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Abstract— This Neural Machine Translation 

(NMT) model to translate human readable dates 

(“16th of December, 2012") into machine readable 

dates ("2012-12-16"). Machine learning model is built 

using an Attention model, one of the most 

sophisticated sequence to sequence models and deep 

learning neural networks. The model accepts a date 

as input written in a variety of possible formats (e.g. 

"the 29th of August 1948", "03/29/1948", "29 JUNE 

1987") and translate them into standardized, machine 

readable dates (e.g. "1948-08-29", "1948-03-

29","1987-06-29"). The output format would be the 

common machine-readable format YYYY-MM-DD. 

This model can also be scaled up to translate from 

one language to another, such as translating from 

English to Hindi but language translation requires 

massive datasets and usually takes days of training on 
GPUs. 
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I.  INTRODUCTION  

Machine translation is the task of automatically 
converting source text in one language to text in 
another language. 

In a machine translation task, the input already 
consists of a sequence of symbols in some 
language, and the computer program must convert 
this into a sequence of symbols in another 
language. Given a sequence of text in a source 
language, there is no one single best translation of 
that text to another language. This is because of the 
natural ambiguity and flexibility of human 
language. This makes the challenge of automatic 
machine translation difficult, perhaps one of the 
most difficult in artificial intelligence. 

The fact is that accurate translation requires 
background knowledge in order to resolve 
ambiguity and establish the content of the sentence. 

Classical machine translation methods often 
involve rules for converting text in the source 
language to the target language. The rules are often 
developed by linguists and may operate at the 
lexical, syntactic, or semantic level. This focus on 
rules gives the name to this area of study: Rule-
based Machine Translation, or RBMT. 

RBMT is characterized with the explicit use 
and manual creation of linguistically informed 
rules and representations. 

The key limitations of the classical machine 
translation approaches are both the expertise 
required to develop the rules, and the vast number 
of rules and exceptions required. 

 

II. PROPOSED APPROACH 

A. Statistical Machine Translation 

Statistical machine translation, or SMT for 
short, is the use of statistical models that learn to 
translate text from a source language to a target 
language gives a large corpus of examples. 

Statistical model as follows: 

Given a sentence T in the target language, I 
seek the sentence S from which the translator 
produced T. We know that our chance of error is 
minimized by choosing that sentence S that is most 
probable given T. Thus, I wish to choose S so as to 
maximize Pr(S|T). 

B.  Neural Machine Translation (NMT): 

Neural machine translation, or NMT for short, 
is the use of neural network models to learn a 
statistical model for machine translation. 

The key benefit to the approach is that a single 
system can be trained directly on source and target 
text, no longer requiring the pipeline of specialized 
systems used in statistical machine learning. 

Unlike the traditional phrase-based translation 
system which consists of many small sub-
components that are tuned separately, neural 
machine translation attempts to build and train a 
single, large neural network that reads a sentence 
and outputs a correct translation. 

 Human and Machine Translation: 

 

 

 

 

 

Fig 1 Human and Machine Translation 

 

C. ENCODER 

The task of the encoder is to provide a 
representation of the input sentence. The input 
sentence is a sequence of words (human readable 
dates with maximum 30-character length), for 
which I first consult the embedding matrix using 
one hot encoding. Then, as in the basic language 
model described previously, I process these words 
with a recurrent neural network using Long short 
term memory (LSTM). This results in hidden states 
that encode each word with its left context, i.e., all 
the preceding words. To also get the right context, I 
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also build a recurrent neural network that runs 
right-to-left, or more precisely, from the end of the 
sentence to the beginning. Having two recurrent 
neural networks running in two directions is called 
a bi-directional recurrent neural network. 

 
D. DECODER 

The decoder is a recurrent neural network. It 
takes some representation of the input context 
(more on that in the next section on the attention 
mechanism) and the previous hidden state and 
output word prediction and generates a new hidden 
decoder state and a new output word prediction. 

If I use LSTMs for the encoder, then I also use 
LSTMs for the decoder. From the hidden state. I 
now predict the output word. This prediction takes 
the form of a probability distribution over the entire 
output vocabulary. If I have a vocabulary of, say, 
50,000 words, then the prediction is a 50,000-
dimensional vector, each element corresponding to 
the probability predicted for one word in the 
vocabulary. 

 

 

 

 

 

 

 

 

 

 

 

Fig 2 Attention Mechanism 

E. Attention Mechanism 

I currently have two loose ends. The decoder 
gave us a sequence of word representations hj = 
(←− hj , −→hj ) and the decoder expects a context 
ci at each step i. I now describe the attention 
mechanism that ties these ends together. The 
attention mechanism is hard to visualize using our 
typical neural network graphs. The attention 
mechanism is informed by all input word 
representations ( ←− hj, −→hj) and the previous 
hidden state of the decoder si−1, and it produces a 
context state ci . The motivation is that I want to 
compute an association between the decoder state 
and each input word. Based on how strong this 
association is, or in other words how relevant each 
input word is to produce the next output word, I 
want to weight the impact of its word 
representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3 Training Model 

F. Trainging the model 

With the complete model in hand, I can now 
take a closer look at training. One challenge is that 
the number of steps in the decoder and the number 
of steps in the encoder varies with each training 
example. Sentence pairs consist of sentences of 
different length, so I cannot have the same 
computation graph for each training example but 
instead have to dynamically create the computation 
graph for each of them. This technique is called 
unrolling the recurrent neural networks. 

Practical training of neural machine translation 
models requires GPUs which are well suited to the 
high degree of parallelism inherent in these deep 
learning models (just think of the many matrix 
multiplications). To increase parallelism even 
more, I process several sentence pairs (say, 100) at 
once. This implies that I increase the 
dimensionality of all the state tensors. To give an 
example, I represent each input word in specific 
sentence pair with a vector hj . Since I already have 
a sequence of input words, these are lined up in a 
matrix. When I process a batch of sentence pairs, I 
again line up these matrices into a 3-dimensional 
tensor. Similarly, to give another example, the 
decoder hidden state Si is a vector for each output 
word. Since I process a batch of sentences, I line up 
their hidden states into a matrix. Note that in this 
case it is not helpful to line up the states for all the 
output words, since the states are computed 
sequentially. 

To summarize, training consists of the following 
steps: 

 Shuffle the training corpus (to avoid 
undue biases due to temporal or topical 
order) 

 Break up the corpus into maxi-batches 

 Break up each maxi-batch into mini-
batches 

 Process each mini-batch, gather gradients 
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 Apply all gradients for a maxi-batch to 
update the parameters. 

Typically, training neural machine translation 
models takes about 5–15 epochs (passes through 
entire training corpus). A common stopping 
criterion is to check progress of the model on a 
validation set (that is not part of the training data) 
and halt when the error on the validation set does 
not improve. Training longer would not lead to any 
further improvements and may even degrade 
performance due to overfitting. 

III. MODEL CREATION 

There are two separate LSTMs in this model, 
pre-attention Bi-LSTM, post-attention LSTM. The 
pre-attention Bi-LSTM goes through TxTx time 
steps, the post-attention LSTM goes through TyTy 
time steps. 

The LSTM has both the output activation 
s⟨t⟩s⟨t⟩ and the hidden cell state c⟨t⟩c⟨t⟩. The post-
activation LSTM at time tt does will not take the 
specific generated y⟨t−1⟩y⟨t−1⟩ as input, it only 
takes s⟨t⟩s⟨t⟩ and c⟨t⟩c⟨t⟩ as input. I have designed 
the model this way, because there isnot as strong a 
dependency between the previous character and the 
next character in a YYYY-MM-DD date. 

I use a⟨t⟩=[a→⟨t⟩;a←⟨t⟩]a⟨t⟩=[a→⟨t⟩;a←⟨t⟩] to 
represent the concatenation of the activations of 
both the forward-direction and backward-directions 
of the pre-attention Bi-LSTM. 

The architecture has a RepeatVector node to 
copy s⟨t−1⟩s⟨t−1⟩'s value TxTx times, and then 
Concatenation to concatenate s⟨t−1⟩s⟨t−1⟩ and 
a⟨t⟩a⟨t⟩ to compute e⟨t,t′e⟨t,t ′, which is then passed 
through a softmax to compute α⟨t,t ′⟩α⟨t,t′⟩. 

Implementation functions 

one_step_attention():  At  step  tt,  given  all  
the  hidden states of the Bi-LSTM 

 ([a<1>,a<2>,...,a<Tx>][a<1>,a<2>,...,a<Tx>]) 
and the previous hidden state of the second LSTM 
(s<t−1>s<t−1>) 

one_step_attention() will compute the attention 
weights 
([α<t,1>,α<t,2>,...,α<t,Tx>][α<t,1>,α<t,2>,...,α<t,T
x>])  

and output the context vector. 

 

 

Model 

First phase runs the input through a Bi-LSTM 
to get back  

[a<1>,a<2>,...,a<Tx>][a<1>,a<2>,...,a<Tx>].  

Then, it calls one_step_attention() TyTy times 
(for loop). At each iteration of this loop, it gives the 
computed context vector c<t>c<t> to the second 
LSTM and runs the output of the LSTM through a 
dense layer with softmax activation to generate a 
prediction ŷ <t>y^<t>. 

Neural Machine Translation (NMT) is a new 
approach to machine translation that has shown 
promising results that are comparable to traditional 
approaches. 

IV. PERFORMANCE EVALUATION 

Defined model is verified using 
categorical_crossentropy loss, a custom Adam 
optimizer (learning rate = 0.005, β1=0.9β1=0.9, 
β2=0.999β2=0.999, decay = 0.01) and ['accuracy'] 
metrics, while training, observing the loss as well 
as the accuracy on each of the 10 positions of the 
output. 

Table 1 loss and accuracy 

 

 

 

 

 

 

Thus, dense_2_acc_8: 0.89 means that 
predicting the 7th character of the output correctly 
89% of the time in the current batch of data. 

Executed the model for longer and saved the 
weights. Run the next cell to load our weights. 

V. CONCLUSION 

Neural Machine translation models can be used 
to map from one sequence to another. They are 
useful not just for translating human languages 
(like Hindi->English) but also for tasks like date 
format translation. 

An attention mechanism allows a network to 
focus on the most relevant parts of the input when 
producing a specific part of the output. 

A network using an attention mechanism can 
translate from inputs of length TxTx to outputs of 
length TyTy, where TxTx and TyTy can be 
different. 
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