
© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06056 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 255

SOFTWARE DEVELOPMENT EFFORT

AND PREDICTION TECHNIQUES

 Ramu Vankudoth #1 Dr.P.Shirisha #2
 #1Research Scholar (Ph.D),Department of Computer Science, ramuvankudoth86@gmail.com

#2Assistant Professor, Department of CSE, KITS, siri.niru55@gmail.com
 #1,2Kakatiya University, Warangal

Abstract – To develop reliable software in available

time and budget, software managers need to keep on a

software quality and reliability and dynamically

manage their resources. The resource management is

highly dependent on quality and reliability assessment

of software under development besides understanding

the quality and cost of resources available. The later

part is generally understood qualitatively and in general

difficult to present in good quantitative terms. However,

the quality and reliability measurement is challenging

task for managers when product is under development.

Indicative measures of software reliability and quality

help to predict resource requirements for meeting the

specified performance requirements. Software

development efforts prediction is one of the important

activities for the above purpose. Inaccurate prediction

of efforts may lead to cost overruns or poor reliability of

software or both. Overestimation of efforts leads to

wastage of software development resources and

underestimation of efforts causes schedule delays, poor

quality of software and associated penalties.

In this work, software development efforts are

predicted using some effort multipliers available during

early phases of software development lifecycle.

Evolutionary techniques (PCA and CFS) and some soft

computing techniques (artificial neural network) are

used to predict software development effort form effort

multipliers.

Keyword: Software quality, ANN, PCA, CFS,

Reliability, MATLAB

I. INTRODUCTION

To develop reliable software in time budget and

available, software managers need to keep a on

dynamically manage their resources and reliability

and software quality. The resource management is

highly dependent on reliability and quality

assessment of software under development besides

understanding the quality and cost of resources

available. The later part is in general difficult to

present in good quantitative terms and generally

understood qualitatively. However, the reliability and

quality measurement is challenging task for managers

when product is under development. Indicative

measures of software quality and reliability help to

predict resource requirements for meeting the

specified performance requirements. Software one of

the important activity is development efforts

prediction for the above purpose. Inaccurate

prediction of poor reliability of software or efforts

may lead to cost overruns or both. Overestimation of

underestimation of efforts causes schedule delays and

efforts leads to wastage of software development

resources, associated penalties and poor quality of

software. During effort and cost drivers, a number of

metrics such as size software development process

are independent variables and effort/cost is dependent

variable. The data from similar historical driven

models use data for training software projects. The

been used for predicting the cumulative number of

failures in certain time, trained model predicts

development efforts for new projects ANN time

between failures and fault-prone. It has been found

predictive capability that ANNs have better most

conventional methods .In the results of the ANN

model trained with , present communication are

reported. Principal component analysis (PCA)

reduces number of neurons in hidden layer the

collinearity in input features is employed to optimize.

The remainder of the paper is organised better

reduces by using MATLAB as follows. The ANN

strategy is explained in Section. The experimental

results are discussed in Section. Finally, in Section,

the concluding remarks are stated.

II. LITERATURE SURVEY

Software development efforts prediction is necessary

for control and effective project planning. Project

managers use especially for determination of project

details and, allocation of project resources, project

tasks, schedule controlling and effort estimation to

make better managerial decisions during project

development life cycle process monitoring. There

exists a number of software efforts estimation for

models. ANN is software development efforts

prediction for a sought after method. Compared the

prediction performance concluded that ANN-based

models provided improved performance over

regression analysis. Reported of regression analysis

procedure to predict efforts from software size and

other cost and effort multipliers ANN and the

predictive measures of ANN are superior to

regression analysis for software efforts estimation

presented a study. They compared models and

performance is found that better prediction

performance than. They concluded that performance

of ANN results were found better than regression

analysis and ANN model varied depending upon

input variables .They concluded that the existing

models to predict efforts during early phases of

software development life cycle some presented

approach had better performance than. There exist a

number of regression analysis models to estimate

efforts as a function of software size and research

works on software efforts estimation using ANN.

Used all effort multipliers and software cost along

with software size to estimate efforts. They using

analysis of variances of pre-processed. The stepwise

multiple regression analysis models to estimate

efforts and preprocessed data were taken as input of

ANN. They showed that improved performance of

preprocessing technique models. ANN-based models

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06056 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 256

works are used many used to train the ANN. In this

work, ANN models are trained using PCA and CFS.

III. PROPOSED METHODOLOGY:
Two different models such as ANN-PCA and ANN-

CFS are proposed in this paper to predict software

development efforts. A new ANN architecture is

proposed in this paper which contains an input

encoding layer with additional. This additional input

encoding layer is added between the input hidden

layers and traditional. This additional input layer

contains neurons with used for scaling the input

values of ANN single input and single output. This

new ANN architecture is trained using PCA

technique. In the ANN-PCA (size) model, only size is

considered as input in the ANN-CFS (all effort

multipliers) model, size including all effort variables

are taken as input of ANN to predict development

efforts. In the ANN-PCA and ANN-CFS model, PCA

and CFS applied for after applying of result data we

take has input feature space to reduce dimension of

input space and then the reduced data are taken as

input of ANN to predict development efforts. Finally,

in the ANN-PCA model, PCA is applied to reduce

dimension of input space and then is applied to

optimize ANN architecture of ANN using the

reduced input .The proposed additional input

encoding layer ANN architecture. The proposed

ANN-PCA model is proposed ANN-CFS-based

model with PCA (ANN-PCA) .The proposed ANN

architecture optimization (ANN-PCA).

ANN is used to predict software development efforts

based on different effort multipliers such as

reliability, complexity, software size, analyst

capability, programmer capability and many more.

These development efforts sand effort multipliers are

considered as the independent and dependent variable

respectively. The organization of neurons in ANN is

called the topology of ANN. The non-linear

relationship between output and input of ANN is

obtained by training ANN. Feed forward network is

the simplest type of ANN used for prediction and

classification problems. An additional input encoding

layer ANN architecture is proposed in this work. It

consists of an additional input encoding layer, a

hidden layer and an input layer, an output layer. The

different variables (effort multipliers and size) present

in the software project such as taken as input of

ANN. Effort is considered as output of ANN.

Artificial neural network (ANN) Architecture:

Layer1 Layer2 Layer3

Fig:1 ANN architecture

The proposed ANN architecture consists of an

additional input encoding layer which is added

between hidden layer and input layer. The number of

input layer neurons is equal to the number of input

features used for predicting efforts. The additional

input encoding layer has the same number of neurons

as input layer. Some of the effort multipliers are of

smaller value and some are of higher value. The

learning process of ANN becomes complex using the

original input variables. Scaling function is used to

capture the of software failure process in some

models for better ANN training. The ANN inputs are

scaled into the range [0, 1] in different models for

better learning in ANN .In the proposed ANN

architecture, the same logarithmic function used in is

used as activation function in the additional input

encoding layer. The authors have used this activation

function and the scaling parameter is obtained

automatically during ANN training to scale inputs in

the range [0, 1]. The multipliers used for datasets are

of variable ranges. In this work, a logarithmic scaling

function is used to equalize the importance of all the

effort multipliers used as input of ANN in the

proposed ANN architecture. The following

logarithmic function is used as activation function in

the proposed additional input encoding layer to scale

ANN inputs in the range [0, 1].The search space

biases are considered as [0, 1]. The minimum scaled

value is obtained automatically in this search space in

the proposed approach.

A. ANN-PCA Model:

PCA is used as the dimension reduction technique to

reduce the dimension of input features for the

proposed approaches. PCA involves a mathematical

procedure that transforms a number of correlated

variables into a (smaller) number of uncorrelated

variables called principal components (PCs). It may

happen that the transformed data may contain

negative values which are not handled by the

logarithmic function during scaling. After applying

PCA on each dataset, the original dataset is

transformed into reduced dataset by considering bias

which helps to scale the input of ANN properly using

logarithmic function. The Final Data set obtained

after applying PCA may consists of negative values

for some points. To eliminate negative values, Bias is

calculated along each dimension of Final Data set.

Bias is considered as minimum negative value along

each dimension and subtracted along each dimension

of the Final Data set. Then, the resultant Final Data

set is divided into learning and testing sets. Then

ANN is trained using PSO as discussed. The ANN

architecture considered consists of an input layer, an

additional input layer, a hidden neuron and an output

layer. The number of input neurons in the input layer

is same as the number of PCs selected after applying

PCA discussed above. The additional input layer also

contains the same number of neurons as input

neurons. The output layer contains a single neuron

and uses linear activation function. Bias is added to

every neuron in the additional input layer, hidden

layer and output layer. The ANN is optimized by

using PSO method.

Layer2 (Hidden Layer)

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06056 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 257

B. Correlation Feature Selection:
Feature selection is a pre-processing step to machine

learning which is effective in reducing

dimensionality, removing irrelevant data, increasing

learning accuracy, and improving result

comprehensibility. It is a measure which evaluates the

subset of features on the basis of the hypothesis i.e.

good feature subsets contain features highly

correlated with the prediction of the class, yet

uncorrelated with (non-predictive of) each other. A

feature of a subset is good if it is highly correlated

with the class but not much correlated with other

features of the class.

Let, S is a subset of features which contains k

features, and then the merit of S is written as:

Where, rcf is the average value of all feature-

classification correlations and rff is the average value

of all feature-feature correlations. The correlation

feature selection criteria(CFS) is defined as:

Where, rcfi and rfifj are referred as correlations. This

technique is applied on software metrics to select the

important sub set of metrics for fault-prone module

prediction in software.

IV. OBJECTIVES

 Software plays a major role starting from a simple

system like washing machine to a highly complex and

safety system like air traffic control system and

nuclear system. Failures in the software lead to

customer dissatisfaction, economic loss and loss of

life. Therefore, software professionals are trying to

deliver software which are not only functional

attractive but also safe and reliable. Software

Reliability is defined as the probability of failure free

operation of software for a specified period of time in

a specified environment. Software development effort

is one of the software reliability indicators in software

industry.

V. RESULTS AND DISCUSSIONS:

In this paper, one software effort datasets viz.

Desharnais are used for predictive performance of the

ANN models. Desharnais datasets consist of a large

number of projects. . In this section, the results of

ANN-PSO, ANN-PCA and ANN-CFS models are

discussed and compared with existing models. The

results are reported for all models in this work with

best generalization performance on the test datasets.

For the ANN and ANN-PCA approach, for each test

set, 17 simulations are carried out and the average

value of these simulations is reported for each of the

datasets considered. In the proposed ANN-PCA-CFS

approach, for each test set,17 simulations are carried

out as results . The averaged results of ten simulations

are reported in this work. function = mean magnitude

relative error (MMRE) acceleration , MMRE as the

fitness function ,the results are reported for the above

combination of parameters in this work . To test if

there is a significant difference between the proposed

approaches, statistical test (t-test) with 95%

confidence level was performed on one datasets. t-test

is a statistical test which is used to determine

.whether the mean of a population significantly

different from the mean of another population. The

prediction capability of different models on testing

set is evaluated using MMRE.

Where Actual and Predicted are the actual and

predicted efforts and N is the number of projects for

which effort is predicted. ANN is the percentage of

predictions that fall within 25% of Actual value. In

the following subsections, experimental results of

proposed approaches

A. MATLAB in ANN

Workflow for Neural Network Design The work flow

for the neural network design process has seven

primary steps.

Data collection in step 1 generally occurs outside the

framework of Neural Network Toolbox software, but

it is discussed in general terms in ―Multilayer

Neural Networks and Back propagation Training‖.

The Neural Network Toolbox software uses the

network object to store all of the information that

defines a neural network. This topic describes the

basic components of a neural network and shows how

they are created and stored in the network object.

After a neural network has been created, it needs to

be configured and then trained. Configuration

involves arranging the network so that it is

compatible with the problem you want to solve, as

defined by sample data. After the network has been

configured, the adjustable network parameters (called

weights and biases) need to be tuned, so that the

network performance is optimized. This tuning

process is referred to as training the network.

Configuration and training require that the network

be provided with example data. This topic shows how

to format the data for presentation to the network. It

also explains network configuration and the two

forms of network training: incremental training and

batch training. More about “Four Levels of Neural

Network Design” “Neuron Model” “Neural

Network Architectures” “Understanding Neural

Network Toolbox Data Structures”.

B. Four Levels of Neural Network Design

There are four different levels at which the Neural

Network Toolbox software can be used. The first

level is represented by the GUIs that are described in

―Getting Started with Neural Network Toolbox‖.

These provide a quick way to access the power of the

toolbox for many problems of function fitting, pattern

recognition, clustering and time series analysis. The

second level of toolbox use is through basic

command-line operations. The command line

functions use simple argument lists with intelligent

default settings for function parameters. (You can

override all of the default settings, for increased

functionality.) This topic, and the ones that follow,

concentrate on command-line operations. The GUIs

described in Getting Started can automatically

generate MATLAB code files with the command-line

implementation of the GUI operations. This provides

a nice introduction to the use of the command-line

functionality. A third level of toolbox use is

customization of the toolbox. This advanced

capability allows you to create your own custom

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06056 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 258

neural networks, while still having access to the full

functionality of the toolbox. The fourth level of

toolbox usage is the ability to modify any of the code

files contained in the toolbox. Every computational

component is written in MATLAB code and is fully

accessible. The first level of toolbox use (through the

GUIs) is described in Getting Started which also

introduces command-line operations. The following

topics will discuss the command line operations in

more detail. The customization of the toolbox is

described in ―Define Neural Network Architectures.

C. Neuron Models

The fundamental building block for neural networks

is the single-input neuron, such as this example.

There are three distinct functional operations that take

place in this example neuron. First, the scalar input p

is multiplied by the scalar weight w to form the

product wp, again a scalar. Second, the weighted

input wp is added to the scalar bias b to form the net

input n. (In this case, you can view the bias as

shifting the function f to the left by an amount b. The

bias is much like a weight, except that it has a

constant input of 1.) Finally, the net input is passed

through the transfer function f, which produces the

scalar output a. The names given to these three

processes are: the weight function, the net input

function and the transfer function. For many types of

neural networks, the weight function is a product of a

weight times the input, but other weight functions

(e.g., the distance between the weight and the input,

|w − p|) are sometimes used. (For a list of weight

functions, type help nnweight.) The most common

net input function is the summation of the weighted

inputs with the bias, but other operations, such as

multiplication, can be used. (For a list of net input

functions, type help nnnetinput.) ―Introduction to

Radial Basis Neural Networks‖ .how distance can be

used as the weight function and multiplication can be

used as the net input function. There are also many

types of transfer functions. Examples of various

transfer functions are in ―Transfer Functions‖. (For a

list of transfer functions, type help nntransfer.) Note

that w and b are both adjustable scalar parameters of

the neuron. The central idea of neural networks is that

such parameters can be adjusted so that the network

exhibits some desired or interesting behavior. Thus,

you can train the network to do a particular job by

adjusting the weight or bias parameters. All the

neurons in the Neural Network Toolbox software

have provision for a bias, and a bias is used in many

of the examples and is assumed in most of this

toolbox. However, you can omit a bias in a neuron if

you want.

D. Transfer Functions

Many transfer functions are included in the Neural

Network Toolbox software. Two of the most

commonly used functions are shown below. The

following figure illustrates the linear transfer

function. Neurons of this type are used in the final

layer of multilayer networks that are used as function

approximators. This is shown in ―Multilayer Neural

Networks and Back propagation Training‖. The

sigmoid transfer function shown below takes the

input, which can have any value between plus and

minus infinity, and squashes the output into the range

0 to 1.

This transfer function is commonly used in the hidden

layers of multilayer networks, in part because it is

differentiable. The symbol in the square to the right

of each transfer function graph shown above

represents the associated transfer function. These

icons replace the general f in the network diagram

blocks to show the particular transfer function being

used. For a complete list of transfer functions, type

help nntransfer. You can also specify your own

transfer functions. You can experiment with a simple

neuron and various transfer functions by running the

example program nnd2n1.

Table:1 Actual dataset

Neural Network Training ANN Architecture

Actual data result

Original data set result we found that in this way after

test the process.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIRAZ06056 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 259

RESULT:

Neural network Performance

Neural Network Training State

Neural Network Training Regression

VI. Conclusions

An ANN architecture by adding an additional input

layer with logarithmic activation function has been

proposed in this paper and trained using CFS and

PCA algorithm to predict software development

efforts. CFS is applied to reduce dimension of input

features by using MATLAB tool kit in that it will

reduced data actual is 11 it will reduced in to 4 . PCA

is used in matlab and it will reduced the effort of this

data set and it will also give less out put but compare

both result PCA is the best result and reeducation.

The proposed approach provides better accuracy for

the compared datasets in terms of MMRE .The

proposed approach provides improvement in MMRE

Desharnais dataset, respectively, than the compared

models. Similarly, the proposed approach provides

Desharnais dataset, respectively, than the compared

models. In this paper we can also apply the genetic

algorithm (GA) in that linear regression and back

propagation also we can apply in this paper.

References

[1] Jorgensen, M.: Forecasting of software development work

effort: evidence on expert judgment and formal models‘, Int.

J. Forecast., 2007, 23, pp. 449–462

[2] Boehm, B.W.: Software engineering economics‘ (Prentice-
Hall, Englewood Cliffs, NJ, 1981)

[3] Albrecht, A.J., Gaffney, J.: Software function, source lines of

code, and development effort prediction: a software science
validation‘, IEEE Trans. Software Engineering., 1983, 9, (6),

pp. 639–648

[4] Delone, W.H.: Determinants of success for computer usage in
small business‘, MIS Q., 1988, 12, (1), pp. 51–61

[5] Golden, J.R., Mueller, J.R., Anselm, B.: Software cost

estimating: craft or witchcraft‘. DATABASE, 1981, pp. 12–
14

[6] Putnam, L., Myers, W.: Measures for excellence‘ (Yourden

Press Computing Series, 1992)
[7] Pressman, R.S.: Software engineering a practitioner‘s

approach‘ (McGraw-Hill, Englewood Cliffs, NJ, 1997

[8] Jorgensen, M., Shepperd, M.: A systematic review of
software development cost estimation studies‘, IEEE Trans.

Software Engineering., 2007

[9] Heiat, A.: Comparison of artificial neural network and
regression models for estimating software development

effort‘, Inf. Software. Technol., 2002
[10] Tronto, I.F.B., Silva, J.D.S., SantAnna, N.: Comparison of

artificial neural network and regression models in software

effort estimations‘. IEEE Int. Joint Conf. Neural Networks,
Orlando, USA, 2006

[11] Changjie, M., Guochang, G., Jing, J.: Improved neural

network based on dynamic predication model of software
reliability‘, J. Convergence Inf. Technol., 2011

[12] Jin, C., Jin, S.W., Ye, J.M.: Artificial neural network-based

metric selection for software fault-prone prediction model‘,
IET Softw., 2012

[13] Gray, A.R., MacDonell, S.G.: A comparison of techniques

for developing predictive models of software metrics‘, Inf.

Softw. Technol., 1997

[14] Tronto, I.F.B., Silva, J.D.S., SantAnna, N.: An investigation

of artificial neural networks based prediction systems in
software project management‘, J. Syst. Software., 2008.

http://www.jetir.org/

