Unified Power Quality Conditioner to Resolve the Power Quality Problems.

1Ms. Minakshi L. Jadhav, 2Dr. M.G. Unde, 3Prof. Sampat P. Bansode.
 * 1PG Scholar Department of Electrical Engineering, ZCOER.
 * 2Department of Electrical Engineering, ZCOER Pune.
 * 3Asst. Professor Department of Mechanical Engineering, SKNCOE Pune.

ABSTRACT
In this project presents a Design of a Unified Power Quality conditioner (UPQC) connected to three phase four wire system (3P4W). The unbiased of sequence transformer used in the 4th wire for the 3P4W system. The neutral current which will flow toward electrical device neutral purpose is remunerated by employing a four-leg voltage supply electrical converter topology for shunt half. The series electrical device neutral are at virtual zero potential throughout all in operation conditions. In this simulation we tend to observe the facility quality issues like unbalanced voltage and current, harmonics by connecting non linear load to 3P4W system with Unified Power Quality conditioner. A new management strategy like unit vector model is employed to style the series APF to balance the unbalanced current gift within the load currents by increasing the concept of single phase P-Q theory.

KEYWORDS: Unified power quality conditioner, Series active power filter, Shunt active power filter, Power quality

INTRODUCTION
Electrical power system is design to provide high quality power for satisfactory operation of various electrical equipment. However the extensive use of non-linear loads in modern power system is becoming highly vulnerable to power quality and contributing to increased power quality issues. The main issues of a poor power quality are harmonic currents, poor power factor, supply-voltage variations; etc. It has been always a challenge to maintain the quality of electric power within the acceptable limits. The adverse effects of poor power quality may result into increased power losses, abnormal and undesirable behavior of equipments, interference with nearby communication lines, and so forth. The term active power filter (APF) is a widely used terminology in the area of electric power quality improvement. APFs have made it possible to mitigate some of the major power quality problems effectively. The UPQC is one of the APF family members where shunt and series APF functionalities are integrated together to achieve superior control over several power quality problems. The function of unified power Control strategy plays a vital role in the overall performance of the power conditioner. Rapid detection of disturbance signal with high accuracy, fast processing of the reference signal and high dynamic response of the controller are the prime requirements for desired compensation. Generation of appropriate switching Pattern or gating signal with reference to command compensating signal determines the control strategy of the UPQC.

PROPOSED SCHEME
In planned system easy development of 3P3W system to 3P4W system. The unbiased current, present if any, would flow through this 4th wire toward transformer neutral point. This neutral point current can be compensated by using a split capacitor. This neutral current achievement is used the method P-Q Theory in UPQC. The UPQC consisting of the grouping of a series active power filter and shunt APF.
Existing Method
In Existing to connecting series active filters the voltage harmonic compensation, high impedance path to harmonic currents these are the main functions. All these non-linear loads draw highly distorted currents from the utility system, with their third harmonics component almost as large as the fundamental. The increasing use of non-linear loads, accompanied by an increase in associated problems concerns both electrical utilities and utility customer.

Unified Power Quality Conditioner (UPQC)
The extensive use of power electronic based equipments/loads almost in all areas, the point of common coupling (PCC) could be highly distorted. Also, the switching ON/OFF of high rated load connected to PCC may result into voltage sags or swells on the PCC. There are several sensitive loads, such as computer or microprocessor based AC/DC drive controller, with good voltage profile requirement; can function improperly or sometime can lose valuable data or in certain cases get damaged due to these voltage sag and swell conditions. One of the effective approaches is to use a unified power quality conditioner (UPQC) at PCC to protect the sensitive loads. A UPQC is a combination of shunt and series APFs, sharing a common dc link. It is a versatile device that can compensate almost all power quality problems such as voltage harmonics, voltage unbalance, voltage flickers, voltage sags & swells, current harmonics, current unbalance, reactive current. This project is based on the steady state analysis of UPQC during voltage sag and swells on the system. Aim is to maintain the load bus voltage sinusoidal and at desired constant level in all operating conditions. The major concern is the flow of active and reactive power during these conditions, as it plays an important role in selecting the KVA ratings of both shunt and series APF.

The UPQC is installed in order to protect a sensitive load from all disturbances. It consists of two voltage source inverters connected back to back, sharing a common dc link. One inverter is connected parallel with the load. It acts as shunt APF, helps in compensating load harmonic current, reactive current and maintain the dc link voltage at constant level. The second inverter is connected in series with the line using series transformers, acts as a controlled voltage source maintaining the load voltage sinusoidal and at desired constant voltage level.
Control Strategy

The control strategy is based on the extraction of unit vector templates from the distorted input supply. These templates will then be equivalent to pure sinusoidal signal with unity amplitude. The three phase distorted input source voltage at PCC contains fundamental component and distorted component. To get unit input voltage vectors U_s, the input voltage is sensed and multiplied by equal to $(1/V_m)$ where V_m is equal to peak amplitude of fundamental input voltage. These unit input voltage vectors are taken to phase locked loop (PLL). With proper delay, the unit vector templates are generated.

$$U_a = \sin(\omega t)$$
$$U_b = \sin(\omega t - 120^\circ)$$
$$U_c = \sin(\omega t + 120^\circ)$$

Multiplying the peak amplitude of fundamental input voltage with unit vector templates gives the reference load voltage signals.

The measured load voltages are compared with reference load voltage signals. The error generated is then taken to a hysteresis controller to generate the required gate signals for series APF. The unit vector templates are applied for shunt APF to compensate the harmonic current generated by non-linear load. The shunt APF is used to compensate for current harmonics as well as to maintain the dc link voltage at constant level. Reference currents and voltages are generated victimization part barred Loop (PLL). The management strategy is predicated on the extraction of Unit Vector Templates from the distorted input offer. These templates will be then equivalent to pure sinusoidal signal with unity (p.u.) amplitude. The 3-ph distorted input supply voltage at PCC contains basic element and distorted element. To get unit input voltage vectors U_{abc}, the input voltage is sensed and multiplied by gain equal to $1/V_m$, where V_m is equal to peak amplitude of fundamental input voltage. These unit input voltage vectors are taken to part barred loop (PLL).

Simulink Software

Simulink (Simulation and Link) is an extension of MATLAB by Math works Inc. It works with MATLAB to offer modeling, simulating, and analyzing of dynamical systems under a graphical user interface (GUI) environment. The building of a model is simplified with click-and-drag mouse operations. Simulink include a complete block library of toolboxes for both linear and nonlinear analysis. Models are hierarchical, which allow using both top-down and bottom-up approaches. As Simulink is an integral part of MATLAB, it is easy to switch back and forth during the analysis process and thus, the user may take full advantage of features offered in both environments. This tutorial presents the basic features of Simulink and is focused on control systems as it has been written for students in my control system

APPLICATIONS

Hybrid application and Storage applications generally uses UPQC system to remove power quality problems generally occurs. In hybrid applications UPQC increases active power in circuit and removes harmonic currents which will improve power factor and ultimately power quality.
RESULTS

The simulation of the proposed system has been done using MATLAB/SIMULINK.
CONCLUSIONS
The conventional strategies need the measurements of load, source, and filter currents for the shunt APF and supply and injection electrical device voltage for the series APF. The simulation results show that, once underneath unbalanced voltage conditions, the management rule eliminates the impact of rotor speed instability and series APF compensates the hundreds voltage. Recent speedy interest in renewable energy generation, particularly front-end inverter-based large-scale electrical phenomenon and wind system, is imposing new challenges to accommodate these sources into existing Transmission/distribution system whereas keeping the facility quality indices inside acceptable limits. Thus UPQC compensates each voltage- and current-related power quality issues at the same time. Transmission/distribution system while keeping the power quality indices within acceptable limits. Thus UPQC compensates both voltage- and current-related power quality problems simultaneously.

REFERENCES