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Abstract— In this paper, we consider the problem of 

detecting whether a compromised router is maliciously 

manipulating its stream of packets. In particular, we are 

concerned with a simple yet effective attack in which a 

router selectively drops packets destined for some 

victim. Unfortunately, it is quite challenging to attribute 

a missing packet to a malicious action because normal 

network congestion can produce the same effect. 

Modern networks routinely drop packets when the load 

temporarily exceeds their buffering capacities. Previous 

detection protocols have tried to address this problem 

with a user -defined threshold too many dropped 

packets imply malicious intent. However, this heuristic 

is fundamentally unsound; setting this threshold is, at 

best, an art and will certainly create unnecessary false 

positives or mask highly focused attacks. We have 

designed, developed, and implemented a compromised 

router detection protocol that dynamically infers, based 

on measured traffic rates and buffer sizes, the number 

of congestive packet losses that will occur.  Once the 

ambiguity from congestion is removed, subsequent 

packet losses can be attributed to malicious actions. 

Keywords— Internet dependability, Intrusion 

detection and tolerance, Reliable networks, Malicious 

routers. 

I.  INTRODUCTION  

The Internet is not a safe place. Unsecured hosts 
can expect to be compromised within minutes of 
connecting to the Internet and even well-protected 
hosts may be crippled with denial-of-service attacks. 
However, while such threats to host systems are 
widely understood, it is less well appreciated that the 
network infrastructure itself is subject to constant 
attack as well. Indeed, through combinations of social 
engineering and weak passwords, attackers have 
seized control over thousands of Internet routers. 
Even more troubling is Mike Lynn‘s controversial 
presentation at the 2005 Black Hat Briefings, which 
demonstrated how Cisco routers can be compromised 
via simple software vulnerabilities. Once a router has 
been compromised in such a fashion, an attacker may 
interpose on the traffic stream and manipulate it 
maliciously to attack others-selectively dropping, 
modifying, or rerouting packets. Several researchers 
have developed distributed protocols to detect such 
traffic manipulations, typically by validating that 
traffic transmitted by one router is received 

unmodified by another. However, all of these 
schemes-including our own-struggle in interpreting 
the absence of traffic. While a packet that has been 
modified in transit represents clear evidence of 
tampering, a missing packet is inherently ambiguous: 
it may have been explicitly blocked by a 
compromised router or it may have been dropped 
benignly due to network congestion. 

In fact, modern routers routinely drop packets due 
to bursts in traffic that exceed their buffering 
capacities, and the widely used Transmission Control 

Protocol (TCP) is designed to cause such losses as 
part of its normal congestion control behavior. Thus, 
existing traffic validation systems must inevitably 
produce false positives for benign events and/or 
produce false negatives by failing to report real 
malicious packet dropping. In this paper, we develop 
a compromised router  detection protocol that 
dynamically infers the precise number of congestive 
packet losses that will occur.  Once the congestion 
ambiguity is removed, subsequent packet losses can 
be safely attributed to malicious actions. We believe 
our protocol is the first to automatically predict 
congestion in a systematic manner and that it is 
necessary for making any such network fault 
detection practical. In the remainder of this paper, we 
briefly survey the related background material, 
evaluate options for inferring congestion, and then 
present the assumptions, specification, and a formal 
description of a protocol that achieves these goals. 
We have evaluated our protocol in a small 
experimental network and demonstrate that it is 
capable of accurately resolving extremely small and 
fine-grained attacks. 

II. LITERATURE SURVEY 

A Content Delivery Network or Content 
Distribution Network (CDN) is a system of 
computers networked together across the Internet 
that   cooperate  transparently  to   distribute content 
for the purposes of improving performance and 
scalability. Content types include web objects, 
downloadable objects (media files, software, and 
documents), applications, real time media streams, 
and other components of internet delivery (DNS, 
routes, and database queries). Strategically placed 
edge servers decrease the load on interconnects, 
public peers, private peers and backbones, freeing up 
capacity and lowering delivery costs. It uses the 
same principle as above. Instead of loading all traffic 
on a backbone or peer link, a CDN can offload these 
by redirecting traffic to edge servers. CDNs deliver 
content over TCP and UDP connections.  TCP   
throughput  over   a   network is impacted by both 
latency and packet loss. In order to reduce both of 
these parameters, CDNs traditionally place servers 
as close to the edge networks that users are on as  
possible. Theoretically the closer the content the 
faster the delivery, although network distance may 
not be the factor that leads to best performance. End  
users will likely experience less jitter, fewer network 
peaks and surges, and improved stream quality - 
especially in remote areas. The increased reliability 
allows a CDN operator to deliver HD quality content 
with high Quality of Service, low costs and low 
network load. CDNs can  dynamically distribute 
assets to strategically placed redundant core, fallback 
and edge servers. CDNs can have automatic server 
availability sensing with instant user redirection. A 
CDN can offer 100% availability, even with large 
power, network or hardware outages. 
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 CDN technologies give more control of asset 
delivery and network load. They can optimize 
capacity per customer, provide views of real time 
load and statistics, reveal which assets are popular, 
show active regions and report exact  viewing details 
to the customers. These usage details are an 
important feature that a CDN provider must provide, 
since the usage logs are no more available at the 
content source server after it has been plugged into 
the CDN, because the connections of end-users are 
now served by the CDN  edges instead of the content 
source. 

III. TECHNOLOGY 

CDN nodes are usually deployed in multiple 
locations, often over multiple backbones. These 
nodes cooperate with each other to satisfy requests 
for content by end users, transparently moving 
content to optimize the delivery process. 
Optimization can take the form of reducing 
bandwidth costs, improving end-user performance, or 
increasing global availability of content. The number 
of nodes and servers making up CDN varies, 
depending on the architecture, some reaching 
thousands of nodes with tens of thousands of servers 
on many remote PoPs. Others build a global network 
and have a small number of geographical PoPs. 
Requests for content are typically algorithmically 
directed to nodes that are optimal in some way. When 
optimizing for performance, locations that are best for 
serving content to the user may be chosen. This may 
be measured by choosing locations that are the fewest 
hops, the fewest number of network seconds away 
from the requesting client, or the  highest availability 
in terms of server performance (both current and 
historical), so as to optimize delivery across local 
networks. When optimizing for cost, locations that 
are least expensive may be chosen instead. In a 
optimal scenario, these two goals tend to align, as 
servers that are close to the end user at the edge of the 
network may have an advantage in performance or 
cost. The Edge Network is grown outward from the 
origin/s by further acquiring (via purchase, peering, 
or exchange) co-locations facilities, bandwidth and 
servers. 

IV. CONTENT NETWORKING TECHNIQUES 

The Internet was designed according to the end-
to- end principle. This  principle keeps the core 
network relatively simple and moves the intelligence 
as much as possible to the network end-points: the 
hosts and clients. As  a  result  the  core network is 
specialized, simplified, and optimized to only forward 
data packets. Content Delivery Networks augment the 
end-to-end transport network by distributing on it a 
variety of intelligent applications employing 
techniques designed to optimize content delivery. The 
resulting tightly integrated overlay uses web caching, 
server-load balancing, request routing, and content 
services.[2]. These techniques are briefly described 
below. Web caches store popular content on servers 
that have the greatest demand for the content 
requested. These shared network appliances reduce 
bandwidth requirements, reduce server load, and 
improve the client response times for content stored 
in the cache. Server-load balancing uses one or more 
techniques including service based (global load 
balancing) or hardware  based   layer   4–7 switches, 
also known as a web switch, content switch, or 
multilayer switch to share traffic among a number of 

servers or web caches. Here the switch is assigned a 
single virtual IP address. Traffic arriving at the switch 
is then directed to one of the real web  servers  
attached  to  the  switch. This has the advantages of 
balancing load, increasing total capacity, improving 
scalability, and providing  increased  reliability  by  
redistributing  the load   of  a  failed   web  server  
and   providing server health checks. A content 
cluster or service node can  be formed using a layer 
4–7 switch to balance load across a number of servers 
or a number of web caches within the network. 
Request routing directs client requests to the content 
source best able to serve the request. This may 
involve  directing  a client request to the service node 
that is closest to the client, or to  the one with the 
most capacity. A variety of algorithms are used to 
route the request.  These include Global Server Load 
Balancing, DNS-based request routing, dynamic 
metafile generation, HTML rewriting, and any 
casting. Proximity-choosing the closest service node-
is estimated using a variety of techniques including 
reactive probing, proactive probing, and connection 
monitoring. CDNs use a variety of methods of 
content delivery including, but not limited to, manual 
asset copying, active web caches, and global 
hardware load balancers. 

A. Content service protocols 

Several protocols suites are designed to provide 
access to a wide variety of content services 
distributed throughout a content network. The 
Internet Content Adaptation Protocol (ICAP) was 
developed in the late 1990s to provide an open 
standard for  connecting application servers.  A more 
recently defined and robust solution is provided by 
the Open Pluggable Edge  Services  (OPES) protocol. 
This architecture defines OPES service applications 
that can reside on the OPES processor itself or be 
executed remotely on a Callout Server. Edge Side 
Includes or ESI is a small markup language for edge 
level dynamic web content assembly. It  is  fairly 
common  for  websites to have generated content. It 
could be because of changing content like catalogs or 
forums, or because of personalization. This creates a 
problem for caching systems. To overcome this 
problem a group of companies created ESI. 

B. P2P CDNs 

Although Peer-to-Peer (P2P) is not traditional 
CDN technology, it is increasingly used to  deliver  
content to end users. P2P claims low cost and 
efficient distribution. Even though P2P actually 
generates more traffic than traditional client-server 
CDNs (because a peer also uploads data instead of 
just downloading it) it's welcomed by parties running 
content delivery/distribution services. The real 
strength of P2P shows when one has to distribute 
highly attractive data, like the latest episode of a soap 
opera or some sort of software patch/update in short 
period of time. Ironically, the more people who 
download the (same) data, the more efficient P2P is, 
thus slashing the cost of the peering fees that a CDN 
provider has to pay due to inter-peer delivery (in 
comparison to the same amount of data 
distributed using traditional techniques). On 
the other hand, the  ―long  tail‖  type material does 
not benefit much from P2P delivery schema, since, to 
gain advantage over traditional distribution models, a  
P2P-enabled  CDN  must force storing (caching) data 
on peers--something  that is usually not desired by 
users and which is rarely enabled. 
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 Contrary to popular belief P2P is not limited to 
low-bandwidth audio-video signal distribution. There 
is no technical boundary,  built-in inefficiency, or 
flaw-by-design in peer-to-peer technology to prevent 
distribution of full HD audio+video signal at, for 
example, 8 Mbit/s.  It's just environmental factors, 
like low (upload) bandwidth or inadequate computing 
power in CE devices, that prevent HD material being 
publicly available in P2P CDNs. (Low bandwidth 
problems also apply to traditional CDN, though.) 
 

 There are some concerns about lack of Quality of 
Service control over P2P distribution, but these are 
being addressed by the P2P-Next consortium. Other 
concerns include security (e.g. modification of 
content to include malware) and DRM. 

V. IMPLEMENTATION 

Random Early Detection, or RED, is an active 
queue management algorithm for routers suited for 
congestion avoidance. In contrast to traditional queue 
management algorithms, which drop packets only 
when the buffer is full, the RED algorithm drops 
arriving packets probabilistically. The probability of 
drop increases as the estimated average queue size 
grows. RED responds to a time-averaged queue     
length,      not an instantaneous one[6]. 

The RED router calculates the average queue size, 
using a low-pass filter with an exponential weighted 
moving average. The average queue size is compared 
to two thresholds, a minimum threshold and a 
maximum threshold. When the average queue size is 
less than the minimum threshold, no packets are 
*marked. When the average queue size is greater than 
the maximum threshold, every arriving packet is 
*marked. This ensures that the average queue   size    
does    not    significantly    exceed the maximum 
threshold. 

When the average queue size is between the 
minimum and the maximum  threshold, each arriving 
packet is *marked with probability p a , where p a is a 
function of the average queue size avg. Each time that 
a packet is *marked, the probability that a packet is 
*marked from a particular connection is roughly 
proportional  to  that connections share of the 
bandwidth at the router[7]. 

The general RED algorithm[6]: procedure 
REDAlgorithm() is avg ← average queue size while 
packetsarrive 

if (minth <= avg AND avg < maxth) Compute pa 
with probability pb mark the arriving packet 

else if (maxth < avg) 

mark the arriving packet 

endif 

end REDAlgorithm 

RED algorithm contains two main sub algorithms 
(parts): 

1. For computing the average queue size that 
determines the degree of burstiness that will be 
allowed in the routers queue. 

2. For calculating the packet-*marking probability 
that    determines    how    frequently the   router 
*marks packets, given the current level of congestion. 
The goal is for the router to *mark packets at fairly 

even spaced intervals, in order to avoid biases and to 
avoid global synchronization, and to *mark packets 
sufficiently frequently to control the average queue 
size. 

Average queue size: 

The router implements the low pass  filter  to 
calculate average queue size. The implemented low 
pass filter is an exponential weighted moving average 
(EWMA). RED router computes the average 
queue size at packet arrivals, rather than at fixed time 
intervals, the calculation of the average queue size is 
modified when a packet arrives at the router to an 
empty queue. After the packet arrives at the router to 
an empty queue the  router calculates m,  the  number  
of  packets   that   might   have been transmitted by 
the router during the time that the line was free. The 
router calculates the average queue size as if m 
packets had arrived at the router with a queue size of 
zero[6]. 

The calculation is as follows: 

avg  ←  (1  − wq)  m  avg ;when queue is 
empty 

avg  ←  (1  − wq)avg + wqq ;when queue is 
not empty 

wq : time constant for low pass filter 

m : idle time of the queue/transmission time 

Upper bound for wq 

Making wq too large does not filter out transient 
congestion at the router. Assume that the queue is 
initially empty, with an average queue size of zero, 
and then the queue increases from 0 to L packets over 
L packet arrivals. After the Lth  packet arrives at the 
router, the average queue size avgL is 

avgL= i=1Liwq(1-wq)L-i 

= wq(1-wq)Li=1Li(11-wq)i 

= L+1+((1-wq)L+1-1)/wq 

Given a minimum threshold minth, and given that 
the bursts of L packets arriving at the router, then wq 
should be chosen to satisfy the following equation for 
avgL < minth: 

L+1+((1-wq)L+1-1)/wq < minth 

Threshold value setting 

Two RED parameters, minth (minimum 
threshold) and maxth (maximum threshold) are used 
to decide the *marking probability. minth specifies 
the average queue size below which no packets will 
be 

*marked, while maxth specifies the average queue 
size above which all packets will be *marked. As the 
average queue size varies from minth to maxth, 
packets will be dropped with a probability that varies 
linearly from 0 to maxp. 

The optimal values for minth and maxth depends 
on the desired average queue. For a bursty traffic the 
minth threshold value should be large to allow the 
link utilization to be maintained at an acceptably high 
level. The optimal value for maxth depends in part on 
the maximum average delay that can be allowed by 
the router. 
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Maxth >= 2(minth) 

 

Packet *marking probability 

The packet-*marking probability pb is calculated 
as a linear function of the average queue size and 
varies linearly from 0 to maxp: 

pb ← maxp(avg − minth)/(maxth − minth). 

The final packet-*marking probability pa 
increases slowly as the count increases since the last 
*marked packet. 

pa 

←pb/(1−count•pb) 

The implemented RED algorithm measures the 
queue in bytes rather than in packets. The method 
implemented in the RED algorithm to calculate the 
final packet *marking probability is using Uniform 
Random Variable. When minth ≤ avg < maxth , a 
new pseudo-random number R is computed for each 
arriving packet, where R = Random[0,1] is from the 
uniform distribution on [0,1]. 

The arriving packet is *marked if : 

R< 

pb/(1−count•pb). 

Since the average queue size changes over time, 
the algorithm recomputes R/pb each time when pb is 
computed. Then after *mark the n-th arriving packet 
if n ≥ R/pb. Detailed Algorithm[6]: 

procedure DetailedREDAlgorithm() is 

avg  ←  0 count  ←  -1 while 

packetsarrive avg ← average queue size 

if (queue is not empty) then avg ← (1 

− wq)avg + wq q else 

m← idle time of queue/transmission time 
avg←(1− wq)mavg 

if minth ≤ avg < maxth 

increment count 

calculate probability pa: 

pb ← maxp(avg − minth)/(maxth − minth) pa 
←pb/(1−count•pb) 

with probability pa: 

*mark the arriving packet 

count ← 0 

else if maxth ≤ avg 

**mark every arriving packet 

count ← 0 else count ← −1 endif 

end 

end DetailedREDAlgorithm. 

VI. CONCLUSION  

As we have seen the construction of sensors to 

detect selfish or malicious nodes in ad hoc networks 

is a complex task. In this paper we have presented a 

number of different sensors that can detect different 

kinds of selfish nodes with a good confidence as 

shown by our simulation results. If multiple sensors 

are active in parallel and a selfish node is detected by 

a number of these sensors, then this is a good 

indication for excluding the node from the network. 

One remaining problem with our current simulations 

is that all the thresholds need to be set manually in 

order to get good detection results. So in the future 

we will try to find ways how these values can be set 

and adjusted automatically during operation. Possible 

candidates might be some kind of an adjustment 

algorithm or a self-learning system using neural 

networks. Furthermore we plan to develop and test 

additional sensors that will e.g. use topology 

information from the routing protocol in order to 

detect selfish nodes. 
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