IRIS BASED TEXTURE ANLAYSIS FOR VERIFCATION AND DETECTION: REVISIT

Venkata Rathnam Korukonda^{*1}

Dr. E. Sreenivasa Reddy^{*2}

^{*1}Research Scholar in Rayalaseema University, Kurnool, A.P., INDIA ^{*2}Professor & Vice-Principal, University College of Engineering, Acharya Nagarjuna University, A.P.

Abstract - Biometric verification and detection includes detection of biometric, tracking of active and inactive templates and assessment through data comparison and processing. To enhance accuracy of the biometrics, the dynamic multi-modal biometrics based applications systems framework dynamically couples image processing with statistical models to enhance system performance. Due to heterogeneity nature of biometrics from person to person, it is very challenging to build an efficient biometric authentication system, which could either be a performance bottleneck or the single point of failure. Henceforth due to complexity of IRIS biometric and image processing technology, this paper introduces a theoretical overview of different techniques that incorporate a decentralized area selection within the IRIS for template formulation and authentication to enable effective protection. To achieve secure identity authentication, the image processing leverages the texture detection to create virtual trust blocks, in which distributed components could identified and update the template. A detail comparison between the existing systems and shortcomings in the approaches would be presented.

Keywords – Biometric, IRIS, texture detection, authentication, image processing

I. INTRODUCTION

In the current era of digitalization, the need for protecting the data/information of a particular individual has evolved into a growing concern on one-side while confirming the authenticity of the individual has become a complex task for various security firms and e-commerce platforms. The most common scenarios that are commonly employed for the authentication of the individual can be classified into what they know; what they have and what they are (different researchers present these classes in their perspective but this stands as basis for all) [1-3]. Authentication process have been evolving over the decades but still a fool proof system that could produce 100% percent accuracy in different conditions and environments is still an open research.

It is a commonly known theory that the individuals tend to forget what they know and tend to lose what they have making them a subsidiary authentication process to what they are based authentication system [2]. Based on the evolving spoofing techniques and digital processing updates ahs paved easy means to crack the things we know (i.e. pins, passwords and etc) and while the physical things we have can reduplicated (i.e. keys, cards and etc). Due to these shortcomings that concept "what we are" has evolved in significant research encompassing security access control and authentication in the recent few decades while other two have been incorporated based on additional

security and/or convenience needed [1-2]. Biometrics (comes from Latin wherein "Bio" stands for "Life" and "Metrics" stands for "Measurement") traditionally defines various characteristics of the person that can be measured/verified and maintain certain level of consistency. Over the years there are several biometrics that have been developed for authentication of the person that a majorly classified into two classes behavioral and non-behavioral (physiological) as presented in the table 1(while other researchers classify them as contact or contactless and etc). In this paper, we discuss on the physiological biometrics to verify the authenticity of the person in consideration with the corresponding developments and shortcomings [4].

Table 1 Behavioral/Physiological characteristics

Physiological	Behavioral
 Finger print Hand print Iris Face DNA Vein 	 Gait (Walking) Body temperature Keystroke Voice Signature Odor

Physiological Biometrics:

The demand for hassle-free security is in great demand as the individuals believe that they need a complex security system for malicious and/or attackers but at the same time they want it to be convenient to use. In addition, the behavior characteristics changes based on the mood (anger, happy, sad, frustrated and/or etc) making FER (false error rate) and FAR (false acceptance rate) high which led to extreme focus on the physiological behavior [4-6]. Physiological Biometrics are often consistent in every aspect but at the same time it has it owns set of issues that are addressed in the Table 2 which presents a detail constraints and advantages on each biometric.

Table 2 Comparison of Biometric Technologies [3]							
Requirement	Fingerprints	Hand Geometry	Retina	lris	Face	Signature	Voice
Ease of Use	Hiph	High	Low	Medium	Medium	High	High
Factors Increasing Error Incidence	Dryness, Dirt, Age	Hand Injury, Age	Glasses	Lighting	Lighting, Age, Glasses, Hair	Changing signatures	Noise, Colds
Accuracy	High	High	Very High	Very High	High	High	High
liser Acceptance	Medium	Medium	Nedium	Medium	Medium	High	High
Loog-Term Stability	High	Mediun	High	High	Medium	Nediun	Medium

This led to rapid escalations in the biometrics field that have paved ways for various organizations and researchers around to exploit, manipulate, process, utilize and share biometric information for integrity, security and assurance-based applications [5]. Digital analysis and feature extractions from biometric information has become a vital and much needed research area among the organizations and researchers with security and assurance-based authentication a hot topic. Even after a several decades of research interest and analysis of various algorithms associated with biometric identification and verification among users of computer systems grows up. The volumes of research that exploit the current technologies for identification and verification are not bounded by scope or applications associated with authentication, assurance and security [6]. It is a well know technology for which both the government and private organizations are active participants as biometric (combination with others) allows enhanced level of protection of one's identity. The prime goals of any biometric based security systems presented are based on protocols designed for authentication, immune to fake impersonators and the covertness required they are [5-6]:

- Is the system able to identify the authorized personals in all possible environments and scenarios with high accuracy?
- Is the system able to identify the unauthorized personals in all possible environments and scenarios with high accuracy?
- Is the system immune against spoofing and tampering?

Now-a-days fusion of the above systems has evolved into exemplary research that is addressing the modern requirements of the organization [1]. But the focus at large is to use IRIS as basic system has been gaining the ground in the current while other biometrics would act as ancillary to the IRIS system for improved security while maintaining FAR and FER within the constraints.

The rest of the paper is divide into following sections i.e. section 2 deals with background and existing research for detection and verification of IRIS Biometric while section 3 deals with research gaps and project the need of the new research to enable a secured means of extracting the IRIS template that can offer accuracy consistently throughout the research focus. And the paper is concluded in the section 4 of the paper

II. IRIS BIOMETRICS

The inaccuracy of biometrics to identify a person is the main cause for the adoption of these algorithms in the past has been difficult and has long been a source of frustration and research for last two decades. In the current digital era the need for secured authentication and management has increased, there is a need for identity authentication and access control strategy to ensure the integrity of exchanged data as well as to grant authorized entities access right to data and services. In general, an assessment expert judges the accuracy of the biometric system solely based on the common employed feature extraction and comparison of the existing feature metric [7-11]. Unfortunately, this method does not emphasize on the feature extraction i.e. pre-processing of the biometric during the image processing operation cycle, which is considered as a vital part as it allows the algorithms to estimate the features in an improved manner based on the texture, edge detection, point estimation and etc[12-13].

By comparison, other biometrics such as signatures, face, fingerprints, voice prints, and retinal blood vessel patterns all have significant drawbacks as presented in the table 2. Although signature, fingerprint and facial biometrics are cheap, easy to obtain and store; they are impossible to identify automatically with high assurance, and are easily forged [7-8]. Electronically recorded voice prints are susceptible to changes in a person's voice, and they can be counterfeited [7-8]. Fingerprints or hand prints require physical contact, and they also can be counterfeited and marred by artifacts.

Figure 1 IRIS image and different parts of IRIS

It is a well known fact in the non-research communities that they often get confused between retinal and Iris identification. It is a fact that both are different IRIS is visible region that can be easily be captured by a video recording device (i.e. camera, web cam or etc) while retina is hidden and difficult to be captured. The main reason for the strong emphasis on understanding the IRIS verification and detection engineering is that it provides the general conceptual model and techniques of secured analysis and particular enhance authentication based operational and transitional phase characteristics. It is evident fact that there is no clear definition of the IRIS template process which could calculate and perform accuracy analysis without some reasonably FER and FAR parameters employed in calculation [8]. The IRIS images can classified based on color (i.e. based on Martin-Schulz scale) which is classified in to 20 classes based on the eve color from light blue to black [14].

Recent advances in IRIS Biometric have focused research on the unwrapping the IRIS texture detection and extraction, affine transforms, template matching and matching patterns of dynamic IRIS data. These developments enable new opportunities in biometrics management; image processing, segmentation, machine learning, and template/image areas fusion that have potential implications for IRIS based biometric detection and verification. In biometric based authentication systems, the biometric data can be collected and processed to determine key points for the formulation of the biometric template (metrics) that could be normalized for verification of biometric on consistent basis and also update [15].

A. BACKGROUND: IRIS BIOMETRIC SYSTEMS

To reduce error rate and other security risks such as false positive detection or true negative detection, and it requires that only authenticated features and tabulated entities of the IRIS are allowed to form the template information and use these metric for identification system. The conventional IRIS texture access control approaches have been widely used in the IRIS biometric systems use a combination of segmentation and enhancement to identify texture region within the eye captured [16]. However, the existing solutions are not fully adapted to image processing ecosystem due to the constrained resources of space and frequency transformation of the image processing. The combination of multiple approaches and technologies can led to a solution of improved accuracy, smaller template and speedy detection IRIS biometric system. Furthermore, today's access control solutions often rely on centralized architecture, which not only demonstrates enormous scalability issues in an distributed environment composed of large number of templates, but also can be a performance bottleneck or the single point of failure.

www.jetir.org (ISSN-2349-5162)

Authors	Detection process	Extraction Process	TemplateMatching	L imitations		
John G. Daugman [7]	between iris and pupil, iris	polar coordinates, to generate an iris code	XOR Comparison	Length of the		
filed in 1991	and sciera. The area lying between intermediate are	of fixed length and	distance based	defined for all		
1994	branded as iris image of concern	format for all in ses	computation	IRIS universally.		
P DWildes	Increasing pixel captured so	8 ame approach and	Same approach and	Length of the template and		
[17] 1997	information but the process	incorporate histogram analysis	based G aussian	process is not automated ROI is		
	is same in above approach		filtering	manual Subject able to		
Boles, W. W., &	Edge detection for identifying the diameters of	Normalization of data and incorporation of	Dissimilarity measure	quantization		
Boashash, B. [18] 1998	two regions to estimate the prospective IRIS region	wavelet on the IRIS template	wavelet information	and FAR needed		
Gifford, M.				to be improved		
M., McCartney,	The authors present an approac are similar to the process of J. (ch wherein the detection a G. Daugman [7] while ma	nd extraction process atching of the templates	Network security is addressed		
D.J., & Seal, C.H.(19)	(iriscode) is conducted via netv comparison.	vork so they employ dista	ince based measure for	while using biometrics		
1999	comparison. biometrics					
S chneier, B.	limitations i.e. the system at en	rollment needs to get tem	plate from authorized pe	rsonnel and also		
[20] 1999	the biometric system is useless	he should have the sempla	are of the person it entire	nas oven tanjered		
Zhu, Y. Tan	S oft Threshold based	Normalization, Affine transforms histogram		rotation, and		
T., & Wang,	detection of inner circle	equalization, Gabor	Weighted Euclidean distance measure	algorithm but		
1.[21] 2000	detection block wise	transform		FAR & FER issues are there		
Lim, S., Lee,	Edge detection, centroids	Polar coordinates	Learning vector	FAR and FER		
0, & Kim	centroid. Prospective IRE	filtering, 2D-wavelet	winner selection by	addressed but not		
Sanchez-	The detection process are	Polar coordinates	Electrolean descance	Template size		
Reillo, R., & Sanchez-	similar to the process of J. G. Daugman [7] with	transformation, Gabor	Template size reduced and binary	reduced and FAR		
Avila, C. [23] 2001	incorporation of region detection	transforms	search is introduced	results promising		
Ma, L.,	Edge detection and Hough	Normalization, anti-	Modified Newrest	FAR and FFR		
Wang, Y., & Tan, T. [24-	analysis and averaging on	histogram equalization,	feature line	issues results		
25]2002	region detection	filtering	securaçõe	browning		
Huang, Y. P., Luo, S. W.,	Edge detection, centroids analysis and averaging on	Polar coordinates transformation,	Competitive learning Mechanism	interference of evalids and		
& Chen, E. Y [26] 2002	centroid. Prospective IRB region detection	Independent Component Analysis	and Euclidean distance	eyelashes		
González T, L. González						
A, B, MatinarA	Iris zigzag is extracted by	Median filter is applied along with linear	Modified hamming	address eye lids		
F, &Seara-	transform	Hough & Gabor transform	distance	problems		
Paz, 8. [27] 2017						
Zhang, K.,	Elburine based on Conscion	Speeded Up Robust		address eye lids		
Zhang, B., &	filters and ROI between	Features based on	hamming distance	accuracy and		
Zhang, D.	upper and lower eyelids	transformations		speed on the		
[28]2017	7 4 1 V I	Normalization & low-		system		
Llano, E. G., et. al. [29]	the quality evaluation with Laplacian ovramid fusion	pass filter in successive	hamming distance	Equal error rate is used as a metric		
2017	method	levels of a Gaussian		for comparison		
Ahmadi, N.,	Local and Global features	Normalized and	Hamming distance	In compretion of		
&Nilashi, M.	analysis with edge detection	multilevel 2-D wavelet	measure	wavelets		
[20]2010	The detection process are	polar coordinates, to	Neighborhood			
Hamouchene,	similar to the process of J. G.	generate an iris code of	based binary pattern	New measure for		
1., acAouat, S. [31] 2014	incorporation of region	a universal format for	image blocks and	been introduced		
	detection	all inises	distance matrix			
Umer, S., Dhara, B. C.,	Restricted circular Hough	Normalization, polar	Similarity score	Application of		
& Chanda, B.	transform to determine both	coordinates, toggle	between the	Hough Transform		
[32]2015	conterr					
Dhara, B. C.,	median filter and Circular	Normalization, polar	K-means clustering	K-Means		
& Chanda, B.	Hough transformation	statistics	similarity score	clustering		
12412010	Local and global entropy	Radial normalization	Linear			
Spasić, S.Z.	over a series of iris images	and angular	Discriminative	LDA		
[33] 2014.	captures to localize the IRIS region	normalization of the	distance measure	11 (11)-12)-12 (14)		
K.o. J. G.,	61 101 1000 1000 1000	Normalization polar				
Gil Y.H.	effective intro-differential	coordinates, histogram-	Hamming distance	Cumulative		
Chung, K. L.	function	based stretching,	rianning distance	means		
[35] 2007.		Contractive Partie	Statistical +			
Nabti, M.,	An approach based on	Unwarping in terms of	moment invariants	Two templates		
&Bouridane,	multiscale edge detection	details with wavelets	mapped to binary	for comparison		
H. [30] 2008	vases incanzed grasiers	and Gabor filter bank	distance	nect.0040494639923		
Seung-In N			Hamming distance			
Bae, K.,	2D - Gabor filter and	1. Local features 2.	on global teatures is less then local	Two feature set		
Park, Y., & Kim 1 [37]	wavelet transforms	Global features	feature hamming	for analysis		
2003			distance is calculated			
Zhang, P. F.,			Hamming distance			
Li, D. S., &	2D Log Gabor filter and	Global and local iris	and weighted	Two feature set		
[38] 2004	waverers occomposition	reatures	Euclidean distance	son analyses		
Nam, K. W.,	Nam, K. W.,					
1 00n, K. L., Bark, J. S., &	classifier based on 16x16	(increasing, decreasing	binary transformation and	has been used		
Yang, W. S.	window	crossover)	hamming distance	cropping		
[39] 2004.	The detection process are	Normalization Polar		Mapping of		
Rathgeb, C., &Uh1 A	similar to the process of J. G.	coordinates, Gaussian	Binary patterns and	binary patterns		
[40] 2010	Daugman [7] with incomporation of region	filter and contrast limited adaptive	hamming distance	from enhancement		

Rathgeb, C., &Uhl, A. [40] 2010	The detection process are similar to the process of J. G. Daugman [7] with incorporation of region detection	Normalization, Polar coordinates, Gaussian filter and contrast limited adaptive histogram equalization	Binary patterns and hamming distance	Mapping of binary patterns from enhancement image
Ng, T. W., Tay, T. L., & Khor, S. W. [41] 2010	The detection process are similar to the process of J. G. Daugman [7] with incorporation of region detection	Normalization, Polar coordinates 4 level haar wavelet	Mapping of coefficients to binary and hamming distance	Mapping of coefficients from Haar wavelet decomposition
Yao, P., Li, J., Ye, X., Zhuang, Z., & Li, B [42] 2006	The detection process are similar to the process of J. G. Daugman [7] with incorporation of region detection	Normalization, Polar coordinates modified log gabor	Hamming distance	Modified log Gabor against complex Gabor transform

II. RESEARCH ANALYSIS AND GAPS

Fundamentally, even though biometric technology has been around a while but because of J. G Daugman [7] work and its accurate features and characteristics, such as supporting localization of IRIS (most of researchers focused automation of the detection) and conversion of the IRIS region from Polar co-ordinates form to Cartesian co-ordinates form (several works have been published on the analysis and processing it for extraction of feature set). Finally the comparison between the templates has been limited different form of weighted Euclidian distance or Hamming distance based measuring techniques [7-42].

In this paper, we focused on the three stages of the biometric recognition system and its capabilities, short-comings and probable scope of research i.e.

- 1. Localization of IRIS information (Detection)
- 2. Extraction of features from IRIS information (Extraction)
- 3. Comparison of feature set template to database template (Template Matching)

Localization of IRIS information (Detection):

This initial stage of the recognition system i.e. segmentation of IRIS region which is considered as a vital aspect of the system as the accuracy highly depends on how well the IRIS could be segmented. There are several kinds of external factors that affect this process (namely eyelids, eyelashes, laminationreflections and pupil). Henceforth most of the work focuses on the identification of circular boundaries of both quadrants so as to limit system to focus on IRIS ROI only through Hough transform and edge detection. We have found in most cases the prediction of the boundaries has very often several errors and valuable information needed for recognition is lost which has to be addresses which is still an open area [43-44]

We found that information of IRIS needs to maximum available it is structure and pixel distribution from other areas is different enabling us to incorporate overlapping 3x3 block-level technique to cover image as select the all possible pixels pertaining to IRIS ROI. This process would ensure we have complete information of the IRIS.

Extraction of features from IRIS information (Extraction):

This is the second stage of the recognition system i.e. analysis of the IRIS region which also considered as a vital stage of the system as the

template formulation is carried out in this stage and the accuracy highly depends on how well the IRIS could be analyzed. There are several kinds of process available that could be incorporated to attain the desired results (namely enhancement, filtering, time and frequency analysis via transforms and etc). Henceforth most of the work focuses on the conversion of the circular IRIS information into rectangular template with needed buffering to ensure the size if the fixed. We have found in most cases that the information is normalized, filtered and enhanced to ensure all the data is available in the needed format for extraction of changes in the formulation of template. The changes are analyzed based on the transforms (Gabor and others), wavelets (wavelet decomposition), and image processing operations which have necessary information needed for template formulation [45-47].

We found that information of by considering the pixels in circular format offers maximum available gradients in 2D perspective as its structure and pixel distribution are not altered. We can further apply the needed image processing techniques to extract the global feature set and inherit localized feature set essential for template formation. The scope of applying a combination of transforms, wavelets and/or image processing operation is available to improve the accuracy.

Comparison of feature set template to database template (Template Matching):

To achieve secure identity authentication, a decentralized authentication mechanism needs to be implemented on the template, and aims at virtual trust areas to allow all distributed features to identify each other (within the vicinity of the template). A similarity-based capability strategy is presented and the federated authorization delegation mechanism that is incorporate with high accuracy are

Euclidean Distance (including weighted)
 Hamming Distance (including modified)

The major contributions of this work are as follows

- Leveraging the biometric recognition system with inherent generated feature set with a decentralized segmentation, extraction and matching solution is proposed to address both the identity authentication and access authorization issues
- Using virtual segmentation based the authentication mechanism ensures that only need information based entities in the domain could formulate the template, meanwhile the features-based extraction model provides a scalable, flexible, finegrained and lightweight scheme.
- A complete architecture of a biometric IRISenabled system is properly designed, which includes identity authentication, features management and validation.

IV. CONCLUSION

In this paper, we presented a detail progress in the IRIS based biometric system's structures for identity authentication and management. A conceptproof prototype based on existing algorithms is illustrated on segmentation, extraction and validation fronts with comprehensive study has been conducted that evaluates the computational fit and corresponding limitations at each stage of the operation. We conclude the following points

- Leveraging the biometric recognition system with inherent generated feature set with a decentralized segmentation, extraction and matching solution is proposed to address both the identity authentication and access authorization issues
- Using virtual segmentation based the authentication mechanism ensures that only need information based entities in the domain could formulate the template, meanwhile the features-based extraction model provides a scalable, flexible, finegrained and lightweight scheme.
- A complete architecture of a biometric IRISenabled system is properly designed, which includes identity authentication, features management and validation.

The following features need to be compared for standardizing and biometric algorithm those are

- correct recognition rate (CRR) and with minimal
 - false acceptance rate (FAR) and
 - false rejection rate (FRR)

REFERENCES

- Jain, A. K., Bolle, R., & Pankanti, S. (Eds.). (2006). Biometrics: personal identification in networked society (Vol. 479). Springer Science & Business Media.
- [2]. Yang, J., & Poh, N. (2011). Recent application in biometrics
- [3]. Zhang, D. D. (Ed.). (2012). Biometric solutions: For authentication in an e-world (Vol. 697). Springer Science & Business Media
- [4]. Jain, A. K., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. *IEEE Transactions on circuits and systems for video technology*, 14(1), 4-20.
- [5]. Wayman, J., Jain, A., Maltoni, D., & Maio, D. (2005). An introduction to biometric authentication systems. In *Biometric Systems* (pp. 1-20). Springer, London.
- [6]. Jain, A. K., Nandakumar, K., & Ross, A. (2016). 50 years of biometric research: Accomplishments, challenges, and opportunities. *Pattern Recognition Letters*, 79, 80-105.
- [7]. Daugman, J. G. (1994). U.S. Patent No. 5,291,560. Washington, DC: U.S. Patent and Trademark Office.
- [8]. Wildes, R. P. (1997). Iris recognition: an emerging biometric technology. *Proceedings of the IEEE*, 85(9), 1348-1363.
- [9]. Daugman, J. (2004). Recognising persons by their iris patterns. In Advances in biometric person authentication (pp. 5-25). Springer, Berlin, Heidelberg.
- [10]. Daugman, J. (2009). How iris recognition works. In *The* essential guide to image processing (pp. 715-739)
- [11]. Bowyer, K. W., Hollingsworth, K., & Flynn, P. J. (2008). Image understanding for iris biometrics: A survey. *Computer vision and image understanding*, 110(2), 281-307.
- [12]. Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2004). Digital image processing using MATLAB (Vol. 624). Upper Saddle River, New Jersey: Pearson-Prentice-Hall.

- [13]. Solomon, C., & Breckon, T. (2011). Fundamentals of Digital Image Processing: A practical approach with examples in Matlab. John Wiley & Sons.
- [14]. Crihalmeanu, S., & Ross, A. (2012). Multispectral scleral patterns for ocular biometric recognition. *Pattern Recognition Letters*, 33(14), 1860-1869.
- [15]. He, Z., Tan, T., Sun, Z., & Qiu, X. (2009). Toward accurate and fast iris segmentation for iris biometrics. *IEEE* transactions on pattern analysis and machine intelligence, 31(9), 1670-1684.
- [16]. Li, P., Liu, X., Xiao, L., & Song, Q. (2010). Robust and accurate iris segmentation in very noisy iris images. *Image* and vision computing, 28(2), 246-253.
- [17]. Wildes, R. P. (1997). Iris recognition: an emerging biometric technology. *Proceedings of the IEEE*, 85(9), 1348-1363.
- [18]. Boles, W. W., & Boashash, B. (1998). A human identification technique using images of the iris and wavelet transform. *IEEE transactions on signal processing*, 46(4), 1185-1188.
- [19]. Gifford, M. M., McCartney, D. J., & Seal, C. H. (1999). Networked biometrics systems—requirements based on iris recognition. *BT technology journal*, 17(2), 163-169.
- [20]. Schneier, B. (1999). The uses and abuses of biometrics. *Communications of the ACM*, 42(8), 136-136.
- [21]. Zhu, Y., Tan, T., & Wang, Y. (2000, September). Biometric personal identification based on iris patterns. In *icpr* (p. 2801). IEEE.
- [22]. Lim, S., Lee, K., Byeon, O., & Kim, T. (2001). Efficient iris recognition through improvement of feature vector and classifier. *ETRI journal*, *23*(2), 61-70.
- [23]. Sanchez-Reillo, R., & Sanchez-Avila, C. (2001, June). Iris recognition with low template size. In *International Conference on Audio-and Video-Based Biometric Person Authentication* (pp. 324-329). Springer, Berlin, Heidelberg.
- [24]. Ma, L., Wang, Y., & Tan, T. (2002, August). Iris recognition using circular symmetric filters. In *null* (p. 20414). IEEE.
- [25]. Ma, Lia, Yunhong Wang, and Tieniu Tan. "Iris recognition based on multichannel Gabor filtering." In *Proc. Fifth Asian Conf. Computer Vision*, vol. 1, pp. 279-283. 2002.
- [26]. Huang, Y. P., Luo, S. W., & Chen, E. Y. (2002). An efficient iris recognition system. In *Machine Learning and Cybernetics*, 2002. Proceedings. 2002 International Conference on (Vol. 1, pp. 450-454). IEEE.
- [27]. González-Taboada, I., González-Fonteboa, B., Martínez-Abella, F., &Seara-Paz, S. (2017). Analysis of rheological behaviour of self-compacting concrete made with recycled aggregates. *Construction and Building Materials*, 157, 18-25.
- [28]. Zhang, K., Huang, D., Zhang, B., & Zhang, D. (2017). Improving texture analysis performance in biometrics by adjusting image sharpness. *Pattern Recognition*, 66, 16-25.
- [29]. Llano, E. G., García-Vázquez, M. S., Zamudio-Fuentes, L. M., Vargas, J. M. C., & Ramírez-Acosta, A. A. (2017). Analysis of the Improvement on Textural Information in Human Iris Recognition. In VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th-28th, 2016 (pp. 373-376). Springer, Singapore.
- [30]. Ahmadi, N., &Nilashi, M. (2018). Iris Texture Recognition based on Multilevel 2-D Haar Wavelet Decomposition and Hamming Distance Approach. *Journal of Soft Computing* and Decision Support Systems, 5(3), 16-20.
- [31]. Hamouchene, I., & Aouat, S. (2014). A new texture analysis approach for iris recognition. *AASRI Procedia*, *9*, 2-7.
- [32]. Umer, S., Dhara, B. C., & Chanda, B. (2015). Iris recognition using multiscale morphologic features. *Pattern Recognition Letters*, 65, 67-74.
- [33]. Spasić, S. Z. (2014). Texture analysis of iris biometrics based on adaptive size neighborhood entropy and linear discriminant analysis. *Sinteza 2014-Impact of the Internet* on Business Activities in Serbia and Worldwide, 658-660.
- [34]. Umer, S., Dhara, B. C., & Chanda, B. (2016). Texture code matrix-based multi-instance iris recognition. *Pattern Analysis and Applications*, 19(1), 283-295.
- [35]. Ko, J. G., Gil, Y. H., Yoo, J. H., & Chung, K. I. (2007). A novel and efficient feature extraction method for iris recognition. *ETRI journal*, 29(3), 399-401.
- [36]. Nabti, M., &Bouridane, A. (2008). An effective and fast iris recognition system based on a combined multiscale feature extraction technique. *Pattern recognition*, 41(3), 868-879.

- [37]. Seung-In, N., Bae, K., Park, Y., & Kim, J. (2003, June). A novel method to extract features for iris recognition system. In *International Conference on Audio-and Video-Based Biometric Person Authentication* (pp. 862-868). Springer, Berlin, Heidelberg.
- [38]. Zhang, P. F., Li, D. S., & Wang, Q. (2004, August). A novel iris recognition method based on feature fusion. In *Machine Learning and Cybernetics*, 2004. Proceedings of 2004 International Conference on (Vol. 6, pp. 3661-3665). IEEE.
- [39]. Nam, K. W., Yoon, K. L., Bark, J. S., & Yang, W. S. (2004, January). A feature extraction method for binary iris code construction. In *Proceedings of the 2nd International Conference on Information Technology for Application* (pp. 284-288).
- [40]. Rathgeb, C., &Uhl, A. (2010, June). Secure iris recognition based on local intensity variations. In *International Conference Image Analysis and Recognition* (pp. 266-275). Springer, Berlin, Heidelberg.
- [41]. Ng, T. W., Tay, T. L., & Khor, S. W. (2010, July). Iris recognition using rapid Haar wavelet decomposition. In Signal Processing Systems (ICSPS), 2010 2nd International Conference on (Vol. 1, pp. V1-820). IEEE.
- [42]. Yao, P., Li, J., Ye, X., Zhuang, Z., & Li, B. (2006, August). Iris recognition algorithm using modified log-gabor filters. In Pattern Recognition, 2006. ICPR 2006. 18th International Conference on (Vol. 4, pp. 461-464). IEEE.
- [43]. Miyazawa, K., Ito, K., Aoki, T., Kobayashi, K., & Nakajima, H. (2006, January). A phase-based iris recognition algorithm. In *International Conference on Biometrics* (pp. 356-365). Springer, Berlin, Heidelberg.
- [44]. Huang, J., Wang, Y., Tan, T., & Cui, J. (2004, August). A new iris segmentation method for recognition. In *Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on* (Vol. 3, pp. 554-557). IEEE.
- [45]. Lim, S., Lee, K., Byeon, O., & Kim, T. (2001). Efficient iris recognition through improvement of feature vector and classifier. *ETRI journal*, 23(2), 61-70.
- [46]. Liu, Y., Yuan, S., Zhu, X., & Cui, Q. (2003, May). A practical iris acquisition system and a fast edges locating algorithm in iris recognition. In *IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS* (Vol. 1, pp. 166-169). IEEE; 1999.
- [47]. Monro, D. M., Rakshit, S., & Zhang, D. (2007). DCT-based iris recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(4), 586-595.
- [48]. Phillips, P. J., Martin, A., Wilson, C. L., & Przybocki, M. (2000). An introduction evaluating biometric systems. *Computer*, 33(2), 56-63.
- [49]. Sanderson, S., & Erbetta, J. H. (2000). Authentication for secure environments based on iris scanning technology.