Design, Fabrication and Testing of power generation Using vehicle movement by flywheel mechanism

Pruthviraj Jadhav*1, Abhishek Raykar*2, Saurabh Kuntala*3, AmolPatil*4

Department of Mechanical Engineering
Sinhgad institute of Technology, Savitribai Phule University, Pune, India

1Student, Mechanical, SKNCOE, Pune, jadhavpruthviraj97@gmail.com
2Student, Mechanical, SKNCOE, Pune, abhishekraykar7@gmail.com
3Student, Mechanical, SKNCOE, Pune, skuntala97@gmail.com
4Student, Mechanical, SKNCOE, Pune, amolpatil20997@gmail.com

Guided by Prof. T.B.Patil, SKNCOE, Pune

Abstract— To construct an unit which is capable of producing electricity using kinetic energy of vehicles passing over the platform which is mounted on a spring in place of speed breaker with the help of freewheel-flywheel mechanism arrangement. As the requirement of electricity is increasing day by day, we have to develop an alternate conventional source of energy to tackle the problem of energy crisis and reduce the dependency on power plants to some extent. Also such units do not require large space and cost of the unit is also comparative low. It can be employed in speed breakers where traffic intensity is very high such as Malls, Toll plazas, Multiplexes, etc. The energy obtained from it can be stored in batteries and then transmitted. This unit requires vehicle to pass over the platform. As the vehicle passes over it, it presses the spring and as result it moves downward which in turn rotates the shaft with help of sprocket and which connected to freewheel with chain drive. Freewheel and flywheel mounted on same shaft so that it can serve our purpose of electricity generation. Energy crisis is mainly due to two reasons, first the population of the world has increased rapidly, and second, the standard of living of human beings has increased. The share of global electricity demand of developing countries, jumps from 27% in 2000 to 43% in 2030. According to International energy agency the world will need almost 40% more energy in 2030 than in 2018. The availability of regular conventional fossil fuels are the main sources for power generation, but there is danger of sources getting exhausted eventually by the next few decades. Hence it becomes necessary that we depend on non-conventional energy sources for power generation. The increasing traffic and number of speed breakers these days emphasize on conditions to manufacture an innovative device which can use the energy of vehicles that is wasted on speed breakers to some profitable work. We can capture this kinetic energy at the speed breaker so that it can serve our purpose of electricity generation. An electromechanical unit is fixed under the speed breaker which is explained in the paper. This unit converts reciprocating motion into rotary motion. The rotational power (i.e. mechanical energy) is converted into the electrical energy by using gear arrangement and a generator which generates electricity. And this generated electricity can be used in various applications. However, there are doubts in our society on the practical implementation of traffic energy harvester. This is the main reason of the low implementation of traffic energy harvester devices across the world. Among many traffic energy harvester devices that have been proposed, this project emphasizes on the speed breaker as the mechanism to harvest the traffic energy. In order to implement the speed breaker as a power generation unit, impact study on this new mechanism to harvest the traffic energy. In order to implement the speed breaker as a power generation unit, impact study on this new mechanism is important. It is important to prove that it is has the potential to be developed in large scale, and prove its practicability and cost effectiveness in comparison to conventional speed breaker in order to clear the doubts on its effectiveness as a power generation unit. Thus, this project is to investigate the impacts of traffic energy harnessing system on speed breakers to determine its positive and negative impacts on our society. Through this project, the possible impacts on the power generation speed breaker are being researched. Based on these impacts, simulations on speed breaker mechanism are being conducted to show the effects of these impacts on real life situation.

Keywords— Flywheel Mechanism, Energy, Power Generation, Eco-friendly
1. ASSEMBLY DETAILS

1.1 FLYWHEEL:
A flywheel is a mechanical device specifically designed to efficiently store rotational energy. Flywheels resist changes in rotational speed by their moment of inertia. The amount of energy stored in a flywheel is proportional to the square of its rotational speed. The way to change a flywheel's stored energy is by increasing or decreasing its rotational speed by applying a torque aligned with its axis of symmetry.

1.2 BELT & PULLEY ASSEMBLY:
A rope and pulley system—that is, a block and tackle—is characterized by the use of a single continuous rope to transmit a tension force around one or more pulleys to lift or move a load—the rope may be a light line or a strong cable. This system is included in the list of simple machines identified by Renaissance scientists. If the rope and pulley system does not dissipate or store energy, then its mechanical advantage is the number of parts of the rope that act on the load.

1.3 FREEWHEEL
Freewheel is used to transmit power in one direction only. During downward motion pinion is rotated in one direction but during upward motion of rack, pinion is freed due to which no motion is transmitted.

1.4. DYNAMO:
It is a device, which converts mechanical energy into electrical energy. The dynamo uses rotating coils of wire and magnetic fields to convert mechanical rotation into a pulsing direct electric current through “Faraday’s Law of Electromagnetic Induction”. A dynamo machine consists of a stationary structure, called stator, which provides a constant magnetic field, and a set of rotating winding called the armature which turns within that field.

2. CALCULATIONS

2.1 FLYWHEEL:
Types of Flywheel:
1. Arm type flywheel (2 – 5-meter diameter) (max size of flywheel is 5.3 M)
2. Rim type (0.4-1.8-meter diameter)

Diameter has chosen according to space requirement as 0.6 m
Consider, it is rotating from 400 RPM to 410 RPM.
Speed fluctuation $C_S = (N_2 - N_1)/N$
$N=$ average speed in RPM = (410+400)/2 = 405 RPM
$C_S = 10/405 = 0.025$
From V.B. Bhandari, Page No. 25.2, Table no. 25.2,
Coefficient of speed fluctuation (C_S) or it can be taken as 0.03
Diameter = 600 mm (10‘’) = 60 cm
Suppose let we take Length of hub = width of rim
Width of hub for fly wheel $W = D/4 = 15$ cm
Height of hub for fly wheel $H = D/6 = 10$ cm
Length = 15 cm
Material = mild steel
Density of Mild Steel = 8050 Kg/m3

We know that,
Density = Mass/Volume
$V = \text{volume (A*L)} = \pi/4 * d^2 * L = 0.0424 m^3$
$\rho = \frac{m}{V}$
$8050 = m/0.0424$
$m = 341.32 Kg$

Weight of flywheel = 341.32 Kg $W = 3413.2 N$

(Inertia) $I = 0.5 m r^2$
$= 0.5 * 341.32 * 0.3^2$
$= 15.36 \text{ kgm}^2$
$E = 0.5 I \omega^2$
Where, $W = 2*\pi*N/60 = 2*\pi*410/60 = 42.94 \text{ rad/sec}$
$E = 0.5*15.36 * (42.94)^2$
$= 14160.72 \text{ Joules}$
Toque = mass moments of inertia * rotational acceleration rate.
\[T = I \times a \]
\[25.39 = 15.36 \times a \]
\[a = 1.653 \text{ rad/sec}^2 \]

As the power transmitting to the chain & sprocket is 1.09KW
We know that,
\[P = \frac{2\pi N T}{60} \]
\[1.09 \times 10^3 = \frac{2\pi \times 410 \times T}{60} \]
\[T = 25.39 \text{Nm} \]

2.2 CHAIN & SPROCKET:
Let us consider Speed of chain = 410 RPM
From page no. 14.7, From table no. 14.8
For the speed of 410 Rpm we will select the chain no. 06B
Maximum Power = 1.09 KW
Consider no. of teeth = 16,18
Used chain no.06B
For Z=18
Roller diameter, \(d_1 = 6.35 \text{ mm} \)
Width' b1 = 5.72 mm
Transverse pitch \(p_t = 54.85 \text{ mm} \)
\[(z1 = 18) \]
\[(z2 = 44) \]
Approximate centre distance,
\[a = 40 \times P \]
\[a = 40 \times 9.525 \]
\[a = 381 \text{ mm} \]
No of links
\[L_0 = 2(a/p) + (z_1+z_2/2) + (z_2-z_1/2 \times \pi ^2) \times (p/a) \]
\[= 2(381/9.525) + (18+44/2) + (44-18/2 \times \pi ^2) \times (9.525/381) \]
\[= 111.43 = 111 \]

From table no 14.1
Pitch, \(P = 9.525 \text{ mm} \)
Width between inner plates, \(b_1 = 5.72 \text{ mm} \)
Roller diameter, \(d_1 = 6.35 \text{ mm} \)
Transverse pitch \(p_t = 10.24 \text{ mm} \)
Pitch circle diameter
\[D_1 = \frac{P}{\sin(180/21)} \]
\[D_2 = \frac{P}{\sin(180/22)} \]
\[D_1 = 54.85 \text{ mm} \]
\[D_2 = 133.59 \text{ mm} \]
Roller seating radius \(r_i \)
\[r_{max} = 0.505d_1 + 0.069^* (d_1)^{1/3} \]
\[r_{max} = 3.33 \text{ mm} \]
\[r_{min} = 0.505 \text{ mm} \]
Tooth Flank Radius \(r_e \)
\[r_{max} = 0.008(z^2+180) = 16.928 \text{ mm} \]
\[r_{min} = 0.12^* (z+2) = 15.24 \text{ mm} \]
Root Diameter \((D_r) \)
\[D_r = D - 2^* r_i = 88.47 \text{ mm} \]
Tooth height above pitch polygon \((h_u) \)
\[h_{max} = 0.625^* p - 0.5^* d_1 + 0.8^* p/z = 2.9513 \text{ mm} \]
\[h_{min} = 0.5^* (p-d_1) = 1.5875 \text{ mm} \]
Tooth Width \((b_t) \)
\[b_r = 0.93^* b_1 = 5.3196 \text{ mm} \]
Tooth Side Relief \((b_s) \)
\[b_s = 0.1^* b_1 = 0.1907 \text{ mm} \]

2.3 BELT & PULLEY:
From Page No. 13.12 We will select the Z type of V Belt.
From table no. 13.23, Minimum Diameter = 50 mm = D2
Maximum Diameter = 100mm = D1
Speed of Maximum Diameter = 410 RPM = N1
Speed of Minimum Diameter = N2

We Know that, \(N_1/N_2 = D_2/D_1 \)
\[410/N_2 = 50/100 \]
\[N_1 = 820 \text{ RPM} \]

Consider, Centre Distance = \(C = 2^* D = 200 \text{ mm} \)
\[\alpha = \sin^{-1}(R_1-R_2/C) = \sin^{-1}(25/200) = 7.18 \]
Length of Belt = \(L = \pi (R_1 + R_2) + 2^* \alpha (R_1-R_2) + 2^* C \times \cos \alpha \)
\[L = \pi (25 + 50) + 2^* 7.18(25) + 2^* 200 \times \cos 7.18 \]
\[L = 991.48 \text{ mm} \]
\[\theta = 180 - 2 \times \alpha = 165.64 \]

We know that
\[T_1 = \text{Tension on tight side} \]
\[T_2 = \text{Tension on slack side} \]
\[T_1/T_2 = e^{[(\mu \times \sin \beta)]} \]
\[= 3.8528 \]
\[T_1 = 3.8528 \times T_2 \]

We know that,
\[P = (T_1 - T_2) \times V \]
Where \(V = \pi \times D \times N/60 = 2.15 \text{ m/s} \)
\[1090 = (3.8528 \times T_2 - T_2) \times 2.15 \]
\[T_2 = 177.71 \text{ N} \]
\[T_1 = 679.89 \text{ N} \]

2.4 SHAFT DESIGN:
Consider, Material of Shaft = M.S.
Yield Strength = 250 MPa
Shear Strength = 0.75*Yield Strength = 0.75*250 = 187.5MPa
From Page No. 9.7, For Angle of Twist = \(\Theta \)
Permissible Angle of twist is 0.25 per meter length.
Let us assume length of Shaft = 550mm
\[G = 79300 \text{ N/mm2} \]

We know that, According to Torsional Rigidity,
\[D^4 = \frac{584+7.4^* L}{G \times \Theta} \]
\[D^4 = \frac{584+25.39+1000+550}{79300+0.1375} \]
\[D = 30 \text{ mm} \]
2.5 SPRING DESIGN:
10 KN for 1 spring & spring index C=5
Consider, material of spring IS 4454 grade 2
Tall =0.45*Sut …..(Sut = 1500 N/mm²)
T=675N/mm²
Modulus of rigidity to material of steel G=80 Gpa

1. Wire diameter

Whal Stressfactor Kw = (4C-1/4C-4)+(0.615/C)
Kw=1.35
Shear stress include T=Kw[8*F*C/∏*d²]
d² = 1.35[8*10000*5/∏*675]
d=15.65
Mean coil diameter D=C*d , 5*15.65 , D=78.25mm
No of Coils
Spring stiffness K=f max /δ max,
Assume δ max =50mm
K=200N/mm
Now, K=[Gd/8*C³+n]
n=6.26
For Square & Grounded side spring,Total no of coils n'=n+2
n'=8.26
spring length & pitch
solid length Ls =(n+2)*d
Ls=129.26mm

Free Length
Lf=Ls +δ max+(n'-1)*1
Lf=186.52
Lf=P*n+2*d
186.52=P*6.26+2*15.65
P=24.79mm

3. WORKING OF THE SYSTEMS
While moving the vehicle posses some kinetic energy and it has been wasted. This kinetic energy can be utilize to produce power by using special arrangement called Power Ramp. It is Electro-mechanical unit and utilizes power generation and its storage. Ramp is inclined plate likely to be speed breaker, Whenever the vehicle allowed to pass over the ramp it get pressed downwards then spring attached to Ramp get compressed. The sprocket which is attached to the ramp starts rotating and shaft connected to sprocket also rotates in same direction of sprocket. On that shaft, freewheel is install and get rotated. This freewheel connected to other shaft by using chain and sprocket arrangement. on second shaft no. of flywheel mounted which is used to store energy and get connected to dynamo using belt and pulley arrangement.
I. CONCLUSIONS

Electricity plays a very important role in our life due to population explosion the current power generation has become insufficient to fulfill our requirement in this project we discovered technology to generate electricity from vehicle movement. In coming days this will helpful to the world since it will save lot of electricity of power plant that gets wasted in illuminating the streetlights.

ACKNOWLEDGMENT

It is indeed a great pleasure and moment of immense satisfaction for me to present a review paper on “Design, Fabrication and Testing of Power Generation Using Vehicle Movement by Flywheel Mechanism” amongst a wide panorama that provided us inspiring guidance and encouragement, we take the opportunity to thanks to thanks those who gave us their indebted assistance. We wis.h to extend our cordial gratitude with profound thanks to our internal guide Prof. T. B. Patil for his everlasting guidance. It was his inspiration and encouragement which helped us in completing our seminar work.

Our sincere thanks and deep gratitude to Head of Department, Dr. N. P. Sherje and other faculty member: but also to all those individuals involved both directly and indirectly for their help in all aspect of the project.

At last but not least we express our sincere thanks to our Institute’s Principal Dr. A. V. Deshpande, for providing us infrastructure and technical.

REFERENCES