
© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06049 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 234

Date Extraction and Translation using

Neural Machine Translation

Venkateshwarlu Vennnam

Department of Information Technology, GITAM University

Dr.Riyazuddin.Y.Md
 Assistant Professor- Dept of IT, GITAM,Hyderabad

Abstract— This Neural Machine Translation

(NMT) model to translate human readable dates

(“16th of December, 2012") into machine readable

dates ("2012-12-16"). Machine learning model is built

using an Attention model, one of the most

sophisticated sequence to sequence models and deep

learning neural networks. The model accepts a date

as input written in a variety of possible formats (e.g.

"the 29th of August 1948", "03/29/1948", "29 JUNE

1987") and translate them into standardized, machine

readable dates (e.g. "1948-08-29", "1948-03-

29","1987-06-29"). The output format would be the

common machine-readable format YYYY-MM-DD.

This model can also be scaled up to translate from

one language to another, such as translating from

English to Hindi but language translation requires

massive datasets and usually takes days of training on
GPUs.

Keywords— Dates, sentences, encode, decode,

sequence models, RNN, attention, LSTM, Deep
Learning, Neural Networks

I. INTRODUCTION

Machine translation is the task of automatically
converting source text in one language to text in
another language.

In a machine translation task, the input already
consists of a sequence of symbols in some
language, and the computer program must convert
this into a sequence of symbols in another
language. Given a sequence of text in a source
language, there is no one single best translation of
that text to another language. This is because of the
natural ambiguity and flexibility of human
language. This makes the challenge of automatic
machine translation difficult, perhaps one of the
most difficult in artificial intelligence.

The fact is that accurate translation requires
background knowledge in order to resolve
ambiguity and establish the content of the sentence.

Classical machine translation methods often
involve rules for converting text in the source
language to the target language. The rules are often
developed by linguists and may operate at the
lexical, syntactic, or semantic level. This focus on
rules gives the name to this area of study: Rule-
based Machine Translation, or RBMT.

RBMT is characterized with the explicit use
and manual creation of linguistically informed
rules and representations.

The key limitations of the classical machine
translation approaches are both the expertise
required to develop the rules, and the vast number
of rules and exceptions required.

II. PROPOSED APPROACH

A. Statistical Machine Translation

Statistical machine translation, or SMT for
short, is the use of statistical models that learn to
translate text from a source language to a target
language gives a large corpus of examples.

Statistical model as follows:

Given a sentence T in the target language, I
seek the sentence S from which the translator
produced T. We know that our chance of error is
minimized by choosing that sentence S that is most
probable given T. Thus, I wish to choose S so as to
maximize Pr(S|T).

B. Neural Machine Translation (NMT):

Neural machine translation, or NMT for short,
is the use of neural network models to learn a
statistical model for machine translation.

The key benefit to the approach is that a single
system can be trained directly on source and target
text, no longer requiring the pipeline of specialized
systems used in statistical machine learning.

Unlike the traditional phrase-based translation
system which consists of many small sub-
components that are tuned separately, neural
machine translation attempts to build and train a
single, large neural network that reads a sentence
and outputs a correct translation.

 Human and Machine Translation:

Fig 1 Human and Machine Translation

C. ENCODER

The task of the encoder is to provide a
representation of the input sentence. The input
sentence is a sequence of words (human readable
dates with maximum 30-character length), for
which I first consult the embedding matrix using
one hot encoding. Then, as in the basic language
model described previously, I process these words
with a recurrent neural network using Long short
term memory (LSTM). This results in hidden states
that encode each word with its left context, i.e., all
the preceding words. To also get the right context, I

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06049 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 235

also build a recurrent neural network that runs
right-to-left, or more precisely, from the end of the
sentence to the beginning. Having two recurrent
neural networks running in two directions is called
a bi-directional recurrent neural network.

D. DECODER

The decoder is a recurrent neural network. It
takes some representation of the input context
(more on that in the next section on the attention
mechanism) and the previous hidden state and
output word prediction and generates a new hidden
decoder state and a new output word prediction.

If I use LSTMs for the encoder, then I also use
LSTMs for the decoder. From the hidden state. I
now predict the output word. This prediction takes
the form of a probability distribution over the entire
output vocabulary. If I have a vocabulary of, say,
50,000 words, then the prediction is a 50,000-
dimensional vector, each element corresponding to
the probability predicted for one word in the
vocabulary.

Fig 2 Attention Mechanism

E. Attention Mechanism

I currently have two loose ends. The decoder
gave us a sequence of word representations hj =
(←− hj , −→hj) and the decoder expects a context
ci at each step i. I now describe the attention
mechanism that ties these ends together. The
attention mechanism is hard to visualize using our
typical neural network graphs. The attention
mechanism is informed by all input word
representations (←− hj, −→hj) and the previous
hidden state of the decoder si−1, and it produces a
context state ci . The motivation is that I want to
compute an association between the decoder state
and each input word. Based on how strong this
association is, or in other words how relevant each
input word is to produce the next output word, I
want to weight the impact of its word
representation.

Fig 3 Training Model

F. Trainging the model

With the complete model in hand, I can now
take a closer look at training. One challenge is that
the number of steps in the decoder and the number
of steps in the encoder varies with each training
example. Sentence pairs consist of sentences of
different length, so I cannot have the same
computation graph for each training example but
instead have to dynamically create the computation
graph for each of them. This technique is called
unrolling the recurrent neural networks.

Practical training of neural machine translation
models requires GPUs which are well suited to the
high degree of parallelism inherent in these deep
learning models (just think of the many matrix
multiplications). To increase parallelism even
more, I process several sentence pairs (say, 100) at
once. This implies that I increase the
dimensionality of all the state tensors. To give an
example, I represent each input word in specific
sentence pair with a vector hj . Since I already have
a sequence of input words, these are lined up in a
matrix. When I process a batch of sentence pairs, I
again line up these matrices into a 3-dimensional
tensor. Similarly, to give another example, the
decoder hidden state Si is a vector for each output
word. Since I process a batch of sentences, I line up
their hidden states into a matrix. Note that in this
case it is not helpful to line up the states for all the
output words, since the states are computed
sequentially.

To summarize, training consists of the following
steps:

 Shuffle the training corpus (to avoid
undue biases due to temporal or topical
order)

 Break up the corpus into maxi-batches

 Break up each maxi-batch into mini-
batches

 Process each mini-batch, gather gradients

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06049 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 236

 Apply all gradients for a maxi-batch to
update the parameters.

Typically, training neural machine translation
models takes about 5–15 epochs (passes through
entire training corpus). A common stopping
criterion is to check progress of the model on a
validation set (that is not part of the training data)
and halt when the error on the validation set does
not improve. Training longer would not lead to any
further improvements and may even degrade
performance due to overfitting.

III. MODEL CREATION

There are two separate LSTMs in this model,
pre-attention Bi-LSTM, post-attention LSTM. The
pre-attention Bi-LSTM goes through TxTx time
steps, the post-attention LSTM goes through TyTy
time steps.

The LSTM has both the output activation
s⟨t⟩s⟨t⟩ and the hidden cell state c⟨t⟩c⟨t⟩. The post-
activation LSTM at time tt does will not take the
specific generated y⟨t−1⟩y⟨t−1⟩ as input, it only
takes s⟨t⟩s⟨t⟩ and c⟨t⟩c⟨t⟩ as input. I have designed
the model this way, because there isnot as strong a
dependency between the previous character and the
next character in a YYYY-MM-DD date.

I use a⟨t⟩=[a→⟨t⟩;a←⟨t⟩]a⟨t⟩=[a→⟨t⟩;a←⟨t⟩] to
represent the concatenation of the activations of
both the forward-direction and backward-directions
of the pre-attention Bi-LSTM.

The architecture has a RepeatVector node to
copy s⟨t−1⟩s⟨t−1⟩'s value TxTx times, and then
Concatenation to concatenate s⟨t−1⟩s⟨t−1⟩ and
a⟨t⟩a⟨t⟩ to compute e⟨t,t′e⟨t,t ′, which is then passed
through a softmax to compute α⟨t,t ′⟩α⟨t,t′⟩.

Implementation functions

one_step_attention(): At step tt, given all
the hidden states of the Bi-LSTM

 ([a<1>,a<2>,...,a<Tx>][a<1>,a<2>,...,a<Tx>])
and the previous hidden state of the second LSTM
(s<t−1>s<t−1>)

one_step_attention() will compute the attention
weights
([α<t,1>,α<t,2>,...,α<t,Tx>][α<t,1>,α<t,2>,...,α<t,T
x>])

and output the context vector.

Model

First phase runs the input through a Bi-LSTM
to get back

[a<1>,a<2>,...,a<Tx>][a<1>,a<2>,...,a<Tx>].

Then, it calls one_step_attention() TyTy times
(for loop). At each iteration of this loop, it gives the
computed context vector c<t>c<t> to the second
LSTM and runs the output of the LSTM through a
dense layer with softmax activation to generate a
prediction ŷ <t>y^<t>.

Neural Machine Translation (NMT) is a new
approach to machine translation that has shown
promising results that are comparable to traditional
approaches.

IV. PERFORMANCE EVALUATION

Defined model is verified using
categorical_crossentropy loss, a custom Adam
optimizer (learning rate = 0.005, β1=0.9β1=0.9,
β2=0.999β2=0.999, decay = 0.01) and ['accuracy']
metrics, while training, observing the loss as well
as the accuracy on each of the 10 positions of the
output.

Table 1 loss and accuracy

Thus, dense_2_acc_8: 0.89 means that
predicting the 7th character of the output correctly
89% of the time in the current batch of data.

Executed the model for longer and saved the
weights. Run the next cell to load our weights.

V. CONCLUSION

Neural Machine translation models can be used
to map from one sequence to another. They are
useful not just for translating human languages
(like Hindi->English) but also for tasks like date
format translation.

An attention mechanism allows a network to
focus on the most relevant parts of the input when
producing a specific part of the output.

A network using an attention mechanism can
translate from inputs of length TxTx to outputs of
length TyTy, where TxTx and TyTy can be
different.

REFERENCES

[1] Yoonjung Choi, Youngho Kim, Sung-Hyon
Myaeng Domain-specific sentiment analysis using
contextual feature generation(2009).

[2] Mikalai Tsytsarau,University of Trento, Trento,
Italy.Sihem Amer-Yahia, Laboratoire
d'Informatique de Grenoble, Grenoble, France.
Themis Palpanas, University of Trento, Trento,
Italy. J. Clerk Efficient sentiment correlation for
large-scale demographics (2013).

[3] Kaiming Li Northwestern Polytechnical Univerisity,
China and The University of Georgia. Human-
centered attention models for video summarization
(2010)

[4] Ming-Yu Wang, Xing Xie, Wei-Ying Ma, Hong-
Jiang ZhangMicrosoft Research Asia, Beijing,
P.R.China R. MobiPicture: browsing pictures on
mobile devices

[5] A Statistical Approach to Machine Translation,
1990.

[6] Review Article: Example-based Machine
Translation, 1999.

[7] Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine
Translation, 2014.

[8] Neural Machine Translation by Jointly Learning to
Align and Translate, 2014.

[9] Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine
Translation, 2016.

[10] Sequence to sequence learning with neural
networks, 2014.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06049 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 237

[11] Recurrent Continuous Translation Models, 2013.

[12] Continuous space translation models for phrase-
based statistical machine translation, 2013.

[13] Jürgen Schmidhuber, Sepp Hochreiter Long Short-
Term Memory (1997)

http://www.jetir.org/

