On e-connectedness in Intuitionistic Fuzzy Topological Space in Ŝostak's Sense

¹ A. Vadivel, ² S. Tamilselvan and ³G. Saravanakumar

¹Department of Mathematics, Government Arts College(Autonomous) Karur, Tamil Nadu-639005 ²Mathematics Section (FEAT), Annamalai University, Annamalainagar, Tamil Nadu-608002 ³Department of Mathematics, Annamalai University, Annamalainagar, Tamil Nadu-608002

Abstract

In this paper, we introduce various types of fuzzy e-connectedness in intuitionistic fuzzy topological spaces in view of \hat{S} ostak's sense. The interrelationship between different notions of intuitionistic fuzzy e-connectedness are investigate. Also, we inspect some interrelations between these types of intuitionistic fuzzy e-connectedness together with the preservation properties under intuitionistic fuzzy e-continuous maps.

Keywords and phrases: (α, β) intuitionistic fuzzy e -open set, intuitionistic fuzzy $ec_i^{\alpha,\beta}$ (i = 1, 2, 3, 4), $ec_s^{\alpha,\beta}$, $ec_M^{\alpha,\beta}$, $eO_q^{\alpha,\beta}$ -connectedness, (α, β) -intuitionistic fuzzy super e-connectedness.

AMS (2000) subject classification: 54A40.

1. Introduction Zadeh [33] introduced the fundamental concept of a fuzzy set. Later Chang [7] defined fuzzy topological spaces. \hat{S} ostak [29] introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and Chang's fuzzy topology. The fuzzy topology in \hat{S} ostak's sense were rediscovered by Chattopadhyay et. al [8]. In the same year, Ramadan [21] gave a similar definition of a fuzzy topology under the name "smooth topology".

On the other hand, Atanssove and his collegues [2]-[6] introduced the fundamental concept of an intuitionistic fuzzy set. Coker [11],[13] used this type of generalized fuzzy set to define "intuitionistic fuzzy topological spaces". Also Coker and Demirci [12] introduced the basic definition and properties of "intuitionistic fuzzy topological spaces in \hat{S} ostak's sense" which is a generalized form of "fuzzy topological spaces" developed by \hat{S} ostak [29],[30]. In this sense many work have been launched [14],[16]-[19],[24],[31]. Recently, Sobana et.al [28] were introduced the concept of fuzzy e-open sets, fuzzy e-continuity and fuzzy e-compactness in intuitionistic fuzzy topological spaces.

Connectedness of fuzzy sets is an important subject in fuzzy topology, it won the attention of many researchers [1],[7],[15],[20],[23],[25]-[27],[32].

In this paper, many different notions of e-connectedness of fuzzy sets are extended to intuitionistic fuzzy topological spaces in \hat{S} ostak's sense and interrelationship between them are studied. Also, we inspect some interrelations between these types of intuitionistic fuzzy e-connectedness together with the preservation properties under intuitionistic fuzzy e-continuous maps.

Preliminaries

Definition 2.1 [2] Let X be a nonempty fixed set. An intuitionistic fuzzy set (briefly, IFS) A is an object having the form

$A = \{ \langle x, \, \mu_A(x), \, \gamma_A(x) \rangle \colon x \in X \} \, .$

where the map $\mu_A: X \to I$ and $\gamma_A: X \to I$ denote the degree of membership (namely, $\mu_A(x)$) and the degree of nonmembership (namely, $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$. Obviously, every fuzzy set A on

a nonempty set X is an IFS having the form

$$A = \{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle : x \in X \}$$

For the sake of simplicity, we shall use the symbol $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$. For a given nonempty set X, let us denote the family of all IFSs in X by the symbol ζ^X .

Definition 2.2[2],[4] Let X be a nonempty set, and the IFSs A and B in X be the form $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}, B = \{\langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X\}$ Furthermore, let $\{A_i : i \in J\}$ be an arbitrary family of IFSs in X. Then

- 1. $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$, for all $x \in X$,
- 2. A = B iff $A \subseteq B$ and $B \subseteq A$,
- 3. $\overline{A} = \{ \langle x, \gamma_A(x), \mu_A(x) \rangle : x \in X \},\$
- 4. $A-B=A\cap \overline{B}$,
- 5. $\bigcap A_i = \{ \langle x, \bigwedge \mu_A(x), \bigvee \gamma_A(x) \rangle : x \in X \},\$
- 6. $\left| \int A_i = \{ \langle x, \bigvee \mu_A(x), \bigwedge \gamma_A(x) \rangle : x \in X \} \right|,$
- 7. $0 = \{\langle x, 0, 1 \rangle : x \in X\}$ and $1 = \{\langle x, 1, 0 \rangle : x \in X\}.$

Definition 2.3[10] Let a and b be two real numbers in [0,1] satisfying the inequality $a+b \le 1$. Then the pair $\langle a,b \rangle$ is called an intuitionistic fuzzy pair. Let $\langle a_1,b_1 \rangle, \langle a_2,b_2 \rangle$ be two intuitionistic fuzzy pairs. Then we define

- 1. $\langle a_1, b_1 \rangle \leq \langle a_2, b_2 \rangle \Leftrightarrow a_1 \leq a_2$ and $b_1 \geq b_2$,
- 2. $\langle a_1, b_1 \rangle = \langle a_2, b_2 \rangle \Leftrightarrow a_1 = a_2$ and $b_1 = b_2$,

3. If $\{\langle a_i, b_i \rangle : i \in J\}$ is a family of intuitonistic fuzzy pairs, then $\bigvee \langle a_i, b_i \rangle = \langle \bigvee a_i, \bigwedge b_i \rangle$ and $\bigwedge \langle a_i, b_i \rangle = \langle \bigwedge a_i, \bigvee b_i \rangle$,

4. The complement of an intuitionistic fuzzy pair $\langle a,b \rangle$ is the intuitionistic fuzzy pair defined by $\overline{\langle a,b \rangle} = \langle b,a \rangle$,

5. $\tilde{1} = \langle 1, 0 \rangle$ and $\tilde{0} = \langle 0, 1 \rangle$.

Definition 2.4 [13] Let X and Y be two nonempty sets and $f: X \rightarrow Y$ be a map.

1. If $B = \{\langle y, \mu_B(y), \gamma_B(y) \rangle : y \in Y\}$ is an IFS in Y, then the preimage of B under f, denoted by $f^{-1}(B)$, is the IFS in X defined by $f^{-1}(B) = \{\langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) : x \in X\}.$

2. If $A = \{\langle y, \mu_A(y), \gamma_A(y) \rangle : x \in X\}$ is an IFS in X, then the image of A under f, denoted by f(A), is the IFS in Y defined by $f(A) = \{\langle y, f(\mu_A)(y), f(\gamma_A)(y) : y \in Y\}$, where $\underline{f}(\gamma_A) = 1 - f(1 - \gamma_A)$.

Definition 2.5[9] Let $A, B \in \zeta^{X}$. Then, A and B are said to be quasi-coincident, denoted by AqB iff there exists an element $x \in X$ such that $\mu_{A}(x) > \gamma_{B}(x)$ or $\gamma_{A}(x) < \mu_{B}(x)$, otherwise $A\overline{qB}$.

Theorem 2.1[9],[31] Let $A, B \in \zeta^X$. Then

- 1. $A\overline{qB}$ iff $A \subseteq B$,
- 2. AqB iff $A \not\subseteq \overline{B}$,
- 3. if $A \cap B = 0$, then $A \subseteq \overline{B}$,
- 4. if $A \not\subset \overline{B}$, then $A \cap B \neq 0$.

Definition 2.6[10] An IFS ξ on the set ζ^X is called an intuitionistic fuzzy family (IFF for short) on *X*. In symbols, denote such an IFF in form $\xi = \langle \mu_{\xi}, \gamma_{\xi} \rangle$. Let ξ be an IFF on *X*. Then

the complemented IFF of ξ on X is defined by $\xi^* = \langle \mu_{\xi^*}, \gamma_{\xi^*} \rangle$, where $\mu_{\xi^*}(A) = \mu_{\xi}(\overline{A})$ and $\gamma_{\xi^*}(A) = \gamma_{\xi}(\overline{A})$, for each $A \in \zeta^X$.

If T is an IFF on X, then for any $A \in \zeta^X$, construct the intuitionistic fuzzy pair $\langle \mu_T(A), \gamma_T(A) \rangle$ (A) \rangle and use the symbol $T(A) = \langle \mu_T(A), \gamma_T(A) \rangle$.

Definition 2.7.[12] An intuitionistic fuzzy topology in \hat{S} ostak's sense (IFT for short) on a nonempty set X is an IFF T on X satisfying the following axioms:

- 1. $T(0_{1}) = T(1_{1}) = \tilde{1}$,
- 2. $T(A \cap B) \ge T(A) \wedge T(B)$, for any $A, B \in \zeta^X$,
- 3. $T(\bigcup_{A_i}) \ge \bigwedge T(A_i)$, for any $\{A_i : j \in J\} \subseteq \zeta^X$.

In this case, the pair (X,T) is called an intuitionistic fuzzy topological space in \hat{S} ostak's sense (IFTS for short). For any $A \in \zeta^X$, the number $\mu_T(A)$ is called the openness degree of A, while $\gamma_T(A)$ is called the nonopenness degree of A.

Definition 2.8[12] Let (X,T) be an IFTS on X. Then, the IFF T^* of complemented IFSs on X is defined by: $T^*(A) = T(\overline{A})$. The number $\mu_{T^*}(A) = \mu_T(\overline{A})$ is called the closedness degree of A, while $\gamma_{T^*}(A) = \gamma_T(\overline{A})$ is called the nonclosedness degree of A.

Theorem 2.2[12] The IFF T^* on X satisfies the following properties:

- 1. $T^*(0 =) = T^*(1 =) = \tilde{1}$,
- 2. $T^*(A \cup B) \ge T^*(A) \wedge T^*(B)$, for any $A, B \in \zeta^X$,
- 3. $T^*(\bigcap A_i) \ge \bigwedge T^*(A_i)$, for any $\{A_i : i \in J\} \subseteq \zeta^X$.

Definition 2.9[12] Let (X,T) be an IFTS and A be an IFS in X. Then the fuzzy closure and fuzzy interior of A are defined by

 $cl_{\alpha,\beta}(A) = \bigcap \{K \in \zeta^X : A \subseteq K, T^*(K) \ge \langle \alpha, \beta \rangle \}. \quad int_{\alpha,\beta}(A) = \bigcup \{G \in \zeta^X : G \subseteq A, T(G) \ge \langle \alpha, \beta \rangle \}.$ where $\alpha \in I_0 = (0,1], \beta \in I_1 = [0,1]$ with $\alpha + \beta \le 1$.

Theorem 2.3[12] The closure and interior operators satisfy the following properties:

- 1. $A \subseteq cl_{\alpha,\beta}(A)$,
- 2. $int_{\alpha,\beta}(A) \subseteq A$,
- 3. $cl_{\alpha,\beta}(cl_{\alpha,\beta}(A)) = cl_{\alpha,\beta}(A)$,

4.
$$int_{\alpha,\beta}(int_{\alpha,\beta}(A)) = int_{\alpha,\beta}(A)$$

- 5. $cl_{\alpha,\beta}(A \cup B) = cl_{\alpha,\beta}(A) \cup cl_{\alpha,\beta}(B)$,
- 6. $int_{\alpha,\beta}(A \cap B) = int_{\alpha,\beta}(A) \cap int_{\alpha,\beta}(B)$,

7.
$$\overline{cl_{\alpha,\beta}(A)} = int_{\alpha,\beta}(\overline{A})$$
,

8. $\overline{int_{\alpha,\beta}(A)} = cl_{\alpha,\beta}(\overline{A}).$

Definition 2.10[12] Let (X, T_1) and (Y, T_2) be two IFTSs and $f: X \rightarrow Y$ be a map. Then f is said to be intuitionistic fuzzy continuous iff

$$T_1(f^{-1}(B)) \ge T_2(B)$$

for each $B \in \zeta^{Y}$.

Theorem 2.4[12] The following properties are equivalent

- 1. $f:(X,T_1) \rightarrow (Y,T_2)$ is an intuitionistic fuzzy continuous,
- 2. $T_1^*(f^{-1}(B)) \ge T_2^*(B)$, for each $B \in \zeta^Y$.

Definition 2.11[22] Let A be an IFS in an IFTS (X,T). For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1, A$ is called:

1. an (α, β) -intuitionistic fuzzy regular open (briefly, (α, β) -ifro) set of X, if $int_{\alpha,\beta}(cl_{\alpha,\beta}(A)) = A$,

2. an (α, β) -intuitionistic fuzzy regular closed (briefly, (α, β) -ifrc) set of X, if $cl_{\alpha,\beta}(int_{\alpha,\beta}(A)) = A$.

Theorem 2.5[22] Let A be an IFS in an IFTS (X,T). Then, for $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$.

1. If A is an (α, β) -ifro (resp. (α, β) -ifrc) set then, $T(A) \ge \langle \alpha, \beta \rangle$ (resp. $T^*(A) \ge \langle \alpha, \beta \rangle$),

2. A is an (α, β) -ifro set iff \overline{A} is an (α, β) -ifrc set.

3. Different notions of *e*-connectedness of intuitionistic fuzzy sets

Definition 3.1. Let (X,T) be an IFTS and $A = \langle x, \mu_A(x), \nu_A(x) \rangle$ be a IFS in X. Then the fuzzy δ closure of A are denoted and defined by $\delta cl_{\alpha,\beta}(A) = \bigcap \{K : K \text{ is an } (\alpha,\beta) \text{ ifrcs in } X \text{ and } A \subseteq K \}$ and $\delta int_{\alpha,\beta}(A) = \bigcup \{G : G \text{ is an } (\alpha,\beta) \text{ ifros in } X \text{ and } G \subseteq A \}.$

Definition 3.2 Let A be an IFS in an IFTS (X,T). A is called an (α,β) intuitionistic fuzzy e-open set (resp. e-closed set) $((\alpha,\beta)$ -ifeos, for short)(resp. (α,β) -ifecs, for short) in X if $A \leq cl_{\alpha,\beta}\delta int_{\alpha,\beta}(A) \vee int_{\alpha,\beta}\delta cl_{\alpha,\beta}(A)$ (resp. $A \geq int_{\alpha,\beta}\delta cl_{\alpha,\beta}(A) \wedge cl_{\alpha,\beta}\delta int_{\alpha,\beta}(A)$).

Definition 3.3 Let (X,T) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy e-interior and intuitionistic fuzzy e-closure are defined and denoted by:

 $ecl_{\alpha,\beta}(A) = \bigcap \{K : K \text{ is an } (\alpha, \beta) \text{ ifecs in } X \text{ and } A \subseteq K\}$

and

$$eint_{\alpha,\beta}(A) = \bigcup \{G: G \text{ is an } (\alpha,\beta) \text{ if eos in } X \text{ and } G \subseteq A \}$$

It is clear that A is an (α, β) -ifecs $((\alpha, \beta)$ -ifeos) in X iff $A = ecl_{\alpha,\beta}(A)(A = int_e(A))$. **Definition 3.4** Let (X, T) be an IFTS and $N \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \le 1$

1. If there exist the IFSs $U, V \in \zeta^X$ with U and V are $\langle \alpha, \beta \rangle$ -intuitionistic fuzzy e-open sets satisfying the following properties, then N is called an intuitionistic fuzzy $ec_i^{\alpha,\beta}$ -disconnected (briefly, $IFec_i^{\alpha,\beta}$ -disconnected),

(i = 1, 2, 3, 4):

$$\begin{split} IFec_{1}^{\alpha,\beta} &: N \subseteq U \cup V, U \cap V \subseteq \overline{N}, N \cap U \neq 0_{\pm}, N \cap V \neq 0_{\pm}, \\ IFec_{2}^{\alpha,\beta} &: N \subseteq U \cup V, N \cap U \cap V = 0_{\pm}, N \cap U \neq 0_{\pm}, N \cap V \neq 0_{\pm}, \\ IFec_{3}^{\alpha,\beta} &: N \subseteq U \cup V, U \cap V \subseteq \overline{N}, U \not\subseteq \overline{N}, V \not\subseteq \overline{N}, \\ IFec_{4}^{\alpha,\beta} &: N \subseteq U \cup V, N \cap U \cap V = 0_{\pm}, U \not\subseteq \overline{N}, V \not\subset \overline{N}. \end{split}$$

2. *N* is said to be intuitionistic fuzzy $ec_i^{\alpha,\beta}$ -connected (briefly, $IFec_i^{\alpha,\beta}$ -connected) if *N* is not an $IFec_i^{\alpha,\beta}$ -disconnected, (*i* = 1, 2, 3, 4).



From Definition 3.4., we have the following implication between $IFec_i^{\alpha,\beta}$ -connectedness (i = 1, 2, 3, 4).

But the reciprocal implication are not true in general as shown by the following examples. **Example 3.1** Let $X = \{a, b, c\}$ and $N_1, N_2, G_i \in \zeta^X$ (i = 1, 2, 3, 4) defined as follows:

$$\begin{split} N_1 &= \langle x, (\frac{a}{0.1}, \frac{b}{0.2}, \frac{c}{0.1}), (\frac{a}{0.3}, \frac{b}{0.5}, \frac{c}{0.3}) \rangle \qquad ; \qquad N_2 = \langle x, (\frac{a}{0.4}, \frac{b}{0.3}, \frac{c}{0.3}), (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.2}) \rangle \qquad ; \\ G_1 &= \langle x, (\frac{a}{0.4}, \frac{b}{0.4}, \frac{c}{0.3}), (\frac{a}{0.1}, \frac{b}{0.3}, \frac{c}{0.3}) \rangle \qquad ; \qquad G_2 = \langle x, (\frac{a}{0.3}, \frac{b}{0.5}, \frac{c}{0.1}), (\frac{a}{0.4}, \frac{b}{0.2}, \frac{c}{0.2}) \rangle \qquad ; \\ G_3 &= \langle x, (\frac{a}{0.4}, \frac{b}{0.5}, \frac{c}{0.3}), (\frac{a}{0.1}, \frac{b}{0.2}, \frac{c}{0.2}) \rangle ; \qquad G_4 = \langle x, (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.1}), (\frac{a}{0.4}, \frac{b}{0.3}, \frac{c}{0.3}) \rangle . \end{split}$$

Let $T: \zeta^X \to I \times I$ defined as follows: $(\tilde{1} \quad :f \in A \subset \{0, 1, 1\})$

$$T(A) = \begin{cases} 1, & \text{if } A \in \{0_{-1}, 1_{-1}\} \\ \langle 0.5, 0.2 \rangle, & \text{if } A = G_i (i = 1, 2, 3, 4) \\ \tilde{0}, & \text{otherwise.} \end{cases}$$

Let $\alpha = 0.3, \beta = 0.4$. Then, N_1 is both an $IFec_2^{\alpha,\beta}$ -connected and $IFec_3^{\alpha,\beta}$ -connected but not an $IFec_1^{\alpha,\beta}$ -connected (i.e., N_1 is an $IFec_2^{\alpha,\beta}$ -connected since, for every $G_i \in \zeta^X$ with G_i is (α,β) -ifeos, i=1,2,3,4, and satisfies $N_1 \subseteq G_1 \cup G_2, N_1 \subseteq G_1 \cup G_3, N_1 \subseteq G_1 \cup G_4, N_1 \subseteq G_3 \cup G_2, N_1 \subseteq G_3 \cup G_4$, we have $N_1 \cap G_1 \cap G_2 \neq 0$.

 $N_1 \cap G_1 \cap G_3 \neq 0, N_1 \cap G_1 \cap G_4 \neq 0$, $N_1 \cap G_3 \cap G_2 \neq 0$, $N_1 \cap G_3 \cap G_4 \neq 0$. Similarly, N_1 is an $IFec_3^{\alpha,\beta}$ -connected. N_1 is not an $IFec_1^{\alpha,\beta}$ -connected since, there exist $G_1, G_2 \in \zeta^X$ with G_i is (α, β) -ifeos, i = 1, 2 and satisfies $N_1 \subseteq G_1 \cup G_2, G_1 \cap G_2 \subseteq \overline{N_1}, N_1 \cap G_1 \neq 0$ and $N_1 \cap G_2 \neq 0$. By the same technique we have, N_2 is an $IFec_4^{\alpha,\beta}$ -connected but not an $IFec_3^{\alpha,\beta}$ -connected.

Example 3.2 Let $X = \{a, b, c\}$ and $N, G_i \in \zeta^X$ (i = 1, 2, 3, 4) defined as follows:

$$N_{1} = \langle x, (\frac{a}{0.4}, \frac{b}{0.2}, \frac{c}{0.0}), (\frac{a}{0.3}, \frac{b}{0.5}, \frac{c}{1.0}) \rangle \qquad ; \qquad G_{1} = \langle x, (\frac{a}{0.0}, \frac{b}{0.3}, \frac{c}{0.2}), (\frac{a}{1.0}, \frac{b}{0.4}, \frac{c}{0.3}) \rangle \qquad ;$$

$$G_2 = \langle x, (\frac{a}{0.5}, \frac{b}{0.0}, \frac{c}{0.1}), (\frac{a}{0.2}, \frac{b}{1.0}, \frac{c}{0.3}) \rangle \qquad ; \qquad G_3 = \langle x, (\frac{a}{0.5}, \frac{b}{0.3}, \frac{c}{0.2}), (\frac{a}{0.2}, \frac{b}{0.4}, \frac{c}{0.3}) \rangle \qquad ; \qquad$$

 $G_{4} = \langle x, (\frac{a}{0.0}, \frac{b}{0.0}, \frac{c}{0.1}), (\frac{a}{1.0}, \frac{b}{1.0}, \frac{c}{0.3}) \rangle. \text{ Let } T: \zeta^{X} \to I \times I \text{ defined as follows:}$ $T(A) = \begin{cases} \tilde{1}, & \text{if } A \in \{0_{\pm}, 1_{\pm}\} \\ \langle 0.4, 0.1 \rangle, & \text{if } A = \{G_{1}, G_{2}\} \\ \langle 0.6, 0.1 \rangle, & \text{if } A \in \{G_{3}, G_{4}\} \\ \tilde{0}, & \text{otherwise.} \end{cases}$

Let $\alpha = 0.2$, $\beta = 0.5$. Then, N is an $IFec_4^{\alpha,\beta}$ -connected but not an $IFec_2^{\alpha,\beta}$ (resp. $IFec_2^{\alpha,\beta}$) - connected.

Definition 3.5 Let X be a nonempty set and $A, B \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$, A and B are said to be

1. (α, β) -intuitionistic fuzzy *e* -weakly separated (briefly, (α, β) - *IFeWS*) if there exist

IFSs $U, V \in \zeta^{X}$ with U and V are $\langle \alpha, \beta \rangle$ - ifeos such that $A \subseteq U$, $B \subseteq V, AqV, BqU$, 2. (α, β) -intuitionistic fuzzy eq-separated (briefly, (α, β) -*IFeqS*) if $ecl_{\alpha,\beta}(A) \cap B = 0$ and $A \cap ecl_{\alpha,\beta}(B) = 0$.

Theorem 3.1 Let (X,T) be an IFTS and $A, B \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1, A$ and B are (α, β) -IFeWS iff $ecl_{\alpha,\beta}A \subseteq \overline{B}$ and $ecl_{\alpha,\beta}B \subseteq \overline{A}$.

Proof. Suppose that A, B are (α, β) -IFeWS. Then, there exists (α, β) -ifeo sets $U, V \in \zeta^X$ such that $A \subseteq U, B \subseteq V, AqV, BqU$. By Theorem 2.1, $A \subseteq \overline{V}$, since \overline{V} is (α, β) -ifeo-set then $ecl_{\alpha,\beta}A \subseteq \overline{V} \subseteq \overline{B}$. Similarly, $ecl_{\alpha,\beta}B \subseteq \overline{A}$.

Conversely, suppose that $ecl_{\alpha,\beta}A \subseteq \overline{B}$ and $ecl_{\alpha,\beta}B \subseteq \overline{A}$. Then, $B \subseteq \overline{ecl_{\alpha,\beta}A} = V, A \subseteq \overline{ecl_{\alpha,\beta}B} = U$ which implies that, $U = \overline{ecl_{\alpha,\beta}B} = ecl_{\alpha,\beta}B$ is (α,β) -ifeos and $V = \overline{ecl_{\alpha,\beta}A} = ecl_{\alpha,\beta}A$ is ifeos. Also, $A \subseteq ecl_{\alpha,\beta}A = \overline{V}$ and $B \subseteq ecl_{\alpha,\beta}B = \overline{U}$, which implies that AqV, BqU. Hence, A, B are (α, β) -IFeWS.

Definition 3.6 Let (X,T) be an IFTS and $N \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$,

1. *N* is called an intuitionistic fuzzy $ec_s^{\alpha,\beta}$ -disconnected (briefly, $IFec_s^{\alpha,\beta}$ -disconnected) if there exist an (α,β) -IFeWS sets $A, B \in \zeta^X$ such that $A \cup B = N$ and $A \neq 0$, $B \neq 0$, ,

2. *N* is called an intuitionistic fuzzy $ec_M^{\alpha,\beta}$ -disconnected (briefly, $IFec_M^{\alpha,\beta}$ -disconnected) if there exist an (α,β) -*IFeqS* sets $A, B \in \zeta^X$ such that $A \cup B = N$ and $A \neq 0$, $B \neq 0$, ,

3. N called an $IFec_s^{\alpha,\beta}$ -connected if N is not an $IFec_s^{\alpha,\beta}$ -disconnected,

4. N called an $IFec_{M}^{\alpha,\beta}$ -connected if N is not an $IFec_{M}^{\alpha,\beta}$ -disconnected.

Theorem 3.2 Let (X,T) be an IFTS and $N \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \le 1$, if N is an $IFec_s^{\alpha,\beta}$ -connected then, N is an $IFec_M^{\alpha,\beta}$ -connected.

Proof. Suppose for a contradiction that N is an $IFec_M^{\alpha,\beta}$ -disconnected. Then, there exist $A, B \in \zeta^X$ such that $A \cup B = N$, $(ecl_{\alpha,\beta}A) \cap B = 0$; $(ecl_{\alpha,\beta}B) \cap A = 0$; $A \neq 0$; $B \neq 0$; . By Theorem 2(`)@, we have $ecl_{\alpha,\beta}A \subseteq \overline{B}$, $ecl_{\alpha,\beta}B \subseteq \overline{A}$. Then by Theorem 3.1, N is an $IFec_s^{\alpha,\beta}$ -disconnected which is a contradiction. Hence, N is an $IFec_M^{\alpha,\beta}$ -connected.

Theorem 3.3. Let (X,T) be an IFTS and $N \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \le 1$, if N is an $IFec_1^{\alpha,\beta}$ -connected then, N is an $IFec_s^{\alpha,\beta}$ -connected.

Proof. Suppose that N is an $IFec_s^{\alpha,\beta}$ -disconnected. Then, there exist $A, B \in \zeta^X$ such that $A \cup B = N$, $(ecl_{\alpha,\beta}A) \subseteq \overline{B}, (ecl_{\alpha,\beta}B) \subseteq \overline{A}, A \neq 0$, $B \neq 0$. By Theorem 3.1, there exist $U, V \in \zeta^X$ with, U and V are $\langle \alpha, \beta \rangle$ - ifeos such that, $A \subseteq U, B \subseteq V, A\overline{q}V, B\overline{q}U$. Then, $N = A \cup B \subseteq U \cup V$. Also, $N \cap U \neq 0$. For, if $N \cap U = 0$. then $N \cap A = 0$. Also, $U \cap V \subseteq \overline{N}$. For, if $U \cap V \not\subseteq \overline{N}$ then, $(U \cap V)qN$ which implies that $(U \cap V)qA$ or $(U \cap V)qB$. Then (UqA and VqA) or (UqB and VqB) a contradiction with $A\overline{q}V$ and $B\overline{q}U$. Thus, N is an $IFec_1^{\alpha,\beta}$ -disconnected, which is a contradiction. Hence, N is an

IFec^{α,β} -connected.

Theorem 3.4 Let (X,T) be an IFTS and $N \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \le 1$, if N is an $IFec_s^{\alpha,\beta}$ -connected then, N is an $IFec_2^{\alpha,\beta}$ -connected.

Proof. Suppose that N is an $IFec_2^{\alpha,\beta}$ -disconnected. Then, there exist (α,β) -ifeo sets $U, V \in \zeta^X$ such that, $N \subseteq U \cup V, N \cap U \cap V = 0$, $N \cap U \neq 0$. N $\cap V \neq 0$. Put $A = N \cap U \subseteq U$ and $B = N \cap V \subseteq V$. Then, $A \cup B = (N \cap U) \cup (N \cap V) = N \cap (U \cup V) = N$. Now, if AqV then, there exists $x \in X$ such that $\mu_A(x) > \gamma_V(x)$ or $\gamma_A(x) < \mu_V(x)$. First if $\mu_A(x) > \gamma_V(x)$ then, $\mu_A(x) > 0$. Since $N = A \lor B$ and $A \le U$ then, $\mu_N(x) > 0$. and $\mu_U(x) > 0$, $\mu_V(x) \neq 0$, (since, if $\mu_V(x) = 0$, then $\gamma_V(x) = 1$, a contradiction with $\mu_A(x) > \gamma_V(x)$). Thus $(\mu_N(x) \land \mu_U(x) \land \mu_V(x)) > 0$. So, $N \cap U \cap V \neq 0$. a contradiction $N \cap U \cap V = 0$. Thus AqV. Second: if $\gamma_A(x) < \mu_V(x)$ with then, $\mu_V(x) > 0$, $\mu_N(x) > 0$. (for, if $\mu_N(x) = 0$. then, $N = A \cup B$ implies that, $\mu_A(x) = \mu_B(x) = 0$ so $\gamma_A(x) = 1$ a contradicts with $\gamma_A(x) < \mu_V(x)$). Since, $\mu_N(x) > 0$ then, $(\mu_N \wedge \mu_U \wedge \mu_V)(x) \neq 0$ and $N \subseteq U \cup V \neq 0$, $\mu_V(x) > 0$, so, $N \cap U \cap V \neq 0$ a contradiction, then AqV. Similarly, BqU. Then, N is an $IFec_s^{\alpha,\beta}$ -disconnected, a contradiction. Thus N is an $IFec_2^{\alpha,\beta}$ -connected.

Theorem 3.5 Let (X,T) be an IFTS and $N \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$, if N is an $IFec_s^{\alpha,\beta}$ -connected then, N is an $IFec_3^{\alpha,\beta}$ -connected.

Proof. Suppose that N is an $IFec_2^{\alpha,\beta}$ -disconnected. Then, there exist $U, V \in \zeta^X$ with, U and V are $\langle \alpha, \beta \rangle$ -ifeo-sets such that, $N \subseteq U \cup V, U \cap V \subseteq \overline{N}, U \not\subseteq \overline{N} \quad V \not\subseteq \overline{N}$. Put $A = N \cap U \subseteq U$ and $B = N \cap V \subseteq V$. Then, $A \cup B = N$. Let $R = \langle x, \mu_R(x), \gamma_R(x) \rangle$ and $S = \langle x, \mu_S(x), \gamma_S(x) \rangle$. Where

$$\mu_{R}(x) = \begin{cases} \mu_{A}(x), & \text{if } \mu_{U}(x) \ge \mu_{V}(x) \\ 0, & \text{otherwise} \end{cases}$$
$$\gamma_{R}(x) = \begin{cases} \gamma_{A}(x), & \text{if } \gamma_{U}(x) \le \gamma_{V}(x) \\ 1, & \text{otherwise} \end{cases}$$
$$\mu_{S}(x) = \begin{cases} \mu_{B}(x), & \text{if } \mu_{U}(x) < \mu_{V}(x) \\ 0, & \text{otherwise} \end{cases}$$
$$\gamma_{S}(x) = \begin{cases} \gamma_{B}(x), & \text{if } \gamma_{U}(x) > \gamma_{V}(x) \\ 1, & \text{otherwise.} \end{cases}$$

Then, $N = R \cup S$ Now, $R \neq 0$ (since, if R = 0, then $U \subset V$ which implies that, $U = U \cap V \subseteq \overline{N}$, a contradiction). Similarly, $S \neq 0$. Also, $R \subseteq A \subseteq U$ and $S \subseteq B \subseteq V$. Now, RqV. For, if RqV then, there exists, $x \in X$ such that, $\mu_R(x) > \gamma_V(x)$ or $\gamma_R(x) < \mu_V(x)$. First, if $\mu_R(x) > \gamma_V(x)$ then, $\mu_R(x) > 0$; which implies that, $\mu_U(x) \ge \mu_V(x)$. Since $N = R \cup S$ then, $\mu_N(x) \ge \mu_R(x) > \gamma_V(x)$. Since, $U \cap V \subseteq \overline{N}$ then, $\mu_N(x) \le \gamma_U(x) \lor \gamma_V(x)$ but, $\mu_N(x) > \gamma_V(x)$ this implies that $\gamma_U(x) > \gamma_V(x)$ then, $\gamma_R(x) = 1$ this implies that $\mu_R(x) = 0$; a contradiction. Then, RqV. Second, if $\gamma_R(x) < \mu_V(x)$ then, $\gamma_R(x) < 1$; which implies that $\gamma_U(x) \le \gamma_V(x)$. Since $N = R \cup S$ then, $\gamma_N(x) = (\gamma_R \land \gamma_S)(x)$ implies that $\gamma_N(x) \leq \gamma_R(x)$ then, $\gamma_N(x) \leq \mu_V(x)$. Since, $U \cap V \subseteq \overline{N}$ then, $\gamma_N(x) \geq (\mu_U \wedge \mu_V)(x)$ but, $\gamma_N(x) < \mu_V(x)$ this implies that $\mu_V(x) > \mu_U(x)$ then, $\mu_R(x) = 0$ implies $\gamma_R(x) = 1$ a contradiction. Then, $R\overline{q}V$. Similarly, $S\overline{q}U$. Then N is an $IFec_s^{\alpha,\beta}$ -disconnected, which is a contradiction. Thus, N is an $IFec_s^{\alpha,\beta}$ -connected.

Theorem 3.6 Let (X,T) be an IFTS and $N \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$, if N is an $IFec_3^{\alpha,\beta}$ -connected then, N is an $IFec_M^{\alpha,\beta}$ -connected.

Proof. Suppose that N is an $IFec_{M}^{\alpha,\beta}$ -disconnected. Then, there exist $A, B \in \zeta^{X}$ such that, $A \cup B = N, (ecl_{\alpha,\beta}A) \cap B = 0, (ecl_{\alpha,\beta}B) \cap A = 0$, $A \neq 0$, $B \neq 0$. Let $U = \overline{ecl_{\alpha,\beta}A}$ and $V = \overline{ecl_{\alpha,\beta}B}$. Then, $U = \overline{U}^{c} = (ecl_{\alpha,\beta}A)^{c}$ and $V = \overline{V}^{c} = (ecl_{\alpha,\beta}B)^{c}$ are (α,β) -ifeo sets.

Now,
$$U \cap V = \overline{ecl_{\alpha,\beta}A} \cap \overline{ecl_{\alpha,\beta}B} = \overline{ecl_{\alpha,\beta}A \cup ecl_{\alpha,\beta}B} = \overline{ecl_{\alpha,\beta}(A \cup B)} = \overline{ecl_{\alpha,\beta}N} \subseteq \overline{N}$$
. Also,

 $U \cup V = \overline{ecl_{\alpha,\beta}A} \cup \overline{ecl_{\alpha,\beta}B} = \overline{ecl_{\alpha,\beta}A \cap ecl_{\alpha,\beta}B} = \overline{ecl_{\alpha,\beta}(A \cap B)} = \overline{ecl_{\alpha,\beta}0}_{\pm} = \overline{0}_{\pm} = 1_{\pm}.$ Then, $N \subseteq U \cup V \quad \text{Also} \quad U \not \subseteq \overline{N}.$ For if $U \subseteq \overline{N}$ then, $N \subseteq \overline{U} = ecl_{\alpha,\beta}A$ this implies that, $ecl_{\alpha,\beta}A \supseteq A \cup B$ implies $ecl_{\alpha,\beta} \supseteq B$ implies $B \cap ecl_{\alpha,\beta}A \neq 0_{\pm}$, a contradiction. Similary, $V \not \subseteq \overline{N}.$ Therefore, N is an $IFec_{3}^{\alpha,\beta}$ -disconnected which is a contradiction, then N is an $IFec_{M}^{\alpha,\beta}$ -connected.

Definition 3.7 Let *X* be a nonempty set and $A, B \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \le 1, A$ and *B* are said to be

1. (α, β) -intuitionistic fuzzy *e*-separated (briefly, (α, β) -*IFes*), if there exist IFSs $U, V \in \zeta^X$ with *U* and *V* are $\langle \alpha, \beta \rangle$ -ifeo-sets such that $A \subseteq U, B \subseteq V, U \cap B = 0$; and $A \cap V = 0$;

2. (α, β) -intuitionistic fuzzy strongly *e*-separated (briefly, (α, β) -*IFSeS*) if there exist IFSs $U, V \in \zeta^X$ with *U* and *V* are $\langle \alpha, \beta \rangle$ -ifeo-sets such that $A \subseteq U, B \subseteq V, U \cap B = 0$ and $A \cap V = 0$, UqA and VqB.

Definition 3.8 Let (X,T) be a nonempty set and $A, B \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$

1. *N* is called an intuitionistic fuzzy $eO^{\alpha,\beta}$ -disconnected (briefly, $IFeO^{\alpha,\beta}$ -disconnected) if there exist an (α,β) -IFeS sets $A, B \in \zeta^X$ such that $A \cup B = N, A \neq 0$ and $B \neq 0$,

2. N is called an intuitionistic fuzzy $eO_q^{\alpha,\beta}$ -disconnected (briefly, $IFeO_q^{\alpha,\beta}$ -disconnected) if there exist an (α,β) -IFSeS sets $A, B \in \zeta^X$ such that $A \cup B = N, A \neq 0$. and $B \neq 0$.

3. N is called an $IFeO^{\alpha,\beta}$ -connected if N is not an $IFeO^{\alpha,\beta}$ -disconnected,

4. *N* is called an $IFeO_a^{\alpha,\beta}$ -connected if *N* is not an $IFeO_a^{\alpha,\beta}$ -disconnected.

Theorem 3.7 Let (X,T) be an IFTS and $N \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$, if N is an $IFec_2^{\alpha,\beta}$ -connected iff N is an $IFeO^{\alpha,\beta}$ -connected.

Proof. Suppose that N is an $IFeO^{\alpha,\beta}$ -disconnected. Then, there exist $A, B \in \zeta^X$ such that, A, B are (α, β) -IFeS, $N = A \cup B, A \neq 0$, $B \neq 0$. Since A, B are (α, β) -IFS, there exist

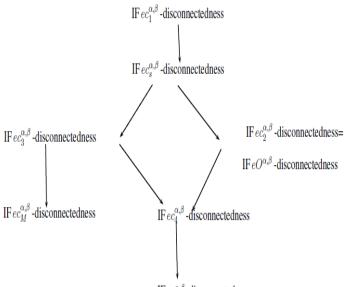
 $U,V \in \zeta^X$ with Uand V-ifeo-sets are $\langle \alpha, \beta \rangle$ such that, $A \subseteq U, B \subseteq V, U \cap B = 0$, $V \cap A = 0$, $N = A \cup B \subseteq U \cup V$. Now $N \cap U \cap V = (A \cup B) \cap (U \cap V) =$ $(A \cap U \cap V) \cup (B \cap U \cap V) = 0$ Also, $N \cap U = (A \cup B) \cap U = (A \cap U) \cup (B \cap U) = A \cup 0$, $= A \neq 0$. Similarly, $N \cap V \neq 0$. Then, N is an $IFec_2^{\alpha,\beta}$ -disconnected, which is a contradiction Hence, N is an $IFeO^{\alpha,\beta}$ -connected. Conversely, suppose that N is an $IFec_2^{\alpha,\beta}$ -disconnected. Then, there exist $U, V \in \zeta^X$ with

U and V are (α,β) -ifeo-sets such that, $N \subseteq U \cup V, N \cap U \cap V = 0$, $N \cap U \neq 0$, $N \cap V \neq 0$. Let $A = N \cap U \subseteq U$ and $B = N \cap V \subseteq V$. Then, $A \cup B = (N \cap U) \cup (N \cap V) = N \cap (U \cup V) = N$. Also, $U \cap B = U \cap N \cap V = 0$. Similary, $V \cap A = 0$. So, N is an *IFeO*^{α,β}-disconnected which is a contradiction. Then, N is an *IFec*₂^{α,β}-connected.

Theorem 3.8 Let (X,T) be an IFTS and $N \in \zeta^X$. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$, if N is an $IFec_4^{\alpha,\beta}$ -connected then N is an $IFeO_q^{\alpha,\beta}$ -connected.

Proof. Suppose that N is an $IFeO_a^{\alpha,\beta}$ -disconnected. Then, there exist $A, B \in \zeta^X$ such that, A, B are (α, β) -IFSeS, $N = A \cup B$. Since A, B are (α, β) -IFSeS, there exist $U, V \in \zeta^X$ $\langle \alpha, \beta \rangle$ -ifeo-sets with U and Vare such that, $A \subseteq U, B \subseteq V, U \cap B = 0$, $V \cap A = 0$, $UqA, VqB N = A \cup B \subseteq U \cup V$. Now $N \cap U \cap V = (A \cup B) \cap (U \cap V) = (A \cap U \cap V) \cup (B \cap U \cap V) = 0$. Also, since UqA and $A \subseteq N$ there exist $x \in X$ such that $\mu_U(x) > \gamma_A(x) \ge \gamma_N(x)$ or $\gamma_U(x) < \mu_A(x) \le \mu_N(x)$ this implies that, $U \not\subseteq \overline{N}$. Similarly, $V \not\subseteq \overline{N}$. Therefore, N is an $IFec_4^{\alpha,\beta}$ -disconnected which is a contradiction. Then, N is an $IFeO_a^{\alpha,\beta}$ -connected.

Remark 3.2 From Remark 3.1 and Theorems 3.2-3.8, we can build the following diagram



IF $eo_{\alpha}^{\alpha,\beta}$ -disconnectedness

Examples 3.1, 3.2 and the next examples show that the reverse implications in Remark 3.2 are not true in general.

Example 3.3 Let $X = \{a, b\}$ and $N, G_i \in \zeta^X$ (i = 1, 2) be defined as follows:

$$\begin{split} N &= \langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.4}, \frac{b}{0.3}) \rangle \ ; \quad G_1 &= \langle x, (\frac{a}{0.6}, \frac{b}{0.7}), (\frac{a}{0.2}, \frac{b}{0.1}) \rangle \ ; \quad G_2 &= \langle x, (\frac{a}{0.1}, \frac{b}{0.2}), (\frac{a}{0.3}, \frac{b}{0.4}) \rangle. \end{split}$$
Let $T : \zeta^X \to I \times I$ defined as follows: $T(A) &= \begin{cases} \tilde{1}, & \text{if } A \in \{0_{\pm}, 1_{\pm}\} \\ \langle 0.4, 0.2 \rangle, & \text{if } A = G_1 \\ \langle 0.6, 0.1 \rangle, & \text{if } A = G_2 \\ \tilde{0}, & \text{otherwise.} \end{cases}$ Let $\alpha = 0.3, \beta = 0.4$. Then, N is an $IFec_s^{\alpha,\beta}$ -connected but not $IFec_1^{\alpha,\beta}$ -connected.

Example 3.4 Let $X = \{a, b\}$ and $N, G_i \in \zeta^X$ (i = 1, 2, 3, 4, 5, 6) be defined as follows:

$$N = \langle x, (\frac{a}{0.2}, \frac{b}{0.2}), (\frac{a}{0.4}, \frac{b}{0.5}) \rangle; \quad G_1 = \langle x, (\frac{a}{0.2}, \frac{b}{0.3}), (\frac{a}{0.4}, \frac{b}{0.3}) \rangle;$$

$$G_2 = \langle x, (\frac{a}{0.3}, \frac{b}{0.2}), (\frac{a}{0.2}, \frac{b}{0.3}) \rangle; \quad G_3 = \langle x, (\frac{a}{0.2}, \frac{b}{0.2}), (\frac{a}{0.4}, \frac{b}{0.3}) \rangle;$$

$$G_4 = \langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.2}, \frac{b}{0.3}) \rangle; \quad G_5 = \langle x, (\frac{a}{0.0}, \frac{b}{0.2}), (\frac{a}{0.4}, \frac{b}{0.5}) \rangle;$$

$$G_6 = \langle x, (\frac{a}{0.2}, \frac{b}{0.0}), (\frac{a}{0.3}, \frac{b}{0.4}) \rangle. \text{ Let } T : \zeta^X \to I \times I \text{ defined as follows:}$$

$$T(A) = \begin{cases} \tilde{1}, & \text{if } A \in \{0, ..., 1, ...\} \\ \langle 0.3, 0.1 \rangle, & \text{if } A = \{G_1, G_2\} \\ \langle 0.4, 0.3 \rangle & \text{if } A = \{G_3, G_4\} \\ \tilde{0}, & \text{otherwise.} \end{cases}$$

Let $\alpha = 0.3$, $\beta = 0.4$. Then, N is an $IFec_2^{\alpha,\beta}$ -connected and $IFec_3^{\alpha,\beta}$ -connected but not $IFec_3^{\alpha,\beta}$ -connected.

Example 3.5 Let $X = \{a, b, c\}$ and $N, G_i \in \zeta^X$ (i = 1, 2, 3) be defined as follows:

}

$$N = \langle x, (\frac{a}{0.5}, \frac{b}{0.3}, \frac{c}{0.1}), (\frac{a}{0.2}, \frac{b}{0.4}, \frac{c}{0.3}) \rangle \qquad ; \qquad G_1 = \langle x, (\frac{a}{0.5}, \frac{b}{0.0}, \frac{c}{0.0}), (\frac{a}{0.2}, \frac{b}{1.0}, \frac{c}{1.0}) \rangle \qquad ; \qquad a = b = c \qquad a = b = c$$

$$G_{2} = \langle x, (\frac{a}{0.0}, \frac{b}{0.4}, \frac{c}{0.2}), (\frac{a}{1.0}, \frac{b}{0.1}, \frac{c}{0.2}) \rangle \quad ; \qquad G_{3} = \langle x, (\frac{a}{0.5}, \frac{b}{0.4}, \frac{c}{0.2}), (\frac{a}{0.2}, \frac{b}{0.1}, \frac{c}{0.2}) \rangle \quad . \quad \text{Let}$$

 $T: \zeta^X \to I \times I$ defined as follows:

$$T(A) = \begin{cases} 1, & \text{if } A \in \{0_{\pm}, 1_{\pm} \\ \langle 0.2, 0.4 \rangle, & \text{if } A = \{G_1, G_2\} \\ \langle 0.6, 0.1 \rangle, & \text{if } A = G_3 \\ \tilde{0}, & \text{otherwise.} \end{cases}$$

Let $\alpha = 0.1, \beta = 0.7$. Then, N is an $IFeO_q^{\alpha,\beta}$ -connected but not $IFec_4^{\alpha,\beta}$ -connected. **Example 3.6** Let $X = \{a,b,c\}$ and $N, G_i \in \zeta^X (i = 1, 2, 3, 4)$ be defined as follows:

$$N = \langle x, (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.2}), (\frac{a}{0.2}, \frac{b}{0.3}, \frac{c}{0.1}) \rangle \qquad ; \qquad G_1 = \langle x, (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.2}), (\frac{a}{0.1}, \frac{b}{0.2}, \frac{c}{0.2}) \rangle \qquad ;$$

$$G_{2} = \langle x, (\frac{a}{0.2}, \frac{b}{0.4}, \frac{c}{0.1}), (\frac{a}{0.3}, \frac{b}{0.1}, \frac{c}{0.1}) \rangle \qquad ; \qquad G_{3} = \langle x, (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.2}), (\frac{a}{0.1}, \frac{b}{0.1}, \frac{c}{0.1}) \rangle \qquad ; \qquad G_{4} = \langle x, (\frac{a}{0.2}, \frac{b}{0.3}, \frac{c}{0.1}), (\frac{a}{0.3}, \frac{b}{0.2}, \frac{c}{0.2}) \rangle . \text{ Let } T : \zeta^{X} \to I \times I \text{ defined as follows:}$$

 $T(A) = \begin{cases} 1, & \text{if } A \in \{0_{-1}, 1_{-1} \\ \langle 0.2, 0.5 \rangle, & \text{if } A = \{G_1, G_2\} \\ \langle 0.4, 0.3 \rangle, & \text{if } A = \{G_3, G_4\} \\ \tilde{0}, & \text{otherwise.} \end{cases}$

Let $\alpha = 0.1, \beta = 0.6$ Then, N is an $IFeC_M^{\alpha,\beta}$ -connected but not $IFec_3^{\alpha,\beta}$ -connected. 4. Intuitionistic fuzzy $ec_5^{\alpha,\beta}$ -connectedness

Definition 4.1 Let (X,T) be an IFTS. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$,

1. *X* is called an intuitionistic fuzzy $ec_5^{\alpha,\beta}$ -disconnected (briefly, $IFec_5^{\alpha,\beta}$ -disconnected) if there exist an IFS $A \in \zeta^X$ such that A is (α, β) -ifecl-open set (that is both ifeo and ifec set) $A \neq 0$, and $A \neq 1$.

2. *X* is called an (α, β) -intuitionistic fuzzy *e*-disconnected (briefly, $(\alpha, \beta)IFe$ -disconnected) if there exist an IFSs $A, B \in \zeta^X$ such that A and B are (α, β) -ifecl-open set such that $A \cup B = 1$, $A \cap B = 0$, $A \neq 0$, and $B \neq 0$,

- 3. X called an $IFec_5^{\alpha,\beta}$ -connected if X is not an $IFec_5^{\alpha,\beta}$ -disconnected,
- 4. X called an (α, β) ||F *e* -connected if X is not an (α, β) ||F *e* -disconnected.

Theorem 4.1 Let (X,T) be an IFTS. For $\alpha \in I_0, \beta \in I_1$ with $\alpha, \beta \leq 1$, if (X,T) is an $IFec_5^{\alpha,\beta}$ -connected then, (X,T) is an $(\alpha,\beta)IFe$ -connected.

Proof. Suppose that (X,T) is an $(\alpha,\beta)IFe$ -disconnected. Then, there exist (α,β) -ifeo-sets $A, B \in \zeta^X$ such that, $A \cup B = 1$, $A \cap B = 0$, $A \neq 0$, $B \neq 0$. This implies that, $\mu_A \lor \mu_B = 1_X, \gamma_A \land \gamma_B = 0_X, \mu_A \land \mu_B = 0_X, \gamma_A \lor \gamma_B = 1_X$. Let $C = \{x \in X : \mu_A(x) > 0\}$ and $D = \{x \in X : \mu_A(x) = 0\}$.

If $x \in C$ then, $\mu_A(x) > 0 \Rightarrow \mu_B(x) = 0 \Rightarrow \mu_A(x) = 1 \Rightarrow \gamma_A(x) = 0 \Rightarrow \gamma_B(x) = 1$.

If $x \in D$ then, $\mu_A(x) = 0 \Rightarrow \gamma_A(x) = 1 \Rightarrow \gamma_B(x) = 0 \Rightarrow \mu_B(x) = 1$. Then, $\mu_A = \gamma_B$ and $\gamma_A = \mu_B$; in other words, $B = \overline{A}$ then, $A^c = \overline{A} = B$ are (α, β) -ifeo sets and since $B \neq 0$, $A \neq 1$. Thus, (X,T) is an $IFec_5^{\alpha,\beta}$ -disconnected which is a contradiction. Hence, (X,T) is an $(\alpha, \beta)IFe$ -connected.

Theorem 4.2 Let $(X,T_1), (Y,T_2)$ be two IFTSs and $f:(X,T_1) \rightarrow (Y,T_2)$ be an intuitionistic fuzzy continuous and surjective map. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$, if (X,T_1) is an $(\alpha,\beta)IF$ -connected then so is (Y,T_2) .

Proof. Suppose that (Y,T_2) is an (α,β) IF-disconnected. Then, there exist (α,β) -ifeo-sets $U,V \in \zeta^Y$ such that, $U \cup V = 1$, $U \cap V = 0$, $U \neq 0$. Since f is an intuitionistic fuzzy continuous then, (α,β) -ifeo set of $f^{-1}(U)$ in T_1 is greater than or equal to (α,β) -ifeo set of U in T_2 and (α,β) -ifeo set of $f^{-1}(V)$ in T_1 is greater than or equal to (α,β) -ifeo set of V in T_2 . Let $A = f^{-1}(U), B = f^{-1}(V)$, then A and B are (α,β) -ifeo set in T_1 . Since f is surjective and $U \neq 0$. then, $A = f^{-1}(U) \neq 0$. (For, if $f^{-1}(U) = 0$ then, $U = f(f^{-1}(U)) = f(0) = 0$ a contradiction). Similarly, $B = f^{-1}(V) \neq 0$. Now, $A \cup B = f^{-1}(U) \cup f^{-1}(V) = f^{-1}(U \cup V) = f^{-1}(1) = 1$. Similarly, $A \cup B = 0$. Thus, (X,T_1) is an $(\alpha,\beta)IF$ -disconnected which is a contradiction. Hence, (Y,T_2) is an $(\alpha,\beta)IFe$ -connected.

Theorem 4.3 Let $(X,T_1), (Y,T_2)$ be two IFTSs and $f:(X,T_1) \rightarrow (Y,T_2)$ be an intuitionistic fuzzy *e*-continuous and surjective map. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$, if (X,T_1) is an $IFec_5^{\alpha,\beta}$ -connected then so is (Y,T_2) .

Proof. It is similar to Theorem 4.2

Theorem 4.4 Let (X,T) be an IFTS, For $\alpha \in I_0$, $\beta \in I_1$ with $\alpha + \beta \leq 1$, (X,T) is an $IFec_5^{\alpha,\beta}$ -connected iff there is no exist IFSs $A, B \in \zeta^X$ with A and B are (α, β) -ifeo set such that $A = \overline{B}, A \neq 0$, and $B \neq 0$.

Proof. Assume that there exist $A, B \in \zeta^X$ with, A and B are (α, β) -ifeo set such that $A = \overline{B}, A \neq 0$ and $B \neq 0$. Now, $B^c = \overline{B} = A$ is (α, β) -ifeo sets and $A \neq 0$ implies that $B \neq 1$. Then (X,T) is an $IFec_5^{\alpha,\beta}$ -disconnected which is a contradiction. Conversely, assume that (X,T) is an $IFec_5^{\alpha,\beta}$ -disconnected. Then there exists an IFS $A \in \zeta^X$ such that A and A^c are (α, β) -ifeo set, $A \neq 0$. $A \neq 1$. Now, take $B = \overline{A}$ then, $B = \overline{B}^c = A$ is (α, β) -ifeo set and since $A \neq 1$. then $B \neq 0$ which is a contradiction. Hence, (X,T) is an $IFec_5^{\alpha,\beta}$ -connected.

Theorem 4.5 Let (X,T) be an IFTS, For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1, (X,T)$ is an $IFec_5^{\alpha,\beta}$ -connected iff there is no exist IFSs $A, B \in \zeta^X$ such that $B = \overline{A}, B = \overline{ecl_{\alpha,\beta}A}, A = \overline{ecl_{\alpha,\beta}B}, A \neq 0$ and $B \neq 0$.

Proof. Assume that there exist $A, B \in \zeta^{Y}$ such that $B = \overline{A}, B = \overline{ecl_{\alpha,\beta}A}, A = \overline{ecl_{\alpha,\beta}B}, A \neq 0$, $B \neq 0$. Then, $A = \overline{cl_{\alpha,\beta}B} = (cl_{\alpha,\beta}B)^{c}$ is (α,β) -ifeo set and $\overline{A} = B = \overline{cl_{\alpha,\beta}A} = (cl_{\alpha,\beta}A)^{c}$ is (α,β) -ifeo set. Then, (X,T) is an $IFec_{5}^{\alpha,\beta}$ -disconnected, a contradiction. Conversely, suppose that (X,T) is an $IFec_{5}^{\alpha,\beta}$ -disconnected. Then there exists an IFS $A \in \zeta^{Y}$ such that A and A^{c} are (α,β) -ifeo set, $A \neq 0$. and $A \neq 1$. Let $B = \overline{A}$. Then, $B \neq 1$. $B \neq 0$. and since A^{c} is (α,β) -ifeo set then, $A = cl_{\alpha,\beta}A$, this implies that $B = \overline{cl_{\alpha,\beta}A}$. Since $B^{c} = \overline{A}^{c} = A$ is ifeo set, then $A = \overline{B} = \overline{cl_{\alpha,\beta}B}$, a contradiction.

Definition 4.2 Let (X,T) be an IFTS. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1, X$ is called an (α, β) -intuitionistic fuzzy strong *e*-connected (briefly, $(\alpha, \beta)IF$ -strong *e*-connected) if there exist IFSeS $A, B \in \zeta^X$ with A^c and B^c are (α, β) -ifeo sets, such that $\mu_A + \mu_B \leq 1, \gamma_A + \gamma_B \geq 1, A \neq 0$ and $B \neq 0$.

Remark 4.1The notions of $IFec_5^{\alpha,\beta}$ -connectedness and $(\alpha,\beta)IF$ -strong *e*-connectedness are independent as indiciated by the following examples.

Example4.1 Let $X = \{a, b, c\}$ and $G_i \in \zeta^X$ (i = 1, 2, 3, 4) defined as follows:

$$G_{1} = \langle x, (\frac{a}{0.2}, \frac{b}{0.3}, \frac{c}{0.1}), (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.2}) \rangle; \quad G_{2} = \langle x, (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.2}), (\frac{a}{0.2}, \frac{b}{0.3}, \frac{c}{0.1}) \rangle;$$

$$G_{3} = \langle x, (\frac{a}{0.2}, \frac{b}{0.3}, \frac{c}{0.1}), (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.2}) \rangle; \quad G_{4} = \langle x, (\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.2}), (\frac{a}{0.2}, \frac{b}{0.3}, \frac{c}{0.1}) \rangle;$$
Let $T: \zeta^{X} \to I \times I$ defined as follows:

$$T(A) = \begin{cases} \tilde{1}, & \text{if } A \in \{0, 1, 1, ..., 1\} \\ \langle 0.3, 0.4 \rangle, & \text{if } A \in \{G_1, G_2\} \\ \langle 0.4, 0.4 \rangle, & \text{if } A \in \{G_3, G_4\} \\ \tilde{0}, & \text{otherwise.} \end{cases}$$

Let $\alpha = 0.2, \beta = 0.4$. Then, X is an (α, β) -strong e-connected but not an $IFec_5^{\alpha, \beta}$ -connected.

Example 4.2 Let $X = \{a, b, c\}$ and $G_1, G_2 \in \zeta^X$ defined as follows:

}

$$G_{1} = \langle x, (\frac{a}{0.5}, \frac{b}{0.5}, \frac{c}{0.6}), (\frac{a}{0.3}, \frac{b}{0.2}, \frac{c}{0.1}) \rangle; \quad G_{2} = \langle x, (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.2}), (\frac{a}{0.4}, \frac{b}{0.5}, \frac{c}{0.6}) \rangle$$

Let $T: \zeta^{X} \to I \times I$ defined as follows:

}

$$T(A) = \begin{cases} \tilde{1}, & \text{if } A \in \{0_{+}, 1_{+}\} \\ \langle 0.3, 0.2 \rangle, & \text{if } A \in G_{1} \\ \langle 0.5, 0.1 \rangle, & \text{if } A \in G_{2} \\ \tilde{0}, & \text{otherwise.} \end{cases}$$

Let $\alpha = 0.1, \beta = 0.4$. Then, X is an $IFec_5^{\alpha,\beta}$ -connected but not an (α,β) -strong e -connected.

Theorem 4.6 Let (X,T) be an IFTS. For $\alpha \in I_0$, $\beta \in I_1$ with $\alpha + \beta \leq 1$, (X,T) is an $(\alpha,\beta)IF$ strong *e*-connected iff there is no exists IFSeS $A, B \in \zeta^{\gamma}$ with A and B are (α,β) -ifeo set such that $\mu_A + \mu_B \geq 1$, $\gamma_A + \gamma_B \leq 1$, $A \neq 1$ and $B \neq 1$.

Proof. Let $A, B \in \zeta^X$ with A and B are (α, β) -ifeo set such that $\mu_A + \mu_B \ge 1, \gamma_A + \gamma_B \le 1, A \ne 1$ and $B \ne 1$. If we take $C = \overline{A}$ and $D = \overline{B}$, then $C^c = \overline{A}^c = A$ is (α, β) -ifeo set, $D^c = \overline{B}^c = B$ is (α, β) -ifeo set $C \ne 0$ and $D \ne 0$. Moreover, $\mu_C + \mu_D = \gamma_A + \gamma_B \le 1, \gamma_C + \gamma_D = \mu_A + \mu_B \ge 1$, a contradiction.

The converse of the proof is obtained by using a similar technique. **Theorem 4.7** Let $f:(X,T_1) \rightarrow (Y,T_2)$ be an intuitionistic fuzzy *e*-continuous and surjective

map from an IFTS (X,T_1) to another IFTS (Y,T_2) . For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$, if (X,T_1) is an (α,β) IF -strong e-connected then so is (Y,T_2) .

Proof. Suppose that (Y,T_2) is not an $(\alpha,\beta)IF$ strong e-connected. Then, there exist $C, D \in \zeta^Y$ with C^c and D^c are (α,β) -ifeo sets such that, $\mu_C + \mu_D \leq 1$, $\gamma_A + \gamma_B \geq 1, C \neq 0$, $D \neq 0$. By using Theorem 2.4, we have, (α,β) -ifeo set $(f^{-1}(C))^c$ in T_1 is greater than or equal to (α,β) -ifeo set of C^c in T_2 and (α,β) -ifeo set $(f^{-1}(D))^c$ in T_1 is greater than or equal to (α,β) -ifeo set of D^c in T_2 Also, $\mu_{f^{-1}(C)} + \mu_{f^{-1}(D)} = f^{-1}(\mu_C) + f^{-1}$ $(\mu_D) = \mu_C \circ f + \mu_D \circ f \leq 1$. (since, $\mu_C + \mu_D \leq 1$.). Similarly, $\gamma_{f^{-1}(C)} + \gamma_{f^{-1}(D)} = f^{-1}(\gamma_C) + \gamma^{-1}(\gamma_D) = \gamma_C \circ f + \gamma_D \circ f \geq 1$. (since, $\gamma_C + \gamma_D \geq 1$.). Moreover, $f^{-1}(C) \neq 0$. (For, if $f^{-1}(C) = 0$. then, $C = f(f^{-1}(C)) = f(0) = 0$. a contradiction). Similarly, $f^{-1}(C) \neq 0$. This is a contradiction, thus (Y,T_2) is (α,β) IF strong e-connected.

5. (α, β) -intuitionistic fuzzy super *e*-connectedness

Definition 5.1 Let (X,T) be an IFTS. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$,

1. *X* is called an (α, β) -intuitionistic fuzzy super *e*-disconnected (briefly, (α, β)) IF-super *e*-disconnected) if there exist an (α, β) -ifeo set *A* in *X* such that, $A \neq 0$, and $B \neq 1$,

2. X is called an (α, β) -intuitionistic fuzzy super *e*-connected if X is not an (α, β) IFSe-disconnected.

Theorem 5.1 Let (X,T) be an IFTS. For $\alpha \in I_0$, $\beta \in I_1$ with $\alpha + \beta \leq 1$, the following statements are equivalent.

1. *X* is an (α, β) IF-super *e*-connected,

2. For each $A \in \zeta^{X}$, $A \neq 0$, such that A is an (α, β) -ifeo set we have $ecl_{\alpha,\beta}A = 1$;

3. For each $A \in \zeta^{X}$, $A \neq 1$ such that A^{c} is an (α, β) -ifeo set we have $int_{\alpha,\beta}A = 0$;

4. There is no exist IFS's, $A, B \in \zeta^X$ with A and B are (α, β) -ifeo sets such that $A \subseteq \overline{B}, A \neq 0$ and $B \neq 0$, ,

5. There is no exist IFS's, $A, B \in \zeta^X$ with A and B are (α, β) -ifeo sets such that $B = \overline{ecl_{\alpha,\beta}A}, A = \overline{ecl_{\alpha,\beta}B}, A \neq 0$ and $B \neq 0$.

6. There is no exist IFS's, $A, B \in \zeta^X$ with A^c and B^c are (α, β) -ifeo set such that $B = \overline{eint_{\alpha,\beta}A}, A = \overline{eint_{\alpha,\beta}B}, A \neq 0$ and $B \neq 0$.

Proof. (i) \Rightarrow (ii): Assume that there exist $A \in \zeta^X$, $A \neq 0$ with A is an (α, β) -ifeo set such that $ecl_{\alpha,\beta}A \neq 1$. Then, $B = eint_{\alpha,\beta}(ecl_{\alpha,\beta}A) \neq 1$ is an (α, β) -ifro set in X and $0 \neq A \subseteq eint_{\alpha,\beta}(cl_{\alpha,\beta}A) = B$, which is a contradiction. Then, $ecl_{\alpha,\beta}A = 1$.

(iii) \Rightarrow (iii): Let $A \neq 1$ be an IFS in X such that A^c is an (α, β) -ifeo set. Then, $\overline{A} \neq 0$ and $\overline{A} = A^c$ is an (α, β) -ifeo set. By (ii) we have, $ecl_{\alpha,\beta}(\overline{A}) = 1$ implies that $\overline{ecl_{\alpha,\beta}(A)} = 0$ and by Theorem 2.3, we have $eint_{\alpha,\beta}A = 0$.

(iii) \Rightarrow (iv): Let $A, B \in \zeta^X$ with, A and B are (α, β) -ifeo sets such that $A \subseteq \overline{B}, A \neq 0$ and $B \neq 0$. Then, $\overline{B} \neq 1$ and B is an (α, β) -ifeo set By (iii) we have $eint_{\alpha,\beta}\overline{B} \neq 0$ and since $A \leq \overline{B}$, then $0 \neq A = eint_{\alpha,\beta}A \subseteq eint_{\alpha,\beta}\overline{B} = 0$ which is a contradiction.

(iv) \Rightarrow (i): Assume for a contradiction that X is an $(\alpha, \beta)IF$ super e-disconnected. Then, there exist an an (α, β) -ifeo set A in X such that $A \neq 0$ and $A \neq 1$. By Theorem 2.5, A is an (α, β) -ifeo set. If we take $B = \overline{ecl_{\alpha,\beta}A}$, then B is an (α, β) -ifeo set and $B \neq 0$ (For, if B = 0, $\Rightarrow \overline{ecl_{\alpha,\beta}A} = 0$, $\Rightarrow ecl_{\alpha,\beta}A = 1$, $\Rightarrow A = eint_{\alpha,\beta}(ecl_{\alpha,\beta}A) = 1$, which is a contradiction with the fact $A \neq 0$. We also, have $A \leq \overline{B}$ and this is a contradiction too. (i) \Rightarrow (v): Suppose that there exist IFSs $A, B \in \zeta^X$ with, A and B are (α, β) -ifeo sets such that $B = \overline{ecl_{\alpha,\beta}A}, A = \overline{ecl_{\alpha,\beta}B}, A \neq 0$, and $B \neq 0$. Then $eint_{\alpha,\beta}(ecl_{\alpha,\beta}A) = eint_{\alpha,\beta}\overline{B} = \overline{ecl_{\alpha,\beta}B} = A$ and $A \neq 0$, $A \neq 1$. (For, if A = 1, then 1, $ecl_{\alpha,\beta}B$ implies

0 = $ecl_{\alpha\beta}B$ implies B=0.). A contradiction with X is an $(\alpha,\beta)IF$ -super e -connected. $(v) \Rightarrow (i)$: Suppose that X is an $(\alpha, \beta)IF$ super e-disconnected. Then, there is an (α, β) -ifro set A in X such that, $A \neq 0$, $A \neq 1$. Now, take $B = \overline{ecl_{\alpha,\beta}A}$. Then, B is an (α, β) -ifeo set $B \neq 0$ and $\overline{ecl_{\alpha,\beta}B} = ecl_{\alpha,\beta}(\overline{ecl_{\alpha,\beta}A}) = \overline{eint_{\alpha,\beta}(ecl_{\alpha,\beta}A)} = eint_{\alpha,\beta}(ecl_{\alpha,\beta}A) = A$ which is a contradiction. (v) \Rightarrow (vi): Let A, B IFSs in X with A^c and B^c are (α, β) -ifeo sets such that $B = \overline{eint_{\alpha,\beta}A}, A = \overline{eint_{\alpha,\beta}B}, A \neq 1$ and $B \neq 1$. Take $C = \overline{A}$ and $D = \overline{B}$. Then $C \neq 0$, $D \neq 0$, $C = \overline{A} = A^c$ is (α, β) -ifeo set $D = \overline{B} = B^c$ is (α, β) -ifeo-set and $\overline{ecl_{\alpha,\beta}C} = \overline{ecl_{\alpha,\beta}\overline{A}} = \overline{\overline{eint_{\alpha,\beta}A}} = eint_{\alpha,\beta}A = \overline{B} = D.$ Similarly, $\overline{ecl_{\alpha,\beta}D} = C.$ This is a contradiction. $(vi) \Rightarrow (v)$: It is similarly to that $(v) \Rightarrow (vi)$. **Theorem 5.2** Let (X,T) be an IFTS. For $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$, if X is an $(\alpha,\beta)IF$ super *e*-connected then, *X* is an $IFec_5^{\alpha,\beta}$ -connected. **Proof.** It is clear. The converse of Theorem 5.2 is not true in general as shows in the following example. **Example 5.1** Let $X = \{a, b, c, d\}$ and $G_i \in \zeta^X$ (i = 1, 2, 3, 4) defined as follows: $G_1 = \langle x, (\frac{a}{1,0}, \frac{b}{0,0}, \frac{c}{0,0}, \frac{d}{0,0}), (\frac{a}{0,0}, \frac{b}{0,0}, \frac{c}{1,0}, \frac{d}{1,0}) \rangle;$ $G_2 = \langle x, (\frac{a}{0.0}, \frac{b}{0.0}, \frac{c}{0.0}, \frac{d}{1.0}), (\frac{a}{1.0}, \frac{b}{0.0}, \frac{c}{1.0}, \frac{d}{0.0}) \rangle;$

$$G_{3} = \langle x, (\frac{a}{1.0}, \frac{b}{0.0}, \frac{c}{0.0}, \frac{d}{1.0}), (\frac{a}{0.0}, \frac{b}{0.0}, \frac{c}{1.0}, \frac{d}{0.0}) \rangle;$$

$$G_{4} = \langle x, (\frac{a}{0.0}, \frac{b}{0.0}, \frac{c}{0.0}, \frac{d}{0.0}), (\frac{a}{1.0}, \frac{b}{0.0}, \frac{c}{1.0}, \frac{d}{1.0}) \rangle$$

Let $T: \zeta^{X} \to I \times I$ defined as follows:

$$T(A) = \begin{cases} \tilde{1}, & \text{if } A \in \{0_{-}, 1_{-}, \\ \langle 0.4, 0.3 \rangle, & \text{if } A \in \{G_1, G_2\} \\ \langle 0.6, 0.2 \rangle, & \text{if } A \in \{G_3, G_4\} \\ \tilde{0} & \text{otherwise.} \end{cases}$$

Let $\alpha = 0.3$, $\beta = 0.5$. Then, X is an $IFec_5^{\alpha,\beta}$ -connected but not $(\alpha,\beta)IF$ -super e -connected.

Theorem5.3 Let $(X,T_1), (Y,T_2)$ be two IFTSs and $f:(X,T_1) \rightarrow (Y,T_2)$ be a surjective intuitionistic fuzzy continuous map. Then, for $\alpha \in I_0, \beta \in I_1$ with $\alpha + \beta \leq 1$, if X is an (α, β) IF super *e*-connected, then so is Y.

Proof. Assume that *Y* is an $(\alpha, \beta)IF$ -disconnected. By Theorem 5.1(iv), there exist IFSs $C, D \in \zeta^Y$ with *C* is (α, β) -ifeo set in T_2 such that $C \subseteq \overline{D}, C \neq 0$ and $D \neq 0$. Since *f* is intuitionistic fuzzy continuous, $T_1(f^{-1}(C)) \ge T_2(C) \ge \langle \alpha, \beta \rangle$ and $T_1(f^{-1}(D)) \ge T_2(D) \ge \langle \alpha, \beta \rangle, C \subseteq \overline{D}$ implies that $f^{-1}(C) \subseteq f^{-1}(\overline{D}) = \overline{f^{-1}(D)}$. Also, $f^{-1}(C) \neq 0$ and $f^{-1}(D) \neq 0$. By Theorem 5.1(i), *X* is an $(\alpha, \beta)IF$ super *e*-disconnected, a contradiction.

References

[1] N. Ajmal, J.K. Kohli, *Connectedness in fuzzy topological spaces*, Fuzzy Sets and Systems, **31** (1989), 369-388.

[2] K. Atanassov, *Intuitionistic fuzzy sets*, VII ITKR'S Session, Sofia (September, 1983)(in Bulgarian).

[3] K. Atanassov, S. Stoeva, *Intuitionistic fuzzy sets*, Polish Symp. On Interval and Fuzzy Mathematics, Poznan (August, 1983), Proceedings: 23-26.

[4] K.Atanassov, S. Stoeva, *Intuitionistic L-fuzzy sets*, Cybernetics and Systems Research, **2** (1984),539-540.

[5] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, **20** (1986), 87-96.

[6] K. Atanassov, *Review and new results on intuitionistic fuzzy sets*, Institute for Microsystems, Mathematical Foundations of Artificial Intelligence Seminare, 1-88 (1988), 1-8.

[7] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl., **24** (1968), 182-190.

[8] K. C. Chattopadhyay, R. N. Harza and S. K. Samanta, *Gradation of openness: fuzzy topology*, Fuzzy Sets and Systems **49** (1992), 237-242.

[9] D. Coker, M. Demirci, On intuitionistic fuzzy points, NIFS, 1 (2) (1995), 79-84.
[10] D. Coker, M. Demirci, On fuzzy inclusion in the intuitionistic sense, J. Fuzzy

Mathematics, **4** (3) (1996), 701-714.

[11] D. Coker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Mathematics, **4** (4) (1996), 749-764.

[12] D. Coker, M. Demirci An introduction to intuitionistic fuzzy topological spaces in Sostak's sense, BUSEFAL, **67** (1996), 67-76.

[13] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems **88** (1997), 81-89.

[14] P. Dhivya, S. Ramadevi, *The intuitionistic smooth fuzzy continuity in smooth fuzzy topological spaces*, International journal of Advances in Interdisciplinary Research, **1** (10) (2014), 1-7.

[15] F. Jinming, G. Yuanmei, Connectedness in Jager- \hat{S} ostak I-fuzzy topological spaces, proyecciones Journal of Mathematics, **28** (3) (2009), 209-226.

[16] S. J. Lee, J. T. Kim, *Fuzzy (r,s)-irresolute maps*, International Journal of Fuzzy Logic and Intelligent systems, **7** (1) (2007), 49-57.

[17] C. Liange, C. Yan, *Base and sub base in intuitionistic I-fuzzy topological spaces*, Hacettepe Journal of Mathematics and Statistics, **43** (2) (2014), 231-247.

[18] W. K. Min Results on fuzzy weakly (r,s)-continuous mappings on the intuitionistic fuzzy topological spaces in \hat{S} ostak's sense, International Journal of Fuzzy Logic and Intelligent systems, **8** (4) (2008), 312-315.

[19] W. K. Min, On fuzzy strongly (r,s)-irresolute mappings, Journal of Korean Institute of Intelligent Systems, **19** (2) (2009), 254-258.

[20] P. P. Ming, L. Y. Ming, *Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence*, J. Math. Anal. Appl., **76** (1980), 571-599.

[21] A. A. Ramadan, *Smooth topological spaces*, Fuzzy Sets and Systems, **48** (1992), 371-375.

[22] A. A. Ramadan, S. E. Abbas and A. A. Abd El-latif, *Compactness in intuitionistic fuzzy topological spaces*, International Journal of Mathematics and Mathematical Sciences, **1** (2005), 19-32.

[23] R. Renuka, V. Seenivasan, On β -Connectedness in intuitionistic fuzzy topological spaces, Gen. Math. Notes, **19** (1) (2013), 16-27.

[24] R. Roopkumar, C. Kalaivani, *Continuity of intuitionistic fuzzy proper functions on intuitionistic smooth fuzzy topological spaces*, Notes on Intuitionistic Fuzzy Sets, **16** (3) (2010),

1-21.

[25] S. Saha, Local connectedness in fuzzy setting, Simon Stevin, **61** (1987), 3-13.

[26] R. Santhi, D. Jayanthi *Generalized semi-pre connectedness in intuitionistic fuzzy topological spaces*, Annals of Fuzzy Mathematics and Informatics, **3** (2) (2012), 243-253.

[27] F.G. Shi, *Connectedness degrees in L-fuzzy topological spaces*, International journal of Mathematics and Mathematical Sciences, (2009), 1-11.

[28] D. Sobana, V. Chandrasekar and A. Vadivel, On Fuzzy e-open Sets, Fuzzy e-continuity and Fuzzy e-compactness in Intuitionistic Fuzzy Topological Spaces, Sahand Communications in Mathematical Analysis (in press).

[29] A. \hat{S} ostak, On a fuzzy topological structure, Supp. Rend. Circ. Math. palermo (Ser.II), **11** (1985), 89-103.

[30] A. \hat{S} ostak, On compactness and connectedness degree of fuzzy sets in fuzzy topological spaces, In General Topology and Its Relations to Modern Analysis and Algebra, Helderman Verlag, Berlin, 519-532.

[31] N. Turnali, D. Coker, *Fuzzy connectedness in intuitionistic fuzzy topological spaces*, Fuzzy Sets and Systems, **116** (2000), 369-375.

[32] Z. C. You, On connectedness of fuzzy topological spaces, Fuzzy Mathematics, **3** (1982), 59-66.

[33] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.

