$D_M(\tau_i,\tau_j)$ - σ_k -continuous Maps and MC - bi-continuous Maps

A. VADIVEL1_, R. VENUGOPAL2y and M. SHANTHI3z

^{1&3} Post Graduate and Research Department of Mathematics, Government Arts College (Autonomous). Karur-639 005, Tamil Nadu.

Abstract

The aim of this paper is to introduce and investigate the concept of $D_{\scriptscriptstyle M}(au_{\scriptscriptstyle i}, au_{\scriptscriptstyle j})$ - $\sigma_{\scriptscriptstyle k}$ -continous maps which are introduced in a bitopological space in analogy with M - continous maps in topological spaces. Also, we have introduced the concept of M - bi -continuity, M - s bi-continuity and pairwise M-irresolute in bitopological spaces and study some of the properties.

Keywords and phrases: M - bi -continuity, M - s - bi -continuity, pairwise M-irresolute

AMS (2000) subject classification: 54D10, 54E55.

1. Introduction and Preliminaries

Levine in 1963 initiated a new types of open set called semiopen set [8]. A subset A of a space (X,τ) is called regular open (resp., regular closed) [11]if A = int(cl(A)) (resp., A = cl(int(A)). The delta interior [3] of a subset A of (X,τ) is the union of all regular open sets of X contained in A and is denoted by $\delta int(A)$. A subset A of a space (X,τ) is called δ -open [9] if $A = \delta int(A)$. The complement of δ -open set is called δ -closed. Alternatively, a set A of (X,τ) is called δ -closed [3] if $A = \delta cl(A)$, where $\delta cl(A) = \{x \in X : A \cap int(cl(U)) \neq \emptyset, U \in \tau \text{ and } x \in U\}$. A subset A of a space X is called θ -open [1] if $A = \theta int(A)$, where $\theta int(A) = \bigcup \{int(U) : U \subseteq A, U \in \tau^c\}$, and a subset A is called θ -semiopen [2] (resp., δ - preopen [9] , e -open [4] and M -open[5]) if (resp., $A \subset int(\delta cl(A))$, $A \subset cl(\delta int(A)) \cup int(\delta cl(A))$ $A \subset cl(\theta int(A))$ $A \subseteq cl(\theta int(A)) \cup int(\delta cl(A)))$, where int(), cl(), $\theta int()$, $\delta int()$ and $\delta cl()$ are the interior, closure, θ -interior, δ -interior and δ -closure operations, respectively. The notion of bitopological spaces (in short, Bts's) was first introduced by Kelly [6].

Throughout this paper, let (X, τ_1, τ_2) or simply X be a Bts and $i, j \in \{1, 2\}$. A subset S of a Bts X is said to be $\tau_{1,2}$ -open [7] if $S = A \cup B$ where $A \in \tau_1$ and $B \in \tau_2$. A subset S of X is said to be $\tau_{1,2}$ -closed if the complement of S is $\tau_{1,2}$ -open. and $\tau_{1,2}$ -clopen if S is both $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed. For a subset A of X, the interior (resp., closure) of A with respect to τ_i will be denoted by $int_i(A)$ (resp., $cl_i(A)$) for i=1,2. In this paper, we introduce and investigate the concept of $D_m(\tau_i, \tau_i) - \sigma_i$ -continous maps in a bitopological space. Also, we have introduced the concept of M - bi-continuity, M - s - bi

^{1&2}Department of Mathematics, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu.

-continuity and pairwise M -irresolute in bitopological spaces and study some of the properties. In addition, several properties of these notions and connections to several other known ones are provided.

Let (X, τ_1, τ_2) be a Bts. A subset A of X is called $\tau_i \tau_j - M$ -open [10] (briefly, $\tau_i \tau_j$ -M -o) if $A \subseteq cl_i(\theta int_i(A)) \cup int_i(\delta cl_i(A))$ and A is $\tau_i \tau_i - M$ closed (in short, $\tau_i \tau_i - M$ -c) if $X \setminus A$ is $\tau_i \tau_j - M$ -o. A is pairwise M -open if it is both $\tau_i \tau_j - M$ -o and $\tau_i \tau_j - M$ -o. A subset A of X is called $\tau_i \tau_i - \theta$ -semiopen [10] (briefly, $\tau_i \tau_i - \theta$ -so) if $A \subseteq cl_i(\theta int_i(A))$, $\tau_i \tau_i - \delta$ (briefly, $\tau_i \tau_i$ - δ -po) if $A \subseteq int_i(\delta cl_i(A))$, $\tau_i \tau_i$ - e -open if $A \subseteq cl_i(\delta int_i(A)) \cup int_i(\delta cl_i(A))$. Clearly A is $\tau_i \tau_i$ - M -c if and only if $int_i(\theta cl_i(A)) \cap cl_i(\delta int_i(A)) \subseteq A$. We denote the family of all (i, j) - M -c (resp., (i, j) - M -o) sets in a Bts (X, τ_1, τ_2) by $D_{MC}(\tau_i, \tau_i)$ (resp., $D_{MO}(\tau_i, \tau_i)$). The intersection of all $\tau_i \tau_i - M$ -c sets containing A is called the $\tau_i \tau_i - M$ closure of A, denoted by $\tau_i \tau_i - M$ cl(A). i.e., τ_i, τ_i $Mcl(A) = \bigcap \{U : A \subseteq U, U \in D_{MC}(\tau_i, \tau_i)\}$. The union of all $\tau_i \tau_i - M$ -o sets contained in A is called the $au_i au_i$ - M interior of A , denoted by $au_i au_j$ - $\mathit{Mint}(A)$. i.e., au_i, au_j - $Mint(A) = \bigcup \{U : U \subseteq A, \ U \in D_{MO}(\tau_i, \tau_j)\}.$

2. $D_{MC}(\tau_i, \tau_i)$ - σ_i - continuous Maps and MC - bi - continuous Maps

2.1 A map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is called $D_{MC}(\tau_i,\tau_j) - \sigma_k$ Definition -continuous (in short, $D_{MC}(\tau_i, \tau_j)$ - σ_k -cts) if the inverse image of every σ_k -c set is an $\tau_i \tau_j$ - M -c set in (X, τ_1, τ_2) .

If $\tau_1 = \tau_2 = \tau$ and $\sigma_1 = \sigma_2 = \sigma$ in Remark 2.1 Definition **Error! Reference source not found.**, then the $D_{MC}(\tau_i \tau_i) - \sigma_k$ -continuity of maps coincides with *M* -continuity of maps in topological spaces.

Theorem 2.1 If a map $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is an

- (i) $\tau_i \tau_i \sigma_k \theta$ -scts then it is a $\tau_i \tau_i \sigma_k M$ -cts.
- (ii) $\tau_i \tau_i \sigma_k \delta$ -pcts then it is a $\tau_i \tau_i \sigma_k M$ -cts.
- (iii) $\tau_i \sigma_{\nu} \theta$ -cts then it is a $\tau_i \tau_i \sigma_{\nu} \theta$ -scts.
- (iv) $\tau_i \sigma_k \theta$ -cts then it is a $\tau_i \sigma_k$ -cts.
- (v) $\tau_i \sigma_k$ -cts then it is a $\tau_i \tau_i \delta$ -pcts.
- (vi) a $\tau_i \tau_i \sigma_k M$ -cts then it is a $\tau_i \tau_i e$ -cts.

Proof. (i) Let V be a σ_k -c set. Since f is $\tau_i \tau_i - \sigma_k - \theta$ -scts, $f^{-1}(V)$ is $\tau_i \tau_i - \theta$ -sc. By Proposition 2.1 in [10] $f^{-1}(V)$ is $\tau_i \tau_i - M$ -c in (X, τ_1, τ_2) . Therefore f is $\tau_i \tau_i - \sigma_k - M$ -cts.

The proof of (ii) to (vi) are similar.

 $\{b,d\},\{a,c\},\{a,b,d\}\}$, $\sigma_1 = \{\phi,Y,\{a\}\}$ and $\sigma_2 = \{\phi,Y,\{a\},\{b\},\{a,b\}\}$. Then the identity map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is $\tau_1\tau_2$ - M -cts but is not $\tau_1\tau_2$ - θ -scts, since for the σ_1 -c set $\{b,c,d\}, f^{-1}(\{b,c,d\}) = \{b,c,d\}$ which is not $\tau_1\tau_2 - \theta$ -sc set.

Example 2.2 Let $X = Y = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b,d\}, \{a,c\}, \{a,b,d\}\}\$, $\sigma_1 = \{\phi, Y, \{a\}, \{a,d\}\}\$ and $\sigma_2 = \{\phi, Y, \{a\}\}\$. Then the identity map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is $\tau_1\tau_2$ -M-cts but is not $\tau_1\tau_2$ - δ -pcts, since for the σ_1 -c set $\{b,c\}$, $f^{-1}(\{b,c\}) = \{b,c\}$ which is not $\tau_1\tau_2 - \delta$ -pc set.

Example 2.3 Let $X = \{a,b,c,d\}$, $\tau_1 = \{\phi, X, \{a\}, \{b,c\}, \{a,b,c\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b,d\}, \{a,c\}, \{a,b,d\}\}, \sigma_1 = \{\phi, Y, \{b,c,d\}\} \text{ and } \sigma_2 = \{\phi, Y, \{a\}\}.$ Then the identity map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is $\tau_1\tau_2-\theta$ -scts but is not $\tau_1-\theta$ -cts, since for the σ_1 -c set $\{a\}$, $f^{-1}(\{a\}) = \{a\}$ which is not $\tau_1 - \theta$ -c set.

Example 2.4 Let $X = \{a,b,c,d\}$, $\tau_1 = \{\phi, X, \{a\}, \{b,c\}, \{a,b,c\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b, d\}, \quad \{a, c\}, \{a, b, d\}\}, \quad \sigma_1 = \{\phi, Y, \{b, c\}, \{a, b, c\}\} \quad \text{and} \quad \sigma_2 = \{\phi, Y, \{a\}\}. \quad \text{Then } \{a, c\}, \{a, b, d\}\}$ the identity map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is τ_1 -cts but is not τ_1 - θ -cts, since for the σ_1 -c set $\{a,d\}$, $f^{-1}(\{a,d\}) = \{a,d\}$ which is not $\tau_1 - \theta$ -c set.

Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$, **Example** 2.5 $\tau_2 = \{\phi, X, \{a\}, \{b,d\}, \{a,c\}, \{a,b,d\}\}, \sigma_1 = \{\phi, Y, \{a,b\}, \{a,b,d\}\} \text{ and } \sigma_2 = \{\phi, Y, \{a\}\}.$ Then the identity map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is $\tau_1\tau_2-\delta$ -pcts but is not τ_1 -cts, since for the σ_1 -c set $\{c,d\}$, $f^{-1}(\{c,d\}) = \{c,d\}$ which is not τ_1 -c set.

Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b,d\}, \{a,c\}, \{a,b,d\}\}\$, $\sigma_1 = \{\phi, Y, \{a,c\}\}\$ and $\sigma_2 = \{\phi, Y, \{a\}\}\$. Then the identity map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is $\tau_1\tau_2$ -e-cts but is not $\tau_1\tau_2$ -M -cts, since for the σ_1 -c set $\{b,d\}$, $f^{-1}(\{b,d\}) = \{b,d\}$ which is not $\tau_1\tau_2 - M$ -c set.

Theorem 2.2 A map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is $D_M(\tau_i,\tau_i)-\sigma_k$ -cts. iff the inverse image of every σ_k -p set in Y is (τ_i, τ_i) - M -p in X.

Proof. Let G be a σ_k -p set in Y. Then G^c is σ_k -c set in Y. Since f is $D_M(\tau_i,\tau_i)$ - σ_k -cts, $f^{-1}(G^c)$ is (τ_i,τ_i) - M -c in X. That is $f^{-1}(G^c)=(f^{-1}(G))^c$ and so $f^{-1}(G)$ is $(\tau_i, \tau_j) - M$ -p in (X, τ_1, τ_2) .

Conversely, let F be a $\sigma_{\scriptscriptstyle k}$ -c set in Y. Then $F^{\scriptscriptstyle c}$ is $\sigma_{\scriptscriptstyle k}$ -p set in Y. By hypothesis, $f^{-1}(F^c)$ is $(\tau_i, \tau_j) - M$ -p in X. That is $f^{-1}(F^c) = (f^{-1}(F))^c$ and so $f^{-1}(F)$ is $(\tau_i, \tau_j) - M$

-c in (X, τ_1, τ_2) . Therefore f is $D_M(\tau_i, \tau_i) - \sigma_k$ -cts.

Theorem 2.3 If a map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is $D_{MC}(\tau_i,\tau_j) - \sigma_k$ -cts, then $f((\tau_i \tau_i) - M - cl(A)) \subset \sigma_k - cl(f(A))$ holds for every subset A of X.

Proof. Let A be any subset of X. Then $f(A) \subseteq \sigma_k - cl(f(A))$ and $\sigma_k - cl(f(A))$ is σ_k -c set in Y. Also $f^{-1}(f(A)) \subseteq f^{-1}(\sigma_k - cl(f(A)))$. That is $A \subseteq f^{-1}(\sigma_k - cl(f(A)))$. Since fis $D_{MC}(\tau_i, \tau_i) - \sigma_k$ -cts, $f^{-1}(\sigma_k - cl(f(A)))$ is $(\tau_i \tau_i) - M$ -c in (X, τ_1, τ_2) . By Theorem 2.7 in [10] $\tau_i \tau_i - M - cl(A) \subseteq f^{-1}(\sigma_k - cl(f(A)))$. Therefore $f((\tau_i \tau_i - M - cl(A)) \subseteq f(f^{-1}(\sigma_k - cl(A)))$ $cl(f(A))) \subseteq \sigma_k - cl(f(A))$. Hence $f((\tau_i \tau_i - M - cl(A)) \subseteq \sigma_k - cl(f(A))$ for every subset A of (X,τ_1,τ_2) .

Converse of the above Theorem 2.3 is not true as seen from the following Example.

Example Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ $\tau_2=\{\phi,X,\{a\},\{b,c\},\quad \{a,b,c\}\}\quad \text{and}\quad Y=\{p,q\}\;,\quad \sigma_1=\{\phi,Y,\{p\}\}\quad \text{and}\quad \sigma_2=\{Y,\phi\}\;.\quad Then$ $D_M(2,1) = \{X, \phi, \{c\}, \{d\}, \{a,b\}, \{c,d\}, \{a,c\}, \{b,d\}, \{a,b,c\}, \{b,c,d\}, \{a,c,d\}, \{a,b,d\}\}\}.$ Define a $map \quad f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2) \quad \text{by} \quad f(a) = f(c) = f(d) = p \quad \text{and} \quad f(b) = q \; . \; \; \text{Then} \quad f((2,1) - 1) = f(d) =$ $M - cl(A) \subseteq \sigma_1 - cl(f(A))$ for every subset A of X. But f is not $D_{MC}(2,1) - \sigma_1$ -cts, since for the σ_1 -c set $\{q\}$, $f^{-1}(\{q\}) = \{b\}$ which is not (2,1)-M-c set in (X,τ_1,τ_2) .

Theorem 2.4 If a map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is $D_{MC}(\tau_i,\tau_i) - \sigma_i$ -cts and $g:(Y,\sigma_1,\sigma_2)\to (Z,\eta_1,\eta_2)$ is $\sigma_k-\eta_n$ -cts, then gof if $D_{MC}(\tau_i,\tau_i)-\eta_n$ -cts.

Proof. Let F be η_n -c set in (Z,η_1,η_2) . Since g is $\sigma_k - \eta_n$ -cts, $g^{-1}(F)$ is σ_k -c set in (Y, σ_1, σ_2) . Since f is $D_{MC}(\tau_i \tau_j) - \sigma_k$ -cts, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is $(\tau_i, \tau_j) - M$ -c set in (X, τ_1, τ_2) and hence gof in $D_{MC}(\tau_i, \tau_i) - \eta_n$ -cts.

Definition 2.2 A map $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called

- (i) M -bi -cts if f is $D_{\!M\!C}(1,2)$ - σ_2 -cts and is $D_{\!M\!C}(2,1)$ - σ_1 -cts.
- (ii) M -strongly-bi -cts (briefly M s -bi -cts) if f is M -bi -cts, $D_{MC}(2,1)$ σ_2 -cts and $D_{MC}(1,2)$ - σ_1 -cts.

(iii) pairwise M -irresolute if $f^{-1}(A) \in D_M(\tau_i, \tau_i)$ in (X, τ_1, τ_2) for every $A \in D_M(k,e)$ in (Y,σ_1,σ_2) .

Remark 2.2 If $\tau_1 = \tau_2$ and $\sigma_1 = \sigma_2$ simultaneously, then f becomes a M-irresolute map.

2.5 Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be a map.

- (i) If f is bi-cts then f is M-bi-cts.
- (ii) If f is s-bi-cts then f is M-s-bi-cts.
- (iii) If f is θ -s-bi-cts then f is M-bi-cts.
- (iv)If f is δ -pcts then f is M-s-bi-cts.
- (v) If f is M-bi-cts then f is e-bi-cts.

(vi) If f is M - s - bi -cts then f is e - s - bi -cts.

Proof. (i) Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be a bi-cts map. Then f is τ_1 - σ_1 -cts and τ_2 - σ_2 -cts and so by Theorem 2.1, f is $D_{MC}(1,2)$ - σ_2 -cts and $D_{MC}(2,1)$ - σ_1 -cts. Thus f is M - bi -cts.

The proof of (ii) to (vi) are similar.

The converse of this Theorem 2.5 need not be true in general as seen from the following Examples.

Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi, \{q\}, \{b\}, \{a, b\}\}$ Example 2.8 $\tau_2 = \{X, \phi, \{a\}, \{b, c\}, \quad \{a, b, c\}\} \quad \text{and} \quad Y = \{p, q\}, \quad \sigma_1 = \{Y, \phi\} \quad \text{and} \quad \sigma_2 = \{Y, \phi, \{p\}\} \,. \quad \text{Define a } \quad \sigma_2 = \{Y, \phi, \{p\}\} \,. \quad \text{Define a} \quad \sigma_3 = \{Y, \phi, \{p\}\} \,. \quad \text{Define a} \quad \text{De$ map $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ by f(a)=f(b)=f(c)=q and f(d)=p. Then f is Ms-bi-cts but not s-bi-cts. This map is also M-bi-cts but not bi-cts.

 $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ Example 2.9 Let $\tau_2 = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}\$ and $Y = \{p, q\}, \sigma_1 = \{Y, \phi\}$ and $\sigma_2 = \{Y, \phi, \{p\}\}.$ Define a map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ by f(a)=f(b)=f(c)=q and f(d)=p. Then this function f is M-bi-cts but not θ -s-bi-cts. This map is also M-s-bi-cts but not δ -p-bi -cts.

Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ Example map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ by f(a)=f(b)=p and f(c)=f(d)=q. Then this function f is e-bi-cts but it is not M-bi-cts. This map is also e-s-bi-cts but not M-bi -cts.

Remark 2.3 The following diagram summarizes the above discussions.

Note: $A \rightarrow B$ denotes A implies B, but not conversely.

Theorem 2.6 If a map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is pairwise M-irresolute, then f is $D_{M}(\tau_{i},\tau_{i})$ - σ_{e} -cts.

Proof. Let $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be pairwise M-irresolute and F be a σ_e -c set in (Y, σ_1, σ_2) . Then F is (k, e) - M -c in (Y, σ_1, σ_2) by Proposition 2.1 in **Error! Reference source not found.** By hypothesis, $f^{-1}(F)$ is $(\tau_i, \tau_j) - M$ -c set in (X, τ_1, τ_2) . Therefore f is $D_M(\tau_i, \tau_i) - \sigma_e$ -cts.

The converse of this Theorem [10] is not true in general as seen from the following Example.

 $\{b,c\},\{a,b,c\}\}$ and $Y=\{p,q\}$, $\sigma_1=\{Y,\phi\}$ and $\sigma_2=\{Y,\phi,\{p\}\}$. Define a map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ by f(b)=f(c)=p and f(a)=f(d)=q. Then f is $(\tau_1,\tau_2)=f(\tau_1,\tau_2)$ M - σ_2 -cts but it is not pairwise M -irresolute, since for the (τ_1, τ_2) - M -c set $\{p\}$ in $(Y, \sigma_1, \sigma_2), f^{-1}(\{p\}) = \{b, c\}$ which is not $(\tau_1, \tau_2) - M$ -c set in (X, τ_1, τ_2) .

Theorem 2.7 A map $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pairwise M -irresolute iff the inverse image of every (k,e) - M -o set in (Y,σ_1,σ_2) is (τ_i,τ_i) - M -o set in (X,τ_1,τ_2) .

Proof. Proof is similar to that of Theorem 2.2

Theorem 2.8 If $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ are two pairwise $\,M$ -irresolute maps, then their composition $\,gof\,$ is also pairwise $\,M$ -irresolute.

Proof. Let $A \in D_M(m,n)$ in (Z,η_1,η_2) . Since g is pairwise M -irresolute, in (Y,σ_1,σ_2) . Since f is pairwise M -irresolute $g^{-1}(A) \in D_M(k,e)$ $f^{-1}(g^{-1}(A)) = (gof)^{-1}(A) \in D_M(\tau_i, \tau_i)$. Hence gof is pairwise M -irresolute.

Theorem 2.9 If a map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is pairwise M -irresolute and $g:(Y,\sigma_1,\sigma_2)\to (Z,\eta_1,\eta_2)$ is $D_M(k,e)-\eta_n$ -cts, then $gof:(X,\tau_1,\tau_2)\to (Z,\eta_1,\eta_2)$ is $D_{M}(\tau_{i},\tau_{i})$ - η_{n} -cts.

Proof. Let F be a η_n -c set in (Z,η_1,η_2) . Since g is $D_{\scriptscriptstyle M}(k,e)$ - η_n -cts, $g^{-1}(F) \in D_M(k,e)$ in (Y,σ_1,σ_2) . Since f is pairwise M -irresolute, $f^{-1}(g^{-1}(A)) = (gof)^{-1}(A) \in D_M(\tau_i, \tau_i)$ in (X, τ_1, τ_2) and hence gof is $D_M(\tau_i, \tau_i) - \eta_n$ -cts.

References

[1]G. K. Banerjee, On pairwise almost strongly θ -continuous mappings, Bull. Cal. Math. Soc., **74** (1987), 195-206.

- [2] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari and T. Noiri, on θ -semi-open sets and separation axioms in topological spaces, Carpathian. J. Math., 24 (1) (2008), 13-22.
- [3] J. Dontchev and H. Maki, Groups if θ -generalized homeomorphisms and the digital line, Topology Appl., **95** (2) (1999), 113-128.
- [4] E. Ekici, On e-open sets, DP^* -sets and DPE^* -sets and decompositions of continuity, Arab. J. Sci. Eng. Sect. A Sci., 33 (2) (2008), 269-282.
- [5] A. I. El-Maghrabi and M. A. Al-Juhany, M -open set in topological spaces, Pioneer J. of Mathematics and Mathematical Sciences., 4 (2) (2011), 213-230.
- [6]J. Kelly, Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-89.
- [7]M. Lellis Thivagar, O. Ravi, On stronger forms of (1,2)*- quotient mappings in bitopological spaces, Internat. J. Math. Game theory and Algebra, 14 (6) (2004), 481-492.
- [8]N. Levine, Semi-open sets and semi-continuity in topological spaces, American Mathematical Monthly, **70** (1963), 36-41.
- [9] S. Raychaudhhuri and N. Mukherjee, on δ -almost continuity and δ -pre-open sets, Bull. Inst. Math. Acad. Sinica, **21** (1993), 357-366.

[10] A. Vadivel, R. Venugopal and M. Shanthi, *M*-open sets in bitopological spaces, submitted.

[11] N. V. Velicko, H -closed topological spaces, Amer. Math. Soc. transl., 78, 103-118.

