REGULAR WEAKLY HOMEOMORPHISM IN IDEAL TOPOLOGICAL SPACES

Mohanarao Navuluri¹ and A. Vadivel²*

¹ Department of Mathematics, Govt. College of Engg. Bodinayakkanur-2; Mathematics Section (FEAT), Annamalai University, Annamalainagar-608 002, Tamilnadu. mohanaraonavuluri@gmail.com
² Post Graduate and Research Department of Mathematics, Government Arts College(Autonomous), Karur - 639 005, Tamilnadu; Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, TamilNadu.

Abstract

In this paper we introduce and study two new homeomorphisms namely I_{rw}-homeomorphism and I_{rw}^*-homeomorphism and study some of their properties in ideal topological spaces.

Key words and phrases: I_{rw}-closed map, I_{rw}-irresolute, I_{rw}^*-open, I_{rw}-homeomorphism, I_{rw}^*-homeomorphism.

AMS (2000) subject classification: 54C10, 54A05

1. Introduction

In this paper, we introduce the concepts of I_{rw}-homeomorphism and study the relationship with I -homeomorphisms. Also we introduce new class of maps I_{rw}-homeomorphism which forms a subclass of I_{rw}-homeomorphism. This class of maps is closed under compositions of maps. We prove that the set of all I_{rw}-homeomorphisms form a group under the composition of maps.

2. Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ), $\text{cl}(A)$ and $\text{int}(A)$ denote the closure and interior of A in (X, τ), respectively. An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties: (1) $A \in I$ and $B \subseteq A$ implies $B \in I$, (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I). For a subset $A \subseteq X$, $A^*(I, \tau) = \{x \in X \mid A \cap U \notin I \text{ for every } U \in \tau(X, x)\}$ is called the local function of A with respect to I and τ [3, 4]. We simply write A^* instead of $A^*(I, \tau)$ in case there is no chance for confusion. For every ideal topological space (X, τ, I), there exists a topology $\tau^*(I)$, finer than τ, generated by the base $\beta(I, \tau) = \{U - J \mid U \in \tau \text{ and } J \in I\}$. It is known in [3] that $\beta(I, \tau)$ is not always a topology. When there is no ambiguity, $\tau^*(I)$ is denoted by τ^*. For a
subset $A \subseteq X$, $\text{cl}^*(A)$ and $\text{int}^*(A)$ will, respectively, denote the closure and interior of A in (X, τ^*).

Definition 2.1
(i) A subset A of a space (X, τ) is said to be regular open [5] if $A = \text{int}(\text{cl}(A))$ and A is said to be regular closed [5] if $A = \text{cl}(\text{int}(A))$.
(ii) A subset A of a space (X, τ) is said to be regular semiopen [2] if there is a regular open set U such that $U \subseteq A \subseteq \text{cl}(U)$. The complement of a regular semiopen set is said to be regular semiclosed.
(iii) A subset A of a space (X, τ) is said to be rw-closed [9] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semiopen. A is said to be rw-open if $X - A$ is rw-closed.

Definition 2.2
(1) A subset A of an ideal space (X, τ, I) is said to be I-open [1] if $A \subseteq \text{int}(A^*)$. The complement of an I-open set is said to be I-closed.
(2) A subset A of an ideal space (X, τ, I) is said to be a regular weakly closed set with respect to the ideal I (I_{rw}-closed) [6] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is regular semiopen. A is called a regular weakly open set (I_{rw}-open) if $X - A$ is an I_{rw}-closed set.

3. I_{rw}-homeomorphism in ideal topological space

We introduce the following definitions

Definition 3.1 A map $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is said to be
(i) I_{rw}-closed if the image $f(A)$ is I_{rw}-closed set in (Y, σ) for each closed set A in (X, τ, I).
(ii) I_{rw}-continuous [7] if $f^{-1}(A)$ is I_{rw}-closed set in (X, τ, I) for each closed set A in (Y, σ).

Definition 3.2 A bijective function $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is called
(i) I_{rw}-irresolute if the inverse image $f^{-1}(A)$ is I_{rw}-closed set in (X, τ, I) for each I_{rw}-closed set A in (Y, σ, I).
(ii) I_{rw}^*-homeomorphism if both f and f^{-1} are I_{rw}-irresolute.
(iii) I_{rw}^*-homeomorphism if both f and f^{-1} are I_{rw}-continuous.

We say the spaces (X, τ, I) and (Y, σ, J) are I_{rw}-homeomorphic if there exists a I_{rw}-homeomorphism from (X, τ, I) onto (Y, σ, J).

We denote the family of all I_{rw}-homeomorphisms (resp. I_{rw}^*-homeomorphisms) of an ideal topological space (X, τ, I) onto itself by $I_{rw}^h(X, \tau, I)$ (resp. $I_{rw}^{*h}(X, \tau, I)$).

Theorem 3.1 Every I-homeomorphism is a I_{rw}-homeomorphism but not conversely.

Proof. Let $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ be a I-homeomorphism. Then f and f^{-1} are I-continuous and f is bijection. As every I-continuous function is I_{rw}^*-continuous, we have f and f^{-1} are I_{rw}-continuous. Therefore, f is I_{rw}-homeomorphism.

The converse of the above theorem need not be true, as seen from the following example.

Example 3.1 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$, $\sigma = \{X, \phi, \{c\}, \{a, b\}\}$ and $I = \{\phi, \{c\}\}$. Then the identity map on X is a I_{rw}-homeomorphism, but it is not I-homeomorphism. Since the inverse image of the open set $\{c\}$ in (Y, σ) is $\{c\}$ which is not
Theorem 3.2 For any bijection \(f : (X, \tau, I) \rightarrow (Y, \sigma, J) \), the following statements are equivalent:
(i) \(f^{-1} : (Y, \sigma, J) \rightarrow (X, \tau, I) \) is \(I_{rw} \)-continuous.
(ii) \(f \) is a \(I_{rw} \)-open map.
(iii) \(f \) is a \(I_{rw} \)-closed map.

Proof. (i) \(\Rightarrow \) (ii): Let \(U \) be a \(I \)-open set of \((X, \tau, I)\). By assumption \((f^{-1})^{-1}(U) = f(U)\) is a \(I_{rw} \)-open set in \((Y, \sigma, J)\) and so \(f \) is a \(I_{rw} \)-open map.
(ii) \(\Rightarrow \) (iii): Let \(F \) be a \(I \)-closed set of \((X, \tau, I)\). Then \(F^c \) is \(I \)-open in \((X, \tau, I)\). Since \(f \) is \(I_{rw} \)-open, \(f(F^c) \) is \(I_{rw} \)-open in \(Y \). But \(f(F^c) = (f(F))^c \), we have \(f(F) \) is \(I_{rw} \)-closed in \(Y \) and so \(f \) is a \(I_{rw} \)-closed map.
(iii) \(\Rightarrow \) (i): Suppose \(F \) is a \(I \)-closed set in \((X, \tau, I)\). By assumption \(f(F) = (f^{-1})^{-1}(F) \) is \(I_{rw} \)-closed set in \((Y, \sigma, J)\) and so \(f^{-1} \) is \(I_{rw} \)-continuous.

Theorem 3.3 Let \(f : (X, \tau, I) \rightarrow (Y, \sigma, J) \) be a bijective and \(I_{rw} \)-continuous, then the following statements are equivalent:
(i) \(f \) is a \(I_{rw} \)-open map.
(ii) \(f \) is a \(I_{rw} \)-homeomorphism.
(iii) \(f \) is a \(I_{rw} \)-closed map.

Proof. Proof follows from the Definitions 3.1, 3.2 and Theorem 3.2.

Remark 3.1 The composition of two \(I_{rw} \)-homeomorphism need not be a \(I_{rw} \)-homeomorphism as seen from the following example.

Example 3.2 Let \(X = Y = Z = \{a, b, c\} \), \(\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\} \), \(I = \{\emptyset, \{c\}\} \), \(\sigma = \{\emptyset, \{c\}, \{a, b\}, Y\} \) and \(\eta = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Z\} \) respectively. Let \(f : (X, \tau, I) \rightarrow (Y, \sigma, I) \) and \(g : (Y, \sigma, I) \rightarrow (Z, \eta) \) be identity map respectively. Then both \(f \) and \(g \) are \(I_{rw} \)-homeomorphisms but their composition \(g \circ f : (X, \tau, I) \rightarrow (Z, \eta) \), is not a \(I_{rw} \)-homeomorphism, because for the open sets \(\{b\} \) of \((X, \tau, I)\), \(g \circ f(\{b\}) = g(f(\{b\})) = g(\{b\}) = \{b\} \) which is not a \(I_{rw} \)-open in \((Z, \eta)\). Therefore, \(g \circ f \) is not a \(I_{rw} \)-open and not a \(I_{rw} \)-homeomorphism.

Definition 3.3 A map \(f : (X, \tau, I) \rightarrow (Y, \sigma, J) \) is called \(I^*_rw \)-open if \(f(U) \) is \(I_{rw} \)-open in \((Y, \sigma, J)\) for every \(I_{rw} \)-open set \(U \) of \((X, \tau, I)\).

Theorem 3.4 For any bijection \(f : (X, \tau, I) \rightarrow (Y, \sigma, J) \), the following statements are equivalent:
(i) \(f^{-1} : (Y, \sigma, J) \rightarrow (X, \tau, I) \) is \(I_{rw} \)-irresolute.
(ii) \(f \) is a \(I^*_rw \)-open map.
(iii) \(f \) is a \(I^*_rw \)-closed map.
Proof. (i) \(\Rightarrow\) (ii) Let \(U\) be a \(I_{rw^-}\)-open in \((X,\tau,I)\). By (i) \((f^{-1})^{-1}(U) = f(U)\) is \(I_{rw^-}\)-open in \((Y,\sigma,J)\). Hence (ii) holds.

(ii) \(\Rightarrow\) (iii) Let \(V\) be \(I_{rw^-}\)-closed in \((X,\tau,I)\). Then \(X - V\) is \(I_{rw^-}\)-open and by (ii) \(f(X - V) = Y - f(V)\) is \(I_{rw^-}\)-open in \((Y,\sigma,J)\). That is \(f(V)\) is \(I_{rw^-}\)-closed in \(Y\) and so \(f\) is \(I_{rw^-}\)-closed map.

(iii) \(\Rightarrow\) (i) Let \(W\) be \(I_{rw^-}\)-closed in \((X,\tau,I)\). By (iii), \(f(W)\) is \(I_{rw^-}\)-closed in \((Y,\sigma,J)\). But \(f(W) = (f^{-1})^{-1}(W)\). Thus (i) holds.

Theorem 3.5 For any spaces \(I_{rw^-}^*\)-homeomorphism, then their composition \(gof: (X,\tau,I) \rightarrow (Z,\eta,k)\) is also \(I_{rw^-}^*\)-homeomorphism.

Proof. Let \(U\) be a \(I_{rw^-}\)-open set in \((Z,\eta,k)\). Since \(g\) is \(I_{rw^-}\)-irresolute, \(g^{-1}(U)\) is \(I_{rw^-}\)-open in \((Y,\sigma,J)\). Since \(f\) is \(I_{rw^-}\)-irresolute, \(f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)\) is \(I_{rw^-}\)-open set in \((X,\tau,I)\). Therefore, \((gof)^{-1}\) is \(I_{rw^-}\)-irresolute. Also, for a \(I_{rw^-}\)-open set \(G\) in \((X,\tau,I)\), we have \((gof)(G) = g(f(G)) = g(W)\), where \(W = f(G)\). By hypothesis \(f(G)\) is \(I_{rw^-}\)-open in \((Y,\sigma,J)\) and so again by hypothesis \(g(f(G))\) is a \(I_{rw^-}\)-open set in \((Z,\eta,k)\). That is \((gof)(G)\) is a \(I_{rw^-}\)-open set in \((Z,\eta,k)\) and therefore, \(gof\) is \(I_{rw^-}\)-irresolute. Also, \(gof\) is a bijection. Hence \(gof\) is \(I_{rw^-}\)-homeomorphism.

Theorem 3.6 The set \(I_{rw^-}^*\)-homeomorphism, then their composition \(gof: (X,\tau,I) \rightarrow (Z,\eta,k)\) is also \(I_{rw^-}^*\)-homeomorphism.

Proof. Define a binary operation \(\ast: I_{rw^-}^*\)-homeomorphism, then their composition \(gof: (X,\tau,I) \rightarrow (Z,\eta,k)\) is also \(I_{rw^-}^*\)-homeomorphism.

Proof. Let \(U\) be a \(I_{rw^-}\)-open set in \((Z,\eta,k)\). Since \(g\) is \(I_{rw^-}\)-irresolute, \(g^{-1}(U)\) is \(I_{rw^-}\)-open in \((Y,\sigma,J)\). Since \(f\) is \(I_{rw^-}\)-irresolute, \(f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)\) is \(I_{rw^-}\)-open set in \((X,\tau,I)\). Therefore, \((gof)^{-1}\) is \(I_{rw^-}\)-irresolute. Also, for a \(I_{rw^-}\)-open set \(G\) in \((X,\tau,I)\), we have \((gof)(G) = g(f(G)) = g(W)\), where \(W = f(G)\). By hypothesis \(f(G)\) is \(I_{rw^-}\)-open in \((Y,\sigma,J)\) and so again by hypothesis \(g(f(G))\) is a \(I_{rw^-}\)-open set in \((Z,\eta,k)\). That is \((gof)(G)\) is a \(I_{rw^-}\)-open set in \((Z,\eta,k)\) and therefore, \(gof\) is \(I_{rw^-}\)-irresolute. Also, \(gof\) is a bijection. Hence \(gof\) is \(I_{rw^-}\)-homeomorphism.

Theorem 3.7 The set \(I_{rw^-}^*\)-homeomorphism, then their composition \(gof: (X,\tau,I) \rightarrow (Z,\eta,k)\) is also \(I_{rw^-}^*\)-homeomorphism.

Proof. Let \(U\) be a \(I_{rw^-}\)-open set in \((Z,\eta,k)\). Since \(g\) is \(I_{rw^-}\)-irresolute, \(g^{-1}(U)\) is \(I_{rw^-}\)-open in \((Y,\sigma,J)\). Since \(f\) is \(I_{rw^-}\)-irresolute, \(f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)\) is \(I_{rw^-}\)-open set in \((X,\tau,I)\). Therefore, \((gof)^{-1}\) is \(I_{rw^-}\)-irresolute. Also, for a \(I_{rw^-}\)-open set \(G\) in \((X,\tau,I)\), we have \((gof)(G) = g(f(G)) = g(W)\), where \(W = f(G)\). By hypothesis \(f(G)\) is \(I_{rw^-}\)-open in \((Y,\sigma,J)\) and so again by hypothesis \(g(f(G))\) is a \(I_{rw^-}\)-open set in \((Z,\eta,k)\). That is \((gof)(G)\) is a \(I_{rw^-}\)-open set in \((Z,\eta,k)\) and therefore, \(gof\) is \(I_{rw^-}\)-irresolute. Also, \(gof\) is a bijection. Hence \(gof\) is \(I_{rw^-}\)-homeomorphism.

Theorem 3.8 The set \(I_{rw^-}^*\)-homeomorphism, then their composition \(gof: (X,\tau,I) \rightarrow (Z,\eta,k)\) is also \(I_{rw^-}^*\)-homeomorphism.

Proof. Using the map \(f\), we define a map \(\psi_f: I_{rw^-}^*\)-homeomorphism, then their composition \(gof: (X,\tau,I) \rightarrow (Z,\eta,k)\) is also \(I_{rw^-}^*\)-homeomorphism.

Proof. Using the map \(f\), we define a map \(\psi_f: I_{rw^-}^*\)-homeomorphism, then their composition \(gof: (X,\tau,I) \rightarrow (Z,\eta,k)\) is also \(I_{rw^-}^*\)-homeomorphism, then their composition \(gof: (X,\tau,I) \rightarrow (Z,\eta,k)\) is also \(I_{rw^-}^*\)-homeomorphism, then their composition \(gof: (X,\tau,I) \rightarrow (Z,\eta,k)\) is also \(I_{rw^-}^*\)-homeomorphism, then their composition \(gof: (X,\tau,I) \rightarrow (Z,\eta,k)\) is also \(I_{rw^-}^*\)-homeomorphism, then their composition \(gof: (X,\tau,I) \rightarrow (Z,\eta,k)\) is also \(I_{rw^-}^*\)-homeomorphism.
References

