found.** set if $\mu \leq C_{\tau}(I_{\tau}(\mu, t), t)$ (resp. $I_{\tau}(C_{\tau}(\mu, t), t) \leq \mu$).

Definition 1.5 [37]

(i) *t*-fuzzy θ -interior (resp. *t*-fuzzy θ -semi-interior and *t*-fuzzy θ -pre-interior) of a subset μ in a sfts (X, τ) , $\forall t \in I_0$, denoted by $\theta I_{\tau}(\mu, t)$ (resp. $\theta s I_{\tau}(\mu, t)$ and $\theta p I_{\tau}(\mu, t)$) defined as $\theta I_{\tau}(\mu, t) = \sqrt{\{I_{\tau}(\nu) : \mu \ge \nu, \tau(\bar{1}-\nu) \ge t\}}; \quad \theta s I_{\tau}(\mu, t) = \sqrt{\{s I_{\tau}(\nu) : \mu \ge \nu, \nu \text{ is r-fsc}\}}; \quad \theta p I_{\tau}(\mu, t) = \sqrt{\{p I_{\tau}(\nu) : \mu \ge \nu, \nu \text{ is r-fpc}\}}.$

(ii) ι -fuzzy θ -closure (resp. ι -fuzzy θ -semi-closure and ι -fuzzy θ -pre-closure) of a subset μ in a sfts (X, τ) , $\forall \iota \in I_0$, denoted by $\theta C_{\tau}(\mu, \iota)$ (resp. $\theta s C_{\tau}(\mu, \iota)$ and $\theta p C_{\tau}(\mu, \iota)$) defined as $\theta C_{\tau}(\mu, \iota) = \bigwedge \{C_{\tau}(\nu) : \mu \le \nu, \tau(\nu) \ge \iota\}; \quad \theta s C_{\tau}(\mu, \iota) = \bigwedge \{s C_{\tau}(\nu) : \mu \le \nu, \nu \text{ is } \iota\text{-fso }\}; \quad \theta p C_{\tau}(\mu, \iota) = \bigwedge \{p C_{\tau}(\nu) : \mu \le \nu, \nu \text{ is } \iota\text{-fpo }\}.$

Definition 1.6 [37] Let (X, τ) be a sfts. For $\mu, \nu \in I^X$ and $\iota \in I_0$, μ is called an

(i) *i*-fuzzy θ -open (resp. *i*-fuzzy θ -closed) set if $\mu = \theta I_{\tau}(\mu, i)$ (resp. $\mu = \theta C_{\tau}(\mu, i)$).

(ii) *i*-fuzzy θ -semiopen (resp. *i*-fuzzy θ -semiclosed) set if $\mu \leq C_{\tau}(\theta I_{\tau}(\mu, t), t)$ (resp. $I_{\tau}(\theta C_{\tau}(\mu, t), t) \leq \mu$).

(iii) *i*-fuzzy θ -preopen (resp. *i*-fuzzy θ -preclosed) set if $\mu \leq I_{\tau}(\theta C_{\tau}(\mu, i), i)$ (resp. $C_{\tau}(\theta I_{\tau}(\mu, i), i) \leq \mu$).

The family of all *i*-fuzzy θ -open (resp. *i*-fuzzy θ -closed), *i*-fuzzy θ -semiopen, (resp. *i*-fuzzy θ -semiclosed), *i*-fuzzy θ -preopen (resp. *i*-fuzzy θ -preclosed) sets will be denoted by *i*-f θ o (resp. *i*-f θ c), *i*-f θ so (resp. *i*-f θ sc), *i*-f θ po (resp. *i*-f θ pc) sets.

Lemma 1.2 [37] Let $\mu, \nu \in I^X$ and $\iota \in I_0$ in a sfts (X, τ) , then

(i) μ is *t*-fuzzy θ -open iff $\mu = \theta I_{\tau}(\mu, t)$.

(ii) If $\mu < \nu$, then $\theta I_{\tau}(\mu, \iota) < \theta I_{\tau}(\nu, \iota)$.

(iii) $\theta I_{\tau}(\theta I_{\tau}(\mu, t)) < \theta I_{\tau}(\mu, t).$

(iv) For any subset μ of X, $\mu \leq C_{\tau}(\mu, \iota) \leq \delta C_{\tau}(\mu, \iota) \leq \theta C_{\tau}(\mu, \iota)$ (resp.

 $\theta I_{\tau}(\mu, \iota) \leq \delta I_{\tau}(\mu, \iota) \leq I_{\tau}(\mu, \iota) \leq \mu.$

(v)
$$1 - (\theta I_{\tau}(\mu, t)) = \theta C_{\tau}(1 - \mu, t).$$

(vi)
$$\bar{1} - (\theta C_{\tau}(\mu, t)) = \theta I_{\tau}(\bar{1} - \mu, t).$$

(vii)
$$\theta I_{\tau}(\mu \wedge v, \iota) = \theta I_{\tau}(\mu, \iota) \wedge \theta I_{\tau}(v, \iota)$$
 and

 $\theta I_{\tau}(\mu, \iota) \vee \theta I_{\tau}(\nu, \iota) < \theta I_{\tau}(\mu \vee \nu, \iota).$

(viii) $\theta C_{\tau}(\mu \wedge v, t) = \theta C_{\tau}(\mu, t) \wedge \theta C_{\tau}(v, t)$ and $\theta C_{\tau}(\mu \vee v, t) = \theta C_{\tau}(\mu, t) \vee \theta C_{\tau}(v, t)$.

Proposition 1.1 [37] Let $\mu \in I^X$ and $\iota \in I_0$ in a sfts (X, τ) , then

- (i) $\theta s C_{\tau}(\mu, \iota) = \mu \vee I_{\tau}(\theta C_{\tau}(\mu, \iota), \iota)$ and $\theta s I_{\tau}(\mu, \iota) = \mu \wedge C_{\tau}(\theta I_{\tau}(\mu, \iota), \iota).$
- (ii) $\delta pC_{\tau}(\mu, \iota) = \mu \vee C_{\tau}(\delta I_{\tau}(\mu, \iota), \iota)$ and $\delta pI_{\tau}(\mu, \iota) = \mu \wedge I_{\tau}(\delta C_{\tau}(\mu, \iota), \iota).$
- (iii) $\overline{1} (\delta I_{\tau}(\mu, \iota)) = \delta C_{\tau}(\overline{1} \mu, \iota)$ and $\delta I_{\tau}(\overline{1} \mu, \iota) = \overline{1} \delta C_{\tau}(\mu, \iota)$

Lemma 1.3 [37] Let $v \in I^X$ and $\iota \in I_0$ in a sfts (X, τ) , then

- (i) $\delta pC_{\tau}(v,t) = v \vee C_{\tau}(\delta I_{\tau}(v,t),t)$ and $\delta pI_{\tau}(v,t) = v \wedge I_{\tau}(\delta C_{\tau}(v,t),t).$
- (ii) $\delta p C_{\tau}(\delta p I_{\tau}(v,t),t) = \delta p I_{\tau}(v,t) \vee C_{\tau}(\delta I_{\tau}(v,t),t)$
- (iii) $\delta p I_{\tau}(\delta p C_{\tau}(v,t),t) = \delta p C_{\tau}(v,t) \wedge I_{\tau}(\delta C_{\tau}(v,t),t).$
- (iv) $\delta sI_{\tau}(v,t) = v \wedge C_{\tau}(\delta I_{\tau}(v,t),t)$ and $\delta sC_{\tau}(v,t) = v \vee I_{\tau}(\delta C_{\tau}(v,t),t).$

Lemma 1.4 [37] Let $v \in I^X$ and $\iota \in I_0$ in a sfts (X, τ) , then

- (i) $C_{\tau}(\delta I_{\tau}(v,t),t) = \delta C_{\tau}(\delta I_{\tau}(v,t),t).$
- (ii) $I_{\tau}(\delta C_{\tau}(v,t),t) = \delta I_{\tau}(\delta C_{\tau}(v,t),t).$

Definition 1.7 [37] A subset μ in a sfts (X, τ) is called a ι -fuzzy locally closed set $\forall \iota \in I_0$, if $\mu = v \land \alpha$, where $\tau(v) \ge \iota$, α is ι -fuzzy closed in X.

Definition 1.8 [37] Let (X, τ) be a sfts. For $\mu \in I^X$ and $\iota \in I_0$, then A sfts (X, τ) is ι -fuzzy extremely disconnected (briefly, ι -FED) if the ι -fuzzy closure of every ι -fuzzy open set of X is ι -fuzzy open.

Definition 1.9 [37] A subset $\mu \in I^X$, & $\forall \iota \in I_0$ in a sfts (X, τ) is called an ι -fuzzy

- (i) *M* -open set if $\mu \leq C_{\tau}(\theta I_{\tau}(\mu, \iota), \iota) \vee I_{\tau}(\delta C_{\tau}(\mu, \iota), \iota)$.
- (ii) *M* -closed set if $\mu \ge I_{\tau}(\theta C_{\tau}(\mu, \iota), \iota) \land C_{\tau}(\delta I_{\tau}(\mu, \iota), \iota)$.

Definition 1.10 [37] ι -fuzzy M-interior (resp. ι -fuzzy M-closure) of μ in a sfts (X, τ) . $\forall \iota \in I_0$, denoted by $MI_{\tau}(\mu, \iota)$ (resp. $MC_{\tau}(\mu, \iota)$) defined as $MI_{\tau}(\mu, \iota) = \bigvee \{ v \in I^X : \mu \ge v, v \text{ is a } \iota\text{-}fM \text{ o set} \}; MC_{\tau}(\mu, \iota) = \bigwedge \{ v \in I^X : \mu \le v, v \text{ is a } \iota\text{-}fM \text{ c set} \}.$

Proposition 1.2 [37] Let (X, τ) be a fuzzy topological space. $\lambda \in I^X$ and $r \in I_0$, then (i) Every ι -fuzzy θ -semiopen (resp. ι -fuzzy δ -preopen) set is ι -fuzzy M-open. (ii) Every ι -fuzzy M-open set is ι -fuzzy e-open.

Proposition 1.3 [37] If λ is an *i*-fuzzy *M*-open subset of a sfts (X, τ) and $\theta I_{\tau}(\lambda, \iota) = 0$, then λ is *i*-fuzzy δ -preopen.

Theorem 1.3 [37] Let (X, τ) be a sfts. Let $\lambda \in I^X$ and $\iota \in I_o$. (i) λ is ι -fM o iff $\lambda = MI_{\tau}(\lambda, \iota)$. (ii) λ is ι -fM c iff $\lambda = MC_{\tau}(\lambda, \iota)$.

Theorem 1.4 [37] Let (X, τ) be a sfts. For $\lambda \in I^X$ and $\iota \in I_0$ we have

- (i) $MI_{\tau}(1-\lambda, t) = 1 (MC_{\tau}(\lambda, t)).$
- (ii) $MC_{\tau}(1-\lambda, t) = 1 (MI_{\tau}(\lambda, t)).$

Theorem 1.5 [37] Let (X, τ) be a sfts. Let $\lambda \in I^X$ and $\iota \in I_o$, the following statements hold:

- (i) $MC_{\tau}(0, t) = 0$ and $MI_{\tau}(1, t) = 1$.
- (ii) $I_{\tau}(\lambda, t) \leq MI_{\tau}(\lambda, t) \leq \lambda \leq MC_{\tau}(\lambda, t) \leq C_{\tau}(\lambda, t).$
- (iii) $\lambda \le \mu \Longrightarrow MI_{\tau}(\lambda, \iota) \le MI_{\tau}(\mu, \iota)$ and $MC_{\tau}(\lambda, \iota) \le MC_{\tau}(\mu, \iota)$.
- (iv) $MC_{\tau}(MC_{\tau}(\lambda, \iota), \iota) = MC_{\tau}(\lambda, \iota)$ and $MI_{\tau}(MI_{\tau}(\lambda, \iota), \iota) = MI_{\tau}(\lambda, \iota)$.
- (v) $MC_{\tau}(\lambda, \iota) \lor MC_{\tau}(\mu, \iota) < MC_{\tau}(\lambda \lor \mu, \iota)$ and $MI_{\tau}(\lambda, \iota) \lor MI_{\tau}(\mu, \iota) < MI_{\tau}(\lambda \lor \mu, \iota)$.
- (vi) $MC_{\tau}(\lambda \wedge \mu, \iota) < MC_{\tau}(\lambda, \iota) \wedge MC_{\tau}(\mu, \iota)$ and $MI_{\tau}(\lambda \wedge \mu, \iota) < MI_{\tau}(\lambda, \iota) \wedge MI_{\tau}(\mu, \iota)$.

Theorem 1.6 [37] Let (X, τ) be a sfts. For $\lambda, \mu \in I^X$ and $\iota \in I_0$.

- (i) λ is ι -fM o iff $1-\lambda$ is ι -fM c.
- (ii) If $\tau(\lambda) \ge \iota$, then λ is ι -fM o set.
- (iii) $I_{\tau}(\lambda, \iota)$ is an ι -f M o set.
- (iv) $C_{\tau}(\lambda, \iota)$ is an ι -fM c set.

Definition 1.11 Let (X, τ_1) and (X, τ_2) be fts's and $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ a mapping.

(i) f is called fuzzy continuous (briefly, f-cts) [25] if $\tau_2(\mu) \le \tau_1(f^{-1}(\mu))$ for each $\mu \in I^Y$.

(ii) f is called fuzzy semicontinuous (briefly, fs-cts) [25] if $f^{-1}(\mu)$ is r-fso for each $\mu \in I^X$, $\iota \in I_0$ with $\tau_2(\mu) \ge \iota$.

(iii) f is called fuzzy precontinuous (briefly, fp-cts) [25] if $f^{-1}(\mu)$ is r-fpo for each $\mu \in I^X$, $\iota \in I_0$ with $\tau_2(\mu) \ge \iota$.

Definition 1.12 Let (X, τ_1) and (X, τ_2) be fts's and $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ a mapping.

(i) f is called fuzzy δ -semicontinuous (briefly, $f\delta$ s-cts) [33] if $f^{-1}(\mu)$ is r- $f\delta$ so for each $\mu \in I^X$, $\iota \in I_0$ with $\tau_2(\mu) \ge \iota$.

(ii) f is called fuzzy δ -precontinuous (briefly, $f \delta$ p-cts) [33] if $f^{-1}(\mu)$ is r-f δ po (resp. r-fs δ po) for each $\mu \in I^X$, $\iota \in I_0$ with $\tau_2(\mu) \ge \iota$. f is called fuzzy a-continuous (or) fuzzy semi δ -precontinuous **Error! Reference source not found.** if $f^{-1}(\mu)$ is r-fao for each $\mu \in I^X$, $\iota \in I_0$ with $\tau_2(\mu) \ge \iota$.

(iii) f is called fuzzy e-continuous (briefly, fe-cts) [33] if $f^{-1}(\mu)$ is r-feo for each $\mu \in I^X$, $\iota \in I_0$ with $\tau_2(\mu) \ge \iota$.

(iv) f is called fuzzy e^* -continuous (briefly, f e^* -cts) [33] if $f^{-1}(\mu)$ is r-f e^* o for each

 $\mu \in I^X, \iota \in I_0 \text{ with } \tau_2(\mu) \ge \iota.$

2.

Fuzzy *M* -continuous Mappings

Definition 2.1 Let (X, τ_1) and (X, τ_2) be sfts's and $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ be a mapping. Then f is called

(i) fuzzy M -continuous (briefly, fM -cts) if $f^{-1}(\mu)$ is ι -fM o for each $\mu \in I^X$, $\iota \in I_0$ with $\tau_2(\mu) \ge \iota$.

(ii) fuzzy θ -continuous (briefly, $f\theta$ -cts) if $f^{-1}(\mu)$ is ι -f θ o for each $\mu \in I^X$, $\iota \in I_0$ with $\tau_2(\mu) \ge \iota$.

(iii) fuzzy θ -semicontinuous (briefly, $f\theta$ s-cts) if $f^{-1}(\mu)$ is ι -f θ so for each $\mu \in I^X$, $\iota \in I_0$ with $\tau_2(\mu) \ge \iota$.

Remark 2.1 The following implications are true for $t \in I_0$.

From the above definitions, it is clear that every f δ p-cts map is f*M* -cts map and every fuzzy θ s-cts map is f*M* - cts map. Also, it is clear that every f*M* -cts map is f*e* -cts map and f e^* -cts map. Also, every f θ -cts map, f δ -cts map, f*a*-cts map is f*M* -cts map. The converses need not be true in general, it is shown in the succeeding examples.

Example 2.1 Consider the identity mapping $f:(X,\tau) \to (Y,\eta)$, where $X = Y = \{x, y, z\}$, λ and μ defined as follows $\lambda(x) = 0.4$, $\lambda(y) = 0.5$, $\lambda(z) = 0.2$ $\mu(x) = 0.5$, $\mu(y) = 0.4$, $\mu(z) = 0.7$. Then τ, η : $I^X \to I$ defined as

 $\tau(\lambda) = \{1,$

= $0 \text{ or } 1, \frac{1}{2}, \text{ if } = 0, \text{ otherwise}, \eta(\mu) = \{1, = 0 \text{ or } 1, \frac{1}{2}, \text{ if } = 0, \text{ otherwise}, \text{ are fuzzy topologies}$ on X and Y. Take $\iota = \frac{1}{2}$. For any $\frac{1}{2}$ -fuzzy open set μ in (Y, η) , $f^{-1}(\mu) = \mu$ is $\frac{1}{2}$ -fe^{*}o set in (X, τ) . Then f is fe^{*}-cts, but f is not fM -cts, since $f^{-1}(\mu)$ is not $\frac{1}{2}$ -fM o in (X, τ) .

Example 2.2 Let λ and μ be fuzzy subsets of $X = Y = \{x, y, z\}$ defined as follows $\lambda(x) = 0.5$, $\lambda(y) = 0.3$, $\lambda(z) = 0.2$; $\mu(x) = 0.5$, $\mu(y) = 0.4$, $\mu(z) = 0.4$. Then τ, η : $I^{x} \rightarrow I$ defined as

 $\tau(\lambda) = \{1,$

= $0 \text{ or } 1, \frac{1}{2}, \text{ if } = 0, \text{ otherwise}, \eta(\mu) = \{1, = 0 \text{ or } 1, \frac{1}{2}, \text{ if } = 0, \text{ otherwise}, \text{ are fuzzy topologies}$ on X and Y. Consider the identity mapping $f: (X, \tau) \to (Y, \eta)$. Take $\iota = \frac{1}{2}$. For any $\frac{1}{2}$ -fo set μ in (Y, η) , $f^{-1}(\mu) = \mu$ is $\frac{1}{2}$ -feo set in (X, τ) . Then f is fe-cts, but f is not f M-cts, since $f^{-1}(\mu)$ is not $\frac{1}{2}$ -fM o in (X, τ) .

Example 2.3 Let λ and μ be fuzzy subsets of $X = Y = \{x, y, z\}$ defined as follows $\lambda(x) = 0.1, \quad \lambda(y) = 0.1, \quad \lambda(z) = 0.1;$ $\mu(x) = 0.9, \quad \mu(y) = 0.9, \quad \mu(z) = 0.9.$

Then τ, η : $I^{X} \rightarrow I$ defined as

$$\tau(\lambda) = \{1,$$

= $0 \text{ or } 1, \frac{1}{2}, \text{ if } = ,0, \text{ otherwise}, \eta(\mu) = \{1, = 0 \text{ or } 1, \frac{1}{2}, \text{ if } = ,0, \text{ otherwise}, \text{ are fuzzy topologies}$ on X and Y. Consider the identity mapping $f: (X, \tau) \to (Y, \eta)$. Take $\iota = \frac{1}{2}$. For any $\frac{1}{2}$ -fuzzy open set μ in (Y, η) , $f^{-1}(\mu) = \mu$ is $\frac{1}{2}$ -fMo set in (X, τ) . Then f is fM -cts, but f is not $f\delta$ p-cts, $f\delta$ -cts and fa-cts, since $f^{-1}(\mu)$ is not $\frac{1}{2}$ -f δ po, $\frac{1}{2}$ -f δ o and $\frac{1}{2}$ -fao sets.

Example 2.4 Let λ and μ be fuzzy subsets of $X = Y = \{x, y, z\}$ defined as follows $\lambda(x) = 0.1, \quad \lambda(y) = 0.1, \quad \lambda(z) = 0.1;$ $\mu(x) = 0.9, \quad \mu(y) = 0.9, \quad \mu(z) = 0.9.$ Then $\tau, \eta : I^X \to I$ defined as

 $\tau(\lambda) = \{1,$

= $0 \text{ or } 1, \frac{1}{2}, \text{ if } = ,0, \text{ otherwise}, \eta(\mu) = \{1, = 0 \text{ or } 1, \frac{1}{2}, \text{ if } = ,0, \text{ otherwise}, \text{ are fuzzy topologies}$ on X and Y. Consider the identity mapping $f: (X, \tau) \rightarrow (Y, \eta)$. Take $\iota = \frac{1}{2}$. For any $\frac{1}{2}$ -fo set μ in (Y, η) , $f^{-1}(\mu) = \mu$ is $\frac{1}{2}$ -f δ so set in (X, τ) . Then f f is fuzzy δ s-cts, but f is not f δ -cts, since $f^{-1}(\mu)$ is not $\frac{1}{2}$ -f δ o set.

Example 2.5 Let λ , μ and ω be fuzzy subsets of $X = Y = \{x, y, z\}$ defined as follows $\lambda(x) = 0.3$, $\lambda(y) = 0.4$, $\lambda(z) = 0.5$; $\mu(x) = 0.6$, $\mu(y) = 0.9$, $\mu(z) = 0.5$; $\omega(x) = 0.7$, $\omega(y) = \overline{1}$, $\omega(z) = 0.5$. Then τ, η : $I^X \to I$ defined as

$$\tau(\lambda) = \{1,$$

= 0 or 1, $\frac{1}{2}$, if = , ,0, otherwise, $\eta(\mu) = \{1, = 0 \text{ or } 1, \frac{1}{2}, \text{ if } = ,0, \text{ otherwise, are fuzzy}$ topologies on X and Y. Consider the identity mapping $f:(X, \tau) \to (Y, \eta)$. Take $\iota = \frac{1}{2}$. For any $\frac{1}{2}$ -fo set ω in (Y, η) , $f^{-1}(\omega) = \omega$ is $\frac{1}{2}$ -fMo set in (X, τ) . Then f is fM-cts, but f is neither f θ s-cts nor f δ s-cts, since $f^{-1}(\omega)$ is neither $\frac{1}{2}$ -f θ so nor $\frac{1}{2}$ -f δ so set.

Example 2.6 Let λ , μ and ω be fuzzy subsets of $X = Y = \{x, y, z\}$ defined as follows $\lambda(x) = 0.3$, $\lambda(y) = 0.4$, $\lambda(z) = 0.5$; $\mu(x) = 0.6$, $\mu(y) = 0.5$, $\mu(z) = 0.5$; $\omega(x) = 0.7$, $\omega(y) = 0.6$, $\omega(z) = 0.5$.

Then τ, η : $I^X \rightarrow I$ defined as

$$\tau(\lambda) = \{1,$$

= 0 or 1, $\frac{1}{2}$, if = , ,0, otherwise, $\eta(\mu) = \{1, = 0 \text{ or } 1, \frac{1}{2}, \text{ if } = ,0, \text{ otherwise, are fuzzy topologies on } X$ and Y. Consider the identity mapping $f:(X,\tau) \to (Y,\eta)$. Take $\iota = \frac{1}{2}$. For any $\frac{1}{2}$ -fo set ω in (Y,η) , $f^{-1}(\omega) = \omega$ is $\frac{1}{2}$ -fMo and $\frac{1}{2}$ -f θ so set in (X,τ) . Then f is fM-cts and f θ s-cts, but f is not f θ -cts, since $f^{-1}(\omega)$ is not $\frac{1}{2}$ -f θ o set.

Example 2.7 Let λ , μ and ω be fuzzy subsets of $X = Y = \{x, y, z\}$ defined as follows $\lambda(x) = 0.3$, $\lambda(y) = 0.5$, $\lambda(z) = 0.5$; $\mu(x) = 0.5$, $\mu(y) = 0.5$, $\mu(z) = 0.5$; $\omega(x) = 0.7$, $\omega(y) = 0.6$, $\omega(z) = 0.5$.

Then τ, η : $I^X \rightarrow I$ defined as

 $\tau(\lambda) = \{1,$

= 0 or 1, $\frac{1}{2}$, if = , ,0, otherwise, $\eta(\mu) = \{1, = 0 \text{ or } 1, \frac{1}{2}, \text{ if } = ,0, \text{ otherwise, are fuzzy}$ topologies on X and Y. Consider the identity mapping $f:(X, \tau) \to (Y, \eta)$. Take $\iota = \frac{1}{2}$. For any $\frac{1}{2}$ -fuzzy open set λ in (Y, η) , $f^{-1}(\lambda) = \lambda$ is $\frac{1}{2}$ -fuzzy open in (X, τ) . Then f is f-cts, but f is not f θ -cts and f δ -cts, since $f^{-1}(\lambda)$ is neither $\frac{1}{2}$ -f θ o nor $\frac{1}{2}$ -f δ o set.

Theorem 2.1 Let (X, τ_1) and (Y, τ_2) be fts's and $f: X \to Y$ be a mapping. Then the following statements are equivalent:

- (i) f is fM -cts mapping.
- (ii) $f^{-1}(\mu)$ is ι -fM c in X for each $\mu \in I^Y$, $\iota \in I_0$ with $\tau_2(1-\mu) \ge \iota$.

(iii)
$$f(MC_{\tau_1}(\lambda, \iota)) \leq C_{\tau_2}(f(\lambda), \iota), \quad \forall \quad \lambda \in I^X \text{ and } r \in I_0.$$

(iv)
$$MC_{\tau_1}(f^{-1}(\mu), t) \le f^{-1}(C_{\tau_2}(\mu, t)), \forall \mu \in I^Y$$
 and $r \in I_0$.

(v)
$$I_{\tau_1}(\theta C_{\tau_1}(f^{-1}(\mu), t), t) \wedge C_{\tau_1}(\delta I_{\tau_1}(f^{-1}(\mu), t), t) \leq f^{-1}(C_{\tau_2}(\mu, t)), \quad \forall \quad \mu \in I^Y \text{ and } r \in I_0.$$

(vi) $f^{-1}(I_{\tau_2}(\mu, t)) \leq MI_{\tau_1}(f^{-1}(\mu), t), \text{ for each } \mu \in I^Y \text{ and } r \in I_0.$

Proof. (i) \Rightarrow (ii): Let $\mu \in I^Y$, $\iota \in I_0$ with $\tau_2(\overline{1}-\mu) \ge \iota$. Since f is f M -cts mapping, $f^{-1}(\overline{1}-\mu)$ is an ι -fM o set of X. But $f^{-1}(\overline{1}-\mu) = \overline{1} - f^{-1}(\mu)$. Therefore $f^{-1}(\mu)$ is an ι -fM c set of X.

(ii) \Rightarrow (iii): Let $\lambda \in I^X$, $r \in I_0$, since $\tau_2(\overline{1} - C_{\tau_2}(f(\lambda), \iota)) \ge \iota$. Then by (ii), $f^{-1}(C_{\tau_2}(f(\lambda), \iota))$ is an ι -fM c set of X. Since

$$\lambda \leq f^{-1}(f(\lambda)) \leq f^{-1}(C_{\tau_{2}}(f(\lambda), \iota)),$$

we have $MC_{\tau}(\lambda, \iota) \leq f^{-1}(C_{\tau_2}(f(\lambda), \iota))$. Hence $f(MC_{\tau}(\lambda, \iota)) \leq C_{\tau_2}(f(\lambda), \iota)$.

(iii) \Rightarrow (iv): For all $\mu \in I^{Y}$, $t \in I_{0}$, let $\lambda = f^{-1}(\mu)$. By (iii), we have

$$f(MC_{\tau_1}(f^{-1}(\mu), \iota)) \le C_{\tau_2}(f(f^{-1}(\mu)), \iota) \le C_{\tau_2}(\mu, \iota).$$

It implies $MC_{\tau_1}(f^{-1}(\mu), \iota) \le f^{-1}(C_{\tau_2}(\mu, \iota))$.

(iv) \Rightarrow (i): Let $\mu \in I^{Y}$, $\iota \in I_{0}$ with $\tau_{2}(\mu) \ge \iota$. By (iv), $MC_{\tau_{1}}(f^{-1}(\bar{1}-\mu), \iota) \le f^{-1}(C_{\tau_{2}}(\bar{1}-\mu, \iota)) = f^{-1}(\bar{1}-\mu).$

By Theorem 1.4, we have $f^{-1}(\bar{1}-\mu) \ge \bar{1} - (MI_{\tau_1}(f^{-1}(\mu), \iota))$. Hence $f^{-1}(\mu)$ is ι -fM o set in X.

(ii) \Rightarrow (v): For all $\mu \in I^Y$, $\iota \in I_0$, since $\tau_2(\overline{1} - C_{\tau_2}(\mu, \iota)) \ge \iota$. Then by (ii), we see that $f^{-1}(C_{\tau_2}(\mu, \iota))$ is ι -fM c in X. Hence

$$f^{-1}(C_{\tau_{2}}(\mu, \iota)) \geq I_{\tau_{1}}(\theta C_{\tau_{1}}(f^{-1}(C_{\tau_{2}}(\mu, \iota)), \iota), \iota) \wedge C_{\tau_{1}}(\delta I_{\tau_{1}}(f^{-1}(C_{\tau_{2}}(\mu, \iota)), \iota), \iota))$$

$$\geq I_{\tau_{1}}(\theta C_{\tau_{1}}(f^{-1}(\mu), \iota)), \iota) \wedge C_{\tau_{1}}(\delta I_{\tau_{1}}(f^{-1}(\mu), \iota), \iota).$$

(v) \Rightarrow (ii): For all $\mu \in I^{\gamma}$, $r \in I_0$, with $\tau_2(\bar{1}-\mu) \ge \iota$. Then by (v), $I_{\tau_1}(\theta C_{\tau_1}(f^{-1}(\mu), \iota), \iota) \land C_{\tau_1}(\delta I_{\tau_1}(f^{-1}(\mu), \iota), \iota) \le f^{-1}(C_{\tau_2}(\mu, \iota)) = f^{-1}(\mu).$

Hence $f^{-1}(\mu)$ is ι -fM c in X.

 $(iv) \Rightarrow (vi)$: It is easily proved from Theorem (1.4)

(vi) \Rightarrow (i): Let μ be ι -fuzzy open set of Y. Then $\mu = I_n(\mu, \iota)$.

By (vi), $f^{-1}(\mu) \le MI_{\tau_1}(f^{-1}(\mu), \iota)$.

On the other hand, by Theorem(1.5),

$$f^{-1}(\mu) \ge MI_{\tau_1}(f^{-1}(\mu), \iota)$$

Thus, $f^{-1}(\mu) = MI_{\tau}(f^{-1}(\mu), \iota)$, that is, $f^{-1}(\mu)$ is ι -fMo set.

Theorem 2.2 For a map $f:(X, \tau_1) \rightarrow (Y, \tau_2)$ the succeeding statements are equivalent:

- (i) f is fM -cts mapping.
- (ii) $f^{-1}(\mu)$ is ι -fM c in X for each $\lambda \in I^Y$, $\iota \in I_0$ with $\tau_2(\overline{1}-\mu) \ge \iota$.
- (iii) $I_{\tau_1}(\theta C_{\tau_1}(f^{-1}(\mu), \iota), \iota) \wedge C_{\tau_1}(\delta I_{\tau_1}(f^{-1}(\mu), \iota), \iota) \leq f^{-1}(C_{\tau_2}(\mu, \iota)), \quad \forall \quad \mu \in I^Y \text{ and } r \in I_0.$

(iv) $f^{-1}(I_{\tau_2}(\mu, \iota)) \leq C_{\tau_1}(\theta I_{\tau_1}(f^{-1}(\mu), \iota), \iota) \vee I_{\tau_1}(\delta C_{\tau_1}(f^{-1}(\mu), \iota), \iota)$ for each $\mu \in I^Y$ and $r \in I_0$.

Proof. (i) \Rightarrow (ii): Let $\mu \in I^Y$, $\iota \in I_0$ with $\tau_2(1-\mu) \ge \iota$. Since f is fuzzy M -continuous mapping, $f^{-1}(\overline{1}-\mu)$ is an ι -fM o set of X. But $f^{-1}(\overline{1}-\mu) = 1 - f^{-1}(\mu)$. Therefore $f^{-1}(\mu)$ is an ι -fM c set of X. (ii) \Rightarrow (iii): For all $\mu \in I^Y$, $\iota \in I_0$, since $\tau_2(\overline{1} - C_{\tau_2}(\mu, \iota)) \ge \iota$. Then by (ii), we see that $f^{-1}(C_{\tau_{\gamma}}(\mu, \iota))$ is ι -fM c in X. Hence $f^{-1}(C_{\tau_{2}}(\mu, t)) \geq I_{\tau_{1}}(\theta C_{\tau_{1}}(f^{-1}(C_{\tau_{2}}(\mu, t)), t), t) \wedge C_{\tau_{1}}(\delta I_{\tau_{1}}(f^{-1}(C_{\tau_{2}}(\mu, t)), t), t))$ $\geq I_{\tau_1}(\theta C_{\tau_1}(f^{-1}(\mu), t)), t) \wedge C_{\tau_1}(\delta I_{\tau_1}(f^{-1}(\mu), t), t).$ (iii) \Rightarrow (ii): For all $\mu \in I^{\gamma}$, $r \in I_0$, with $\tau_2(1-\mu) \ge i$. Then by (iii), $I_{\tau_1}(\theta C_{\tau_1}(f^{-1}(\mu), \iota), \iota) \wedge C_{\tau_1}(\delta I_{\tau_1}(f^{-1}(\mu), \iota), \iota) \leq f^{-1}(C_{\tau_2}(\mu, \iota)) = f^{-1}(\mu).$ Hence $f^{-1}(\mu)$ is ι -fM c in X. (iii) \Rightarrow (iv): For all $\mu \in I^Y$, $r \in I_0$, with $\tau_2(\bar{1}-\mu) \ge \iota$. Then by (iii), $I_{\tau_1}(\theta C_{\tau_1}(f^{-1}(\bar{1}-\mu),t),t) \wedge C_{\tau_1}(\delta I_{\tau_1}(f^{-1}(\bar{1}-\mu),t),t) \leq f^{-1}(C_{\tau_2}(\bar{1}-\mu,t)).$ $I_{\tau_1}(\theta C_{\tau_1}(\bar{1}-f^{-1}(\mu),t),t) \wedge C_{\tau_1}(\delta I_{\tau_1}(\bar{1}-f^{-1}(\mu),t),t) \leq \bar{1}-f^{-1}(I_{\tau_2}(\mu,t)).$ $I_{\tau_1}(\bar{1}-\theta I_{\tau_1}(f^{-1}(\mu),t),t) \wedge C_{\tau_1}(\bar{1}-\delta I_{\tau_1}(f^{-1}(\mu),t),t) \leq \bar{1}-f^{-1}(I_{\tau_2}(\mu,t)).$ $\left[\bar{1} - C_{\tau_1}(\theta I_{\tau_1}(f^{-1}(\mu), \iota), \iota)\right] \wedge \left[\bar{1} - I_{\tau_1}(\delta C_{\tau_1}(f^{-1}(\mu), \iota), \iota)\right] \leq \bar{1} - f^{-1}(I_{\tau_2}(\mu, \iota)).$ $C_{\tau_1}(\theta I_{\tau_1}(f^{-1}(\mu), t), t) \vee I_{\tau_1}(\delta C_{\tau_1}(f^{-1}(\mu), t), t) \ge f^{-1}(I_{\tau_2}(\mu, t)).$

Thus (iv) is proved.

(iv) \Rightarrow (i): Let μ be ι -fuzzy open set of Y. Then $\mu = I_{\eta}(\mu, \iota)$. By (iv), $f^{-1}(\mu) \leq C_{\tau_1}(\theta I_{\tau_1}(f^{-1}(\mu), \iota), \iota) \vee I_{\tau_1}(\delta C_{\tau_1}(f^{-1}(\mu), \iota), \iota)$. That is, $f^{-1}(\mu)$ is ι -fMo set.

Definition 2.2 A fuzzy set λ in a fts (X, τ) is called ι -fuzzy dense if there exists no ι -fc set μ in (X, τ) such that $\lambda < \mu < 1$.

Definition 2.3 A fuzzy set λ in a fts (X, τ) is called ι -fuzzy nowhere dense if there exists no non-zero ι -fo set μ in (X, τ) such that $\mu < C_{\tau}(\lambda, \iota)$. That is., $I_{\tau}(C_{\tau}(\lambda, \iota), \iota) = \overline{0}$, in (X, τ) .

Lemma 2.1 For a sfts (X, τ) , every ι -fuzzy dense set is ι -fpo.

Proposition 2.1 Let (X, τ_1) and (Y, τ_2) be fts's and $f: X \to Y$ be a mapping. An fM -cts mapping f is $f\delta$ p-cts if for any fuzzy subset λ of X is ι -fuzzy nowhere dense.

Proof. Let $\mu \in \tau_2$. Since f is an fM -cts mapping, then $f^{-1}(\mu)$ is an ι -fM o set in (X, τ_1) . Put $f^{-1}(\mu) = \lambda$ is ι -fM o set in X. Hence

 $\lambda \leq C_{\tau}(\theta I_{\tau}(\lambda, t), t) \vee I_{\tau}(\delta C_{\tau}(\lambda, t), t).$

But $\theta I_{\tau}(\lambda, t) \leq I_{\tau}(\lambda, t) \leq C_{\tau}(\lambda, t)$, then $\theta I_{\tau}(\lambda, t) \leq I_{\tau}(C_{\tau}(\lambda, t), t)$. Since λ is t-fuzzy nowhere dense and Lemma **Error! Reference source not found.**, we have $\theta I_{\tau}(\lambda, t) = \overline{0}$. Therefore f is $f \delta$ p-cts.

Definition 2.4 Let (X, τ_1) and (Y, τ_2) be sfts's and $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ be a mapping. Then f is called fuzzy θ -open map if the image of every ι -fuzzy open set of X, τ_1) is ι -fuzzy θ -open set in (Y, τ_2) .

Definition 2.5 Let (X, τ_1) and (Y, τ_2) be sfts's and $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ be a mapping. Then f is called fuzzy θ -bicontinuous if f is fuzzy θ -open map and θ -continuous map.

Theorem 2.3 Let (X, τ_1) and (Y, τ_2) be sfts's and $f:(X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy θ -bicontinuous mapping. Then the inverse image of each ι -fM o set in (Y, τ_2) under f is ι -f M o set in (X, τ_1) .

Proof. Let f be a fuzzy θ -bicontinuous mapping and μ be a ι -fM o set in $(Y \tau_2)$. Then $\mu \leq C_{\tau_2}(\theta I_{\tau_2}(\mu, \iota), \iota) \vee I_{\tau_2}(\delta C_{\tau_2}(\mu, \iota), \iota).$ $f^{-1}(\mu) \leq f^{-1}(C_{\tau_2}(\theta I_{\tau_2}(\mu, \iota), \iota)) \vee f^{-1}(I_{\tau_2}(\delta C_{\tau_2}(\mu, \iota), \iota)).$ $\leq C_{\tau_2}(f^{-1}(\theta I_{\tau_2}(\mu, \iota)), \iota) \vee f^{-1}(I_{\tau_2}(\delta C_{\tau_2}(\mu, \iota), \iota)).$

Since f is an fuzzy θ -bicontinuous mapping, then f is fuzzy θ -open map and θ continuous map. Then f is $f\theta$ s-cts map and $f\theta$ p-cts map. Hence

$$f^{-1}(\mu) \leq C_{\tau_{2}}(\theta I_{\tau_{2}}(f^{-1}(\theta I_{\tau_{2}}(\mu, t)), t), t) \vee I_{\tau_{2}}(\delta C_{\tau_{2}}(f^{-1}(I_{\tau_{2}}(\delta C_{\tau_{2}}(\mu, t), t)), t), t))$$

$$\leq C_{\tau_{2}}\theta I_{\tau_{2}}(f^{-1}(\theta I_{\tau_{2}}(\mu, t)), t), t) \vee I_{\tau_{2}}(\delta C_{\tau_{2}}(f^{-1}(\delta C_{\tau_{2}}(\mu, t)), t), t), t))$$

$$\leq C_{\tau_{2}}\theta I_{\tau_{2}}(f^{-1}(\mu), t), t) \vee I_{\tau_{2}}\delta C_{\tau_{2}}(f^{-1}(\mu), t), t).$$

This shows that $f^{-1}(\mu)$ is ι -fM o set in (X, τ_1) .

Remark 2.2 Let (X, τ_1) and (Y, τ_2) be sfts's and $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy θ -bicontinuous mapping. Then the inverse image of each ι -f δ po (resp. ι -f θ so) set in Y under f is ι -fM o set in X.

Remark 2.3 Let (X, τ_1) and (Y, τ_2) be fts's and $f: X \to Y$ be a mapping. The composition of two fM -cts mappings need not be fM -cts as shown by the following example.

Example 2.8 Let λ , ω and μ be fuzzy subsets of $X = Y = Z = \{a, b, c\}$ defined as follows

 $\lambda(x) = 0.4, \quad \lambda(y) = 0.5, \quad \lambda(z) = 0.2;$ $\omega(x) = 0.7, \quad \omega(y) = \overline{1}, \quad \omega(z) = 0.5.$ $\mu(x) = 0.5, \quad \mu(y) = 0.4, \quad \mu(z) = 0.7;$ Then $\tau_1, \tau_2 \text{ and } \tau_3 : I^X \to I$ defined as

 $\tau_1(\lambda) = \{1,$

= 0 or 1,
$$\frac{1}{2}$$
, if = ,0, otherwise, $\tau_2(\omega) = \{1, = 0 \text{ or } 1, \frac{1}{2}, \text{ if } = ,0, \text{ otherwise,}$
 $\tau_2(\omega) = \{1, \dots, \infty\}$

= 0 or 1, $\frac{1}{2}$, if = ,0, otherwise, $\tau_3(\mu) = \{1, = 0 \text{ or } 1, \frac{1}{2}, \text{if} = ,0, \text{otherwise, are fuzzy topologies on } X, Y \text{ and } Z. Consider the identity mapping } f:(X, \tau_1) \rightarrow (Y, \tau_2) \text{ and } g:(Y, \tau_2) \rightarrow (Z, \tau_3).$ Take $\iota = \frac{1}{2}$. For any $\frac{1}{2}$ -fo set ω in (Y, τ_2) , $f^{-1}(\omega) = \omega$ is $\frac{1}{2}$ -fMo set in (X, τ_1) . Also, for any $\frac{1}{2}$ -fuzzy open set μ in (Z, τ_3) , $g^{-1}(\mu) = \mu$ is $\frac{1}{2}$ -fMo in (Y, τ_2) . Thus f is fM-cts and g is fM-cts. But $g \circ f$ is not fM-cts, as μ is $\frac{1}{2}$ -fo set in (Z, τ_3) , $(g \circ f)^{-1}(\mu) = f^{-1}(g^{-1}(\mu)) = \mu$ is not $\frac{1}{2}$ -fMo in (X, τ_1) .

Example 2.9 Let (X, τ_1) , (Y, τ_2) and (Z, τ_3) be sfts's. If $f:(X, \tau_1) \rightarrow (Y, \tau_2)$ and $g:(Y, \tau_2) \rightarrow (Z, \tau_3)$ are mappings, then

- (i) $g \circ f$ is fM -cts mapping if f is fM -cts and g is f-cts.
- (ii) $g \circ f$ is fM -cts mapping if f is fuzzy θ -bicontinuous and g is fM -cts mapping.

Proof. (i) Let $\mu \in \tau_3$. Since g is f-cts, then $g^{-1}(\mu)$ is an *i*-fo set in (Y, τ_2) . Since f is f M-cts, then $f^{-1}(g^{-1}(\mu)) = (g \circ f)^{-1}(\mu)$ is *i*-fM o set in τ_1 . Hence $g \circ f$ is fM-cts. (ii) Let $\mu \in \tau_3$. Since g is fM-cts, then $g^{-1}(\mu)$ is an *i*-fM o set in (Y, τ_2) . Since f is fuzzy θ -bicontinuous, by Theorem Error! Reference source not found., $(g \circ f)^{-1}(\mu)$ is *i*-fM o set in τ_1 . Hence $g \circ f$ is fM-cts.

Conclusion: In this paper, fM -cts, $f\theta$ -cts and $f\theta$ s-cts in sfts's. Also, some of their fundamental properties are studied. Moreover, we investigate the relationships between f-cts, $f\theta$ s-cts, $f\theta$ -cts, $f\delta$ s- cts, $f\delta$ p-cts, fa -cts, fM -cts, fe -cts and fe^* -cts mappings.

References

[1] Anjana Bhattacharyya and M. N. Mukherjee, On fuzzy δ -almost continuous and δ^* -almost continuous functions, J. Tripura Math. Soc., **2** (2000), 45--57.

[2] K. K. Azad , On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., **82** (1981), 14--32.

[3] A. S. Bin Shahna, *On fuzzy strong semi-continuity and fuzzy precontinuity*, Fuzzy Sets and Systems, **44** (1991), 303-308.

[4] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl., **24** (1968), 182--189.
[5] J. R. Choi, B. Y. Lee and J. H. Park, *On fuzzy* θ*-continuous mappings*, Fuzzy Sets and Systems, **54** (1993), 107-113.

[6] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari and T. Noiri, On θ -semi-open sets and

separation axioms in topological spaces, Carpathian. J.Math., **24** (1) (2008), 13-22. [7] Erdal Ekici, A Note on a -open sets and e^* -open sets, Faculty of Sciences and Mathematics University of Nis, Serbia, Filomat 22 : 1 (2008), 89-96.[8] E. Ekici, On e-open sets, DP^* -sets and $DP\varepsilon^*$ -sets and decompositions of continuity. Arabian Journal for Science and Engineering, **33**(2A)(2008), 269-282. [9] S. Ganguly and S. Saha, A note on semi-open sets in fuzzy topological spaces, Fuzzy Sets and Systems, 18 (1986), 83-96. [10] S. Ganguly and S. Saha, A note on δ -continuity and δ -connected sets in fuzzy set theory, Simon Stein, 62 (1988), 127-141. [11] I. M. Hanafy, Fuzzy γ -open sets and fuzzy γ -continuity, J. Fuzzy Math. **7**(2) (1999), 419-430. [12] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems, **4** (1992), 79-82. [13] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, *Gradation of openness: fuzzy* topology, Fuzzy Sets and Systems, **49**(2) (1992), 237-242. [14] Y. C. Kim and J. W. Park, Some properties of r-generalized fuzzy closed sets, Far East J. of Math. Science, 7(3) (2002), 253-268. [15] Y. C. Kim and J. W. Park, *r*-fuzzy δ -closure and *r*-fuzzy θ -closure sets, J. Korea Fuzzy Logic and Intelligent systems, **10**(6) (2000), 557-563. [16] S. J. Lee and E. P. Lee, Fuzzy r-semiopen sets and fuzzy r-continuous maps, Proc. of Korea Fuzzy Logic and Intelligent Systems, 7 (1997), 29-37. [17] N. Levine, Semi-open sets and Semi-continuity in topological spaces, American Mathematical Monthly, **70** (1963), 36-41. [18] Jin Han Park and Bu Young Lee, Fuzzy semi-preopen sets and fuzzy semi-precontinuous mappings, Fuzzy Sets and Systems, **67** (1994), 395-364. [19] J. H. Park, B. Y. Lee and M. J. Son, On δ -semi-open sets in topological spaces, Journal of the Indian Academy of Mathematics, **19**(1) (1997), 59-67. [20] M. N. Mukherjee and S. P. Sinha, *On some weaker forms of fuzzy continuous and fuzzy* open mappings on fuzzy topological spaces, Fuzzy Sets and Systems, **32** (1989), 103-114. [21] A. I. El-Maghrabi and M. A. Al-Juhany, *M*-open set in topological spaces, Pioneer J. of Mathematics and Mathematical Sciences, **4**(2) (2011), 213-230. [22] A. I. El-Maghrabi and M. A. Al-Juhany, Further properties on M -continuity, J. of Egyptian Mathematical Society., 22, (2014), 63-69. [23] Z. Petricevic, Separation properties and mappings, Indian J. Pure Appl. Math., 22 (1991), 971-982. [24] A. Prabhu, A. Vadivel and B. Vijayalakshmi, Fuzzy e^* -continuity and fuzzy e^* - open mappings in \hat{S} ostak's fuzzy topological spaces, Int. J. of Pure and Appl. Math., **118** (10), (2018), 327-342. [25] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems, 48 (1992), 371-375. [26] S. Raychaudhhuri and N. Mukherjee, On δ -almost continuity and δ -pre-open sets, Bull. Inst. Math. Acad. Sinica, **21** (1993), 357-366. [27] S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology, Fuzzy closure operator, Fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207-212. [28] Seok Jong Lee and Eun Pyo Lee, Fuzzy strongly r-semi-continuous maps, Commun. Korean Math. Soc., **18** (2), (2003), 341-353.

[29] V. Seenivasan and K. Kamala, *Fuzzy e -continuity and fuzzy e -open sets,* Annals of Fuzzy Mathematics and Informatics 8(1) (2014), 141--148.

[30] A. S. \tilde{S} ostak, On a fuzzy topological structure, Rend. Circ. Matem. Palermo Ser. II **11** (1985), 89-103.

[31] M. E. El-Shafei and A. Zakari, θ -generalized closed sets in fuzzy topological spaces, Arab. J. Sci. Eng. Sect. A Sci. **31**(2) (2006), 197206.

[32] D. Sobana, V. Chandrasekar and A. Vadivel, Fuzzy e-open sets in \tilde{S} ostak's fuzzy topological spaces, Int. J. Pure and Appl. Math., **119** (9) (2018), 21-29 (in press).

[33] D. Sobana, V. Chandrasekar and A. Vadivel, Fuzzy e-continuity in \tilde{S} ostak's fuzzy topological spaces, in press.

[34] S. S. Thakur and R. K. Khare, Fuzzy semi δ -preopen sets and fuzzy semi δ -precontinuous mappings, Universitatea din Bacau studii si cerceturi Strintitice Seria Matematica, **14** (2004), 201--211.

[35] N. V. Velicko, *H-closed topological spaces,* Amer. Math. Soc. Transl., **78** (1968), 103-118.

[36] A. Vadivel, B. Vijayalakshmi and A. Prabhu, Fuzzy e^* -open sets in \tilde{S} ostak's fuzzy topological spaces, (submitted).

[37] B. Vijayalakshmi, S. Bamini, M. Saraswathi and A. Vadivel, Fuzzy M-open sets in \tilde{S} ostak's fuzzy topological spaces, (submitted).

