BLENDED WING BODY- A REVIEW

Mr. PALASH J. MULEY ,1Mr. M. SOHAIL PERVEZ 2

PG Scholar, Mechanical Engineering, Anjuman College of engineering and technology, Nagpur, Maharashtra, India.

¹Professor, Mechanical Engineering, Anjuman College of engineering and technology, Nagpur, Maharashtra, India.

Abstract- This paper explores the interior structure design of multi-shell blended wing body and investigates the optimum buckling strength of BWB. The interior structure includes floor, wall and frame of BWB.In this paper two relevant structural design aspects are considered. First, modeling and statical buckling analysis of blended wing body of Isotropic metals. Second, modeling and statical buckling analysis of blended wing body of composite materials. Optimum solution with respect of material selection in blended wing body is reported.

Keywords: - blended wing body, multi bubble fuselage, Iso tropic metal, composite material.

Introduction

The concept of blended wing body was introduced almost 31 year ago. The idea was to build new type aircraft that would allow aircraft to carry more passengers. The Blended wing body is not fully novel concept because it was considered by Horten, Northrop and other from the mid of 1930 to the mid-1950s. BWB aircraft was previously called tailless airplane and flying wing aircraft [1, 2]. After that BWB reintroduce by Robert Liebeck [3] at the McDonnell Douglas Corporation in 1988. Aeronautics Research Centre Niedersachsen (NFL) in Germany initiate a project Energy System Transformation in Aviation. The aim of the project is to reduce carbon di oxide emission with the help of new design concept and new technologies. After taking their project aim into consideration they come up with BWB which is most promising technology. BWB aircraft are a concept promising advantages in aerodynamic performance and a reduction of fuel consumption. Aircraft primary load distribution of a conventional aircraft vs a BWB aircraft [5] (fig. 1).Research shows the potential of unconventional aircraft with respect to environmental concerns and noise pollution.

Develop the efficient structure concept and leave the constraint of cylindrical pressure vessel of conventional aircraft.Reduction of the maximal bending stress due to the better distribution of the aerodynamic loads compared to a conventional tube and wing aircraft[6,7].A higher passenger acceptance of BWB cabins was also found [8]. The interior of fuselage must be design to resist the internal cabin pressure.

© 2019 JETIR May 2019, Volume 6, Issue 5

www.jetir.org (ISSN-2349-5162)

Thus to increase structural efficiency, several multi-bubble fuselageconcepts were developed. In previous BWB studies [9] effects of cabin shape and volume were investigated from a baseline configuration using an aerodynamic-based optimization scheme, but structural design with internal pressure or buckling issues were not addressed. The main aim of this project is to investigate the optimum buckling strength of a blended wing body. The first part of this paper present design of multi-bubble fuselage segment for a BWB and its interior cabin structure analysis by considering two Iso-tropic metals. Second part of this paper presents an interior cabin structural analysis of BWB by considering two composite materials.

Fig 1:Aircraft primary load distribution of a conventional aircraft vs a BWB aircraft

Fig 2: a) Exterior view of NASA BWB.

Fig 2: b) multi bubble fuselage cross section concept.

RESEARCH PAPER

OBJECTIVE

CONCLUSION

1.EgbertTorenbeek(2016)	This paper presents the Classical	BWB study projects have
Blended-Wing-Body Aircraft: A	Airplane Concept, Flying Wing and	proven that modern advanced
Historical Perspective.	Tailless Aircraft, Aerodynamic and	design technologies are
*	Fuel Efficiency, Very Large Aircraft	available to advanced designers
	(VLA). Hybrid Flying Wing, Genesis	tomake reliable predictions of
	of Blended Wing Body Aircraft.	essential BWB characteristics
	Development of the First-Generation	such as computational
	BWB. Second-Generation BWB.	aerodynamics, structural
	Challenges and Advantages	analysis and flying qualities
2 7 Van der voet ELIMM	This paper presents the interior	In this case, the pressurization
Couckons (2012) Configuration of	concept and configuration for a BWB	loads are carried by the multi
the Multi hubble Pressure Cobin in	Aircraft with a consolity of circa 200	bubble only and all
Diandad Wing Dady Aingraft	Aircrait with a capacity of circa 500	bubble only and an
Blended wing Body Aircraft.	passengers.	gravitational, inertia and
		aerodynamic loads are carried
		by the aerodynamic shell. The
		multi bubble BWB is more
		efficient when it comes to the
		transportation of passengers
		compared to a conventional
		aircraft. Overall it delivers
		similar comfort levels to the
		passengers.
3.V. Mukhopadhyay*(2005),	In this paper, Progresses towards	Configuration can be improved
Blended wing body fuselage	recent 480 passenger version of BWB	to a modified vaulted shell
structural design for weight reduction.	structural analysis are described. Use	partial multi-bubble type
	of rapid finite element analysis tools	fuselage which has better stress
	and results of several geometric	distribution, for same material
	configurations of the Y-braced	and dimension.
	fuselage derivatives are presented.	
4 VivekMukhopadhyay* (oct-1996)	This paper Present the two non-	The results indicate that a
Structural Concepts Study of Non-	circular pressure vessel concepts were	double-skip vaulted ribbed shell
circular Euselage Configurations	selected for analysis: a) a flat	concept could offer significant
circular i userage configurations.	sendwich shell concept and b) a	weight advantage over a flat
	valled sandwich shall concept both	ribbed shall concent as well as
	with a honeycomb core	the both the honeycomb
	In this concept, the honeycomb was	sondwich concepts with similar
	replaced by a double skip shall with	lavels of stresses and
	replaced by a double-skill shell with	deflections
	vertical span wise and chord wise rib	deflections.
	summerers. Boun the flat and valued	
	aouble skin shell construction were	
	analyzed and compared.	

5. F.J.J.M.M Geuskens, O.KBergsma,S.koussios et al. Pressure vessel and Pressure cabin for blended wing body .	In this paper, established analytical methods to determine the stresses and deformations induced by pressure and focus on the practical aspects of integration of the pressure fuselage into the BWB.	The walls of the multi-cylinder and the tapered multi-cylinder are replaced by pillars .The walls in the multi-bubble are not carrying axial stresses, but only the vertical loads. A multi-bubble connected into an aerodynamic shell is a potential solution as a future pressure fuselage for Blended Wing Bodies.
6.V. Mukhopadhyay*,	This paper presents new sizing,	A multi-bubble fuselage
J.Sobieszczanski-sobieski et al.	analysis, design, and optimization	configuration concept was
(2004) Analysis, Design, and Optimization of Non-cylindrical	non-cylindrical BWB configuration	cabin pressure load efficiently
Fuselage for Blended-Wing-Body	considering both internal pressure and	through balanced membrane
Vehicle.	compressive load including buckling stability.	stress in inner cylindrical segment shells and interscabin walls. To provide buckling stability and carry spanwise bending loads, additional cross- ribbed outer shell structures appear to be quite effective. Thus, it was advantageous to use the inner cylindrical shells for pressure containment and let the outer shells resist overall bending.
7. Majeed bishara, peter horst et al. (2018) A structural design concept for a multi shell blended wing body with laminar flow control.	Static and fatigue analyses are presented for a new blended wing body (BWB) fuselage concept considering laminar flow control (LFC) by boundary layer suction in order to reduce the aerodynamic drag.	The changesin the skin layups do not have a major impact on the maximum stress, the change in frame and rib distances from 1 m to 0.5 m has reduced the maximal stress to 36% and the linear buckling analysis is increased from 0.82 to 1.26. The fatigue investigations did not indicate a clear advantage of a CFP micro-topology over a conventional interrupted fiber microstructure for the considered load situations.

© 2019 JETIR May 2019, Volume 6, Issue 5

8.Ravi Kumar , Ganesh Gupta, Shamili GK et al.(2017) Linear Buckling Analysis and Comparative Study of Unstiffened and Stiffened Composite Plate.

ota,The present research was done a
finite element analysis ofandstiffened and un-stiffened plates
with three different types of
composite materials have been
carried out with a view topredicting the buckling load by
software ANSYS 14.0 APDL

www.jetir.org (ISSN-2349-5162)

Over all analysis reveals that Kevlar yields highest strength and its deflection is the lowest.

3. Conclusion

The blended wing body shows the potential in reduction of fuel consumption, noise, stress and deformation. It also give high passenger acceptance .In the study BWB Effect of cabin shape and volume were investigate from baseline configuration but structural design with internal pressure or buckling issue were not deeply addressed .so material must be selected for interior cabin in order to have strength resistance ,heat resistance and high strength to weight ratio.

4. References

1. Crane, Dale .Dictionary of aeronautical Terms, third edition. Newcastle, Washington: aviation supplies & Academics, 1997. ISBN 1-56027-287-2.p. 224.

2. Martinez-Val, R., Flying Wings. A New Paradigm for Civil Aviation?, Acta Polytechnica, Vol. 47, No. 1, 2007.

3.Liebeck, R. H., Design of the Blended Wing Body Subsonic Transport, Boeing Co., Huntington Beach, CA, pp. 92–647; also Journal of Aircraft, Vol. 41, No. 1, Jan.–Feb. 2004, pp. 10–25. doi:10.2514/1.9084.

4. Majeed Bishara, Peter Horst, Hinesh Madhusoodanan, Martin Brod, BenediktDaum ID and RaimundRolfes. A Structural Design Concept for a Multi-Shell Blended Wing Body with

Laminar Flow Control. Received: 15 December 2017; Accepted: 3 February 2018; Published: 7 February 2018.

5. Der Voet, Z.V.; Geuskens, F.J.M.M.; Ahmed, T.J.; Van Eyben, B.N.; Beukers, A. Configuration of the Multi bubble Pressure Cabin in Blended Wing Body Aircraft. J. Aircr. 2012, 49, 991–1007.

6. Liebeck, R.; Page, M.; Rawdon, B. Blended-wing-body subsonic commercial transport. In Proceedings of the 36thAIAAAerospaceSciencesMeetingandExhibit, Reno, NV, USA, 12–

15January1998; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1998.

7. Mukhopadhyay, V. Structural concepts study of non-circular fuselage configurations. In Proceedings of the SAE/AIAA World Aviation Congress, Los Angeles, CA, USA, 22–24 October 1996.

8. Mukhopadhyay, V. Blended wing body (BWB) fuselage structural design for weight reduction. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, TX, USA, 18–21 April 2005; p. 234.

9. Wakayama, S., and Kroo, I., "The Challenge and Promise of BlendedWing-BodyOptimization,"Proceedingsofthe7 AIAASymposiumonMultidisciplinary Analysis andOptimization, AIAA, Reston, VA, Sept. 1998, pp. 239–250; also AIAA Paper 98-4736, Sept. 1998.

10. Ravi Kumar, Ganesh Gupta, Shamili GK et al. (2017)

Linear Buckling Analysis and Comparative Study of Unstiffened and Stiffened Composite Plate.

11. Multi-disciplinary Design of Aircraft Fuselage Structures, Michel van Tooren 1 and Lars Krakers.2 Delft University of Technology, The Netherlands.

12. Liu, Y.; Elham, A.; Horst, P.; Hepperle, M. Exploring Vehicle Level Benefits of Revolutionary Technology Progress via Aircraft Design and Optimization. Energies 2018, 11, 166.

13.Beck, N.; Landa, T.; Seitz, A.; Boermans, L.; Liu, Y.; Radespiel, R. Drag Reduction by Laminar Flow Control. Energies 2018, 11, 252

14. Analysis, Design, and Optimization of Non-cylindrical Fuselage for Blended-Wing-Body Vehicle. V. Mukhopadhyay*, J. Sobieszczanski-Sobieski** NASA Langley Research Center, Hampton, AIAA 2002-5664.

15. Niu, M. C. Y., "Airframe Structural Design," Conmilit Press Ltd., Hong Kong, 1993, pp. 376-428.