
© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06024 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 126

Detection of Selfish Nodes in Networks

using RED Algorithm

Kumbam Vekatreddy
Assistant professor, Department of Information Technology

Vignana Bharathi Institute of Technology, Hyderabad.

Abstract— In this paper, we consider the problem of

detecting whether a compromised router is maliciously

manipulating its stream of packets. In particular, we are

concerned with a simple yet effective attack in which a

router selectively drops packets destined for some

victim. Unfortunately, it is quite challenging to attribute

a missing packet to a malicious action because normal

network congestion can produce the same effect.

Modern networks routinely drop packets when the load

temporarily exceeds their buffering capacities. Previous

detection protocols have tried to address this problem

with a user -defined threshold too many dropped

packets imply malicious intent. However, this heuristic

is fundamentally unsound; setting this threshold is, at

best, an art and will certainly create unnecessary false

positives or mask highly focused attacks. We have

designed, developed, and implemented a compromised

router detection protocol that dynamically infers, based

on measured traffic rates and buffer sizes, the number

of congestive packet losses that will occur. Once the

ambiguity from congestion is removed, subsequent

packet losses can be attributed to malicious actions.

Keywords— Internet dependability, Intrusion

detection and tolerance, Reliable networks, Malicious

routers.

I. INTRODUCTION

The Internet is not a safe place. Unsecured hosts
can expect to be compromised within minutes of
connecting to the Internet and even well-protected
hosts may be crippled with denial-of-service attacks.
However, while such threats to host systems are
widely understood, it is less well appreciated that the
network infrastructure itself is subject to constant
attack as well. Indeed, through combinations of social
engineering and weak passwords, attackers have
seized control over thousands of Internet routers.
Even more troubling is Mike Lynn‘s controversial
presentation at the 2005 Black Hat Briefings, which
demonstrated how Cisco routers can be compromised
via simple software vulnerabilities. Once a router has
been compromised in such a fashion, an attacker may
interpose on the traffic stream and manipulate it
maliciously to attack others-selectively dropping,
modifying, or rerouting packets. Several researchers
have developed distributed protocols to detect such
traffic manipulations, typically by validating that
traffic transmitted by one router is received

unmodified by another. However, all of these
schemes-including our own-struggle in interpreting
the absence of traffic. While a packet that has been
modified in transit represents clear evidence of
tampering, a missing packet is inherently ambiguous:
it may have been explicitly blocked by a
compromised router or it may have been dropped
benignly due to network congestion.

In fact, modern routers routinely drop packets due
to bursts in traffic that exceed their buffering
capacities, and the widely used Transmission Control

Protocol (TCP) is designed to cause such losses as
part of its normal congestion control behavior. Thus,
existing traffic validation systems must inevitably
produce false positives for benign events and/or
produce false negatives by failing to report real
malicious packet dropping. In this paper, we develop
a compromised router detection protocol that
dynamically infers the precise number of congestive
packet losses that will occur. Once the congestion
ambiguity is removed, subsequent packet losses can
be safely attributed to malicious actions. We believe
our protocol is the first to automatically predict
congestion in a systematic manner and that it is
necessary for making any such network fault
detection practical. In the remainder of this paper, we
briefly survey the related background material,
evaluate options for inferring congestion, and then
present the assumptions, specification, and a formal
description of a protocol that achieves these goals.
We have evaluated our protocol in a small
experimental network and demonstrate that it is
capable of accurately resolving extremely small and
fine-grained attacks.

II. LITERATURE SURVEY

A Content Delivery Network or Content
Distribution Network (CDN) is a system of
computers networked together across the Internet
that cooperate transparently to distribute content
for the purposes of improving performance and
scalability. Content types include web objects,
downloadable objects (media files, software, and
documents), applications, real time media streams,
and other components of internet delivery (DNS,
routes, and database queries). Strategically placed
edge servers decrease the load on interconnects,
public peers, private peers and backbones, freeing up
capacity and lowering delivery costs. It uses the
same principle as above. Instead of loading all traffic
on a backbone or peer link, a CDN can offload these
by redirecting traffic to edge servers. CDNs deliver
content over TCP and UDP connections. TCP
throughput over a network is impacted by both
latency and packet loss. In order to reduce both of
these parameters, CDNs traditionally place servers
as close to the edge networks that users are on as
possible. Theoretically the closer the content the
faster the delivery, although network distance may
not be the factor that leads to best performance. End
users will likely experience less jitter, fewer network
peaks and surges, and improved stream quality -
especially in remote areas. The increased reliability
allows a CDN operator to deliver HD quality content
with high Quality of Service, low costs and low
network load. CDNs can dynamically distribute
assets to strategically placed redundant core, fallback
and edge servers. CDNs can have automatic server
availability sensing with instant user redirection. A
CDN can offer 100% availability, even with large
power, network or hardware outages.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06024 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 127

 CDN technologies give more control of asset
delivery and network load. They can optimize
capacity per customer, provide views of real time
load and statistics, reveal which assets are popular,
show active regions and report exact viewing details
to the customers. These usage details are an
important feature that a CDN provider must provide,
since the usage logs are no more available at the
content source server after it has been plugged into
the CDN, because the connections of end-users are
now served by the CDN edges instead of the content
source.

III. TECHNOLOGY

CDN nodes are usually deployed in multiple
locations, often over multiple backbones. These
nodes cooperate with each other to satisfy requests
for content by end users, transparently moving
content to optimize the delivery process.
Optimization can take the form of reducing
bandwidth costs, improving end-user performance, or
increasing global availability of content. The number
of nodes and servers making up CDN varies,
depending on the architecture, some reaching
thousands of nodes with tens of thousands of servers
on many remote PoPs. Others build a global network
and have a small number of geographical PoPs.
Requests for content are typically algorithmically
directed to nodes that are optimal in some way. When
optimizing for performance, locations that are best for
serving content to the user may be chosen. This may
be measured by choosing locations that are the fewest
hops, the fewest number of network seconds away
from the requesting client, or the highest availability
in terms of server performance (both current and
historical), so as to optimize delivery across local
networks. When optimizing for cost, locations that
are least expensive may be chosen instead. In a
optimal scenario, these two goals tend to align, as
servers that are close to the end user at the edge of the
network may have an advantage in performance or
cost. The Edge Network is grown outward from the
origin/s by further acquiring (via purchase, peering,
or exchange) co-locations facilities, bandwidth and
servers.

IV. CONTENT NETWORKING TECHNIQUES

The Internet was designed according to the end-
to- end principle. This principle keeps the core
network relatively simple and moves the intelligence
as much as possible to the network end-points: the
hosts and clients. As a result the core network is
specialized, simplified, and optimized to only forward
data packets. Content Delivery Networks augment the
end-to-end transport network by distributing on it a
variety of intelligent applications employing
techniques designed to optimize content delivery. The
resulting tightly integrated overlay uses web caching,
server-load balancing, request routing, and content
services.[2]. These techniques are briefly described
below. Web caches store popular content on servers
that have the greatest demand for the content
requested. These shared network appliances reduce
bandwidth requirements, reduce server load, and
improve the client response times for content stored
in the cache. Server-load balancing uses one or more
techniques including service based (global load
balancing) or hardware based layer 4–7 switches,
also known as a web switch, content switch, or
multilayer switch to share traffic among a number of

servers or web caches. Here the switch is assigned a
single virtual IP address. Traffic arriving at the switch
is then directed to one of the real web servers
attached to the switch. This has the advantages of
balancing load, increasing total capacity, improving
scalability, and providing increased reliability by
redistributing the load of a failed web server
and providing server health checks. A content
cluster or service node can be formed using a layer
4–7 switch to balance load across a number of servers
or a number of web caches within the network.
Request routing directs client requests to the content
source best able to serve the request. This may
involve directing a client request to the service node
that is closest to the client, or to the one with the
most capacity. A variety of algorithms are used to
route the request. These include Global Server Load
Balancing, DNS-based request routing, dynamic
metafile generation, HTML rewriting, and any
casting. Proximity-choosing the closest service node-
is estimated using a variety of techniques including
reactive probing, proactive probing, and connection
monitoring. CDNs use a variety of methods of
content delivery including, but not limited to, manual
asset copying, active web caches, and global
hardware load balancers.

A. Content service protocols

Several protocols suites are designed to provide
access to a wide variety of content services
distributed throughout a content network. The
Internet Content Adaptation Protocol (ICAP) was
developed in the late 1990s to provide an open
standard for connecting application servers. A more
recently defined and robust solution is provided by
the Open Pluggable Edge Services (OPES) protocol.
This architecture defines OPES service applications
that can reside on the OPES processor itself or be
executed remotely on a Callout Server. Edge Side
Includes or ESI is a small markup language for edge
level dynamic web content assembly. It is fairly
common for websites to have generated content. It
could be because of changing content like catalogs or
forums, or because of personalization. This creates a
problem for caching systems. To overcome this
problem a group of companies created ESI.

B. P2P CDNs

Although Peer-to-Peer (P2P) is not traditional
CDN technology, it is increasingly used to deliver
content to end users. P2P claims low cost and
efficient distribution. Even though P2P actually
generates more traffic than traditional client-server
CDNs (because a peer also uploads data instead of
just downloading it) it's welcomed by parties running
content delivery/distribution services. The real
strength of P2P shows when one has to distribute
highly attractive data, like the latest episode of a soap
opera or some sort of software patch/update in short
period of time. Ironically, the more people who
download the (same) data, the more efficient P2P is,
thus slashing the cost of the peering fees that a CDN
provider has to pay due to inter-peer delivery (in
comparison to the same amount of data
distributed using traditional techniques). On
the other hand, the ―long tail‖ type material does
not benefit much from P2P delivery schema, since, to
gain advantage over traditional distribution models, a
P2P-enabled CDN must force storing (caching) data
on peers--something that is usually not desired by
users and which is rarely enabled.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06024 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 128

 Contrary to popular belief P2P is not limited to
low-bandwidth audio-video signal distribution. There
is no technical boundary, built-in inefficiency, or
flaw-by-design in peer-to-peer technology to prevent
distribution of full HD audio+video signal at, for
example, 8 Mbit/s. It's just environmental factors,
like low (upload) bandwidth or inadequate computing
power in CE devices, that prevent HD material being
publicly available in P2P CDNs. (Low bandwidth
problems also apply to traditional CDN, though.)

 There are some concerns about lack of Quality of
Service control over P2P distribution, but these are
being addressed by the P2P-Next consortium. Other
concerns include security (e.g. modification of
content to include malware) and DRM.

V. IMPLEMENTATION

Random Early Detection, or RED, is an active
queue management algorithm for routers suited for
congestion avoidance. In contrast to traditional queue
management algorithms, which drop packets only
when the buffer is full, the RED algorithm drops
arriving packets probabilistically. The probability of
drop increases as the estimated average queue size
grows. RED responds to a time-averaged queue
length, not an instantaneous one[6].

The RED router calculates the average queue size,
using a low-pass filter with an exponential weighted
moving average. The average queue size is compared
to two thresholds, a minimum threshold and a
maximum threshold. When the average queue size is
less than the minimum threshold, no packets are
*marked. When the average queue size is greater than
the maximum threshold, every arriving packet is
*marked. This ensures that the average queue size
does not significantly exceed the maximum
threshold.

When the average queue size is between the
minimum and the maximum threshold, each arriving
packet is *marked with probability p a , where p a is a
function of the average queue size avg. Each time that
a packet is *marked, the probability that a packet is
*marked from a particular connection is roughly
proportional to that connections share of the
bandwidth at the router[7].

The general RED algorithm[6]: procedure
REDAlgorithm() is avg ← average queue size while
packetsarrive

if (minth <= avg AND avg < maxth) Compute pa
with probability pb mark the arriving packet

else if (maxth < avg)

mark the arriving packet

endif

end REDAlgorithm

RED algorithm contains two main sub algorithms
(parts):

1. For computing the average queue size that
determines the degree of burstiness that will be
allowed in the routers queue.

2. For calculating the packet-*marking probability
that determines how frequently the router
*marks packets, given the current level of congestion.
The goal is for the router to *mark packets at fairly

even spaced intervals, in order to avoid biases and to
avoid global synchronization, and to *mark packets
sufficiently frequently to control the average queue
size.

Average queue size:

The router implements the low pass filter to
calculate average queue size. The implemented low
pass filter is an exponential weighted moving average
(EWMA). RED router computes the average
queue size at packet arrivals, rather than at fixed time
intervals, the calculation of the average queue size is
modified when a packet arrives at the router to an
empty queue. After the packet arrives at the router to
an empty queue the router calculates m, the number
of packets that might have been transmitted by
the router during the time that the line was free. The
router calculates the average queue size as if m
packets had arrived at the router with a queue size of
zero[6].

The calculation is as follows:

avg ← (1 − wq) m avg ;when queue is
empty

avg ← (1 − wq)avg + wqq ;when queue is
not empty

wq : time constant for low pass filter

m : idle time of the queue/transmission time

Upper bound for wq

Making wq too large does not filter out transient
congestion at the router. Assume that the queue is
initially empty, with an average queue size of zero,
and then the queue increases from 0 to L packets over
L packet arrivals. After the Lth packet arrives at the
router, the average queue size avgL is

avgL= i=1Liwq(1-wq)L-i

= wq(1-wq)Li=1Li(11-wq)i

= L+1+((1-wq)L+1-1)/wq

Given a minimum threshold minth, and given that
the bursts of L packets arriving at the router, then wq
should be chosen to satisfy the following equation for
avgL < minth:

L+1+((1-wq)L+1-1)/wq < minth

Threshold value setting

Two RED parameters, minth (minimum
threshold) and maxth (maximum threshold) are used
to decide the *marking probability. minth specifies
the average queue size below which no packets will
be

*marked, while maxth specifies the average queue
size above which all packets will be *marked. As the
average queue size varies from minth to maxth,
packets will be dropped with a probability that varies
linearly from 0 to maxp.

The optimal values for minth and maxth depends
on the desired average queue. For a bursty traffic the
minth threshold value should be large to allow the
link utilization to be maintained at an acceptably high
level. The optimal value for maxth depends in part on
the maximum average delay that can be allowed by
the router.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06024 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 129

Maxth >= 2(minth)

Packet *marking probability

The packet-*marking probability pb is calculated
as a linear function of the average queue size and
varies linearly from 0 to maxp:

pb ← maxp(avg − minth)/(maxth − minth).

The final packet-*marking probability pa
increases slowly as the count increases since the last
*marked packet.

pa

←pb/(1−count•pb)

The implemented RED algorithm measures the
queue in bytes rather than in packets. The method
implemented in the RED algorithm to calculate the
final packet *marking probability is using Uniform
Random Variable. When minth ≤ avg < maxth , a
new pseudo-random number R is computed for each
arriving packet, where R = Random[0,1] is from the
uniform distribution on [0,1].

The arriving packet is *marked if :

R<

pb/(1−count•pb).

Since the average queue size changes over time,
the algorithm recomputes R/pb each time when pb is
computed. Then after *mark the n-th arriving packet
if n ≥ R/pb. Detailed Algorithm[6]:

procedure DetailedREDAlgorithm() is

avg ← 0 count ← -1 while

packetsarrive avg ← average queue size

if (queue is not empty) then avg ← (1

− wq)avg + wq q else

m← idle time of queue/transmission time
avg←(1− wq)mavg

if minth ≤ avg < maxth

increment count

calculate probability pa:

pb ← maxp(avg − minth)/(maxth − minth) pa
←pb/(1−count•pb)

with probability pa:

*mark the arriving packet

count ← 0

else if maxth ≤ avg

**mark every arriving packet

count ← 0 else count ← −1 endif

end

end DetailedREDAlgorithm.

VI. CONCLUSION

As we have seen the construction of sensors to

detect selfish or malicious nodes in ad hoc networks

is a complex task. In this paper we have presented a

number of different sensors that can detect different

kinds of selfish nodes with a good confidence as

shown by our simulation results. If multiple sensors

are active in parallel and a selfish node is detected by

a number of these sensors, then this is a good

indication for excluding the node from the network.

One remaining problem with our current simulations

is that all the thresholds need to be set manually in

order to get good detection results. So in the future

we will try to find ways how these values can be set

and adjusted automatically during operation. Possible

candidates might be some kind of an adjustment

algorithm or a self-learning system using neural

networks. Furthermore we plan to develop and test

additional sensors that will e.g. use topology

information from the routing protocol in order to

detect selfish nodes.

REFERENCES

[1] X. Ao, Report on DIMACS Workshop on Large-Scale

InternetAttacks,
http://dimacs.rutgers.edu/Workshops/Attacks/i nternet-attack-
9-03.pdf, Sept. 2003.

[2] R. Thomas, ISP Security BOF, NANOG 28,
http://www.nanog. org/mtg- 0306/pdf/thomas.pdf, June 2003.

[3] K.A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and
R.A.Olsson, Detecting Disruptive Routers: A Distributed
Network Monitoring Approach,‖ Proc. IEEE Symp. Security
and Privacy (S&P ‘98), pp. 115-124, May 1998.

[4] A.T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage,
―Detecting and Isolating Malicious Routers,‖ IEEE Trans.
Dependable and Secure Computing, vol. 3, no. 3, pp. 230-
244, July-Sept. 2006.

[5] L. Subramanian, V. Roth, I. Stoica, S.Shenker, and R. Katz,
―Listen and Whisper: Security Mechanisms for BGP,‖
Proc. First Symp. Networked Systems Design and
Implementation (NSDI ‘04), Mar. 2004.

[6] S. Kent, C. Lynn, J. Mikkelson, and K. Seo, Secure Border
Gateway Protocol (Secure- BGP),‖ IEEE J. Selected
Areas in Comm., vol. 18, no. 4, pp. 582-592, Apr.
2000.

[7] Y.-C. Hu, A. Perrig, and D.B. Johnson, Ariadne: A Secure
On- Demand Routing Protocol for Ad Hoc Networks,‖ Proc.
ACM MobiCom ‘02, Sept. 2002.

[8] B.R. Smith and J. Garcia-Luna-Aceves, Securing the
Border Gateway Routing Protocol,‖ Proc. IEEE Global
Internet, Nov. 1996.

[9] S.Cheung,- An Efficient Message Authentication Scheme for
Link State Routing,Proc. 13th Ann. Computer Security
Applications Conf. (ACSAC ‘97), pp. 90-98, 1997.

http://www.jetir.org/

