
© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRBW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 97

Neural Network Machine Learning Techniques for

Large Noisy Data Prediction using R

Programming

Yagyanath Rimal

Faculty of Science and Technology

Pokhara University ,Nepal

Abstract: This review paper primarily discusses on

neural network machine learning techniques for

large data analysis using r programming. Although

there is large gap between analysis of research

data when there were large set of in associative

variables. This paper tries to explore the analysis

of predicative modeling procedures steps of large

data sets were explained sufficiently to reach

conclusion. Its purpose is to explain the simplest

way of neural network analysis whose data

structure were in scattered using R software whose

outputs were sufficiently summarized with various

intermediate output and graphical interpretation to

get conclusion with example bostonhousing

datasets. Therefore, this paper presents easiest way

of neural network analysis when data sets with

large dimensions and its strengths for data analysis

using R programming.

Keywords: Hidden Neuron, Neural Network, over

fitted Data, Rectified Linear Unit, Multi-Layer

Perceptron

Introduction

The neural network is the science of neurons similar to

the neuronal system of the human body, in which each

neuron is connected to dendrites that transmit signals to

another neuron in the form of electrical impulses; the

body refers to those signals and decides which special

actions should be taken for such cases. The artificial

neuron is the heart of the neural network (Noon, 2013).

The activation node always takes input from the

dendrites which performs a competitive probability

action (Johnson, 2004). Where the multiple input

process produces and produces a single output in which

all input signals are analyzed progressively until the

appropriate decision is taken (Gurney, 2004). The

various terms of input as variables whose magnitude is

considered as a certain weight denoted as (w) are

passed to the summary function which already has a

certain fixed distortion, the bias always evaluates and

produces both true and false judgment. After obtaining

zero or one of the activation functions, the limit is

calculated, which is further tested with the real

prediction with the value with y. This process is

continuously tested with binary, categorical or

numerical values of the search variables; This process

is known as single-level perception using a single node.

Basically, there are three parts of the neural network:

input levels, hidden levels and output levels. Input

levels always take the input of variables and output

levels always output. The middle layer has all the

powers to analyze data that takes all the input and

produces output for output levels. The terms of the

input level as a subscript x (1,2,3,4 ... m) and hidden

layer h (1,2,3 ... n) could easily be determined during

the design of the model formulation. If a network has

multiple hidden levels, it is known as deep learning.

Deep learning is a machine learning technique that

teaches the computer to do what is natural for human

learning through examples taken from previous

recordings. Therefore, a neural network is a hardware

training and software system modeled after the

operation (Lim, 2018).

There are several activation functions, the most popular

is the threshold or pass function that passes 1 if the

activation with bios is greater than zero, otherwise it

goes to zero. The sigmoid or logistic (1/1 + ex)

function is a widely used activation function that is best

for predicting probability. Another is a hyperbolic

tangent sigma based on but over -1 to 1 is similar to the

regression values where the gradient is deeper y = (ex-

ex) / (ex-ex).). The rectified linear unit (RELU) is the

best version of the neural network model; it also

produces 1 if x is + ve; otherwise, it produces 0

(Sycorax, 2017). It is popular because of the less

expensive architecture and the quicker approach, but

requires more iteration of experiments. The desired

task output is only obtained when their errors and

previous hat values go back to neuronal function, so

that errors are minimal in each pass. The next extension

is the error feedback process to enter the weight is

greatly reduced to the spread of the next time, so the

network could easily be adjusted their weight at any

time iteration to have minimal errors (errors = errors-

1). J (Ø) = 1 / mΣmi-m (ZM-yi) 2, this requires more

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRBW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 98

computing power, using the descent of the systematic

gradient finally finds the minimum rate of learning.

Big Data and neural networks are becoming one of the

driving forces of innovation, social promotion and the

development of life (Zhang, 2017). It can be clearly

demonstrated how neural and large data networks are

perfectly combined and reinforced by reviewing the

basic concepts and key technology in large quantities,

as well as the induction of the neural network research

framework. On the one hand, neural networks are able

to extract abstract features from raw data (Stephen

Notley, 2018). They can combine multiple sources of

information, process heterogeneous data and acquire

dynamic changes in data (Haluk Demirkan, 2015).

They are the bridge for the implementation of the

transformation of the value of big data. On the other

hand, a large volume of big data provides huge

examples of training that allow the training of neural

networks with a large number of parameters. However,

there are still some problems in the neural network

model. In the aspect of neural network research, the

structure needs more research and development; The

network scale lacks theoretical guidelines; and the

learning algorithm is having some inherent problem. In

the big data aspect there are also three fundamental

scientific problems to guarantee coherence in the high-

dimensional dispersed space; implement storage space;

and to represent the temporal correlation and

implement the big data forecast. More research is

urgently needed in this area, including theoretical and

practical aspects. In particular, inter domain surveys

are important. Research in the area can be carried out

in coordination with the understanding of processing

large amounts of data in the human brain. It needs a

greater combination with cognitive science and

neuroscience to solve the fundamental scientific

problems in the search for neural networks and Big

Data, in order to improve the big data analysis using

neural networks (Bruke, 2017). The neural network is a

hardware and / or software system modeled on the

functioning of neurons in the human brain. Neural

networks, also called artificial neural networks, are a

variety of deep learning technology, which also falls

within artificial intelligence (Rouse, 2018). Although

ANN researchers are generally not worried that their

networks are similar to biological systems, some have

done so. Neural social networks are generally

organized in layers. The layers are composed of a

series of interconnected "nodes" that contain an

"activation function". Patterns are presented to the

network through the "input level", which

communicates with one or more "hidden levels" in

which the actual processing is performed through a

system of weighted "connections". The hidden layers

are then linked to an "output level" where the response

is sent as shown in the graph below. Most RNAs

contain some form of "learning rule" that modifies link

weights based on the input models presented. In a

sense, ANN learns from the example how their

biological counterparts do; A child learns to recognize

dogs of other pets. Although there are many different

types of learning rules used by neural networks, this

demonstration only affects one; The delta rule The

delta rule is often used by the most common class of

RNA called inverse neural networks (BPNN).

Backpropagation is an abbreviation for backtrack error

propagation.

With the delta rule, as with other types of backward

propagation, "learning" is a supervised process that

occurs with each cycle or "epoch" through a flow of

activation of forward outputs and the propagation of

errors towards behind the adjustments. of weight. The

number of neurons in the output layer must be directly

related to the type of work performed by the neural

network. To determine the number of neurons in the

output layer, first consider the intended use of the

neural network. (Saxena, 2018). In a feedforward

network, information moves in one direction - forward

- from input nodes, through hidden nodes (if any), and

to output nodes. There are no cycles or cycles, there is

no specific rule for this, in general, they are empirically

determined through a cross-validation methodology

(Bouziane, 2018).

Neural Network Using R Programming

Here I m using housing data for 506 data sets of census data

of Boston from the 1970 census. The data

frame BostonHousing contains the original data of 14

variables as independent additional spatial information

(Leisch, 2018).

> #bostonhousing

> library(keras)

> library(mlbench)

> library(dplyr)

> library(magrittr)
> library(neuralnet)

> data("BostonHousing")

> data=BostonHousing

> ?BostonHousing # description of data sets

> str(data)

'data. frame': 506 obs. of 14 variables:

 $ crim : num 0.00632 0.02731 0.02729 0.03237 0.0690

 $ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...

 $ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7

 $ chas : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...

 $ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524
0.524 0.524 0.524

 $ rm : num 6.58 6.42 7.18 7 7.15 ...

 $ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 1

 $ dis : num 4.09 4.97 4.97 6.06 6.06 ...

 $ rad : num 1 2 2 3 3 3 5 5 5 5 ...

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRBW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 99

 $ tax : num 296 242 242 222 222 222 311 311 311 3

 $ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2

15.2 ...

 $ b : num 397 397 393 395 397 ...

 $ lstat : num 4.98 9.14 4.03 2.94 5.33 ...

 $ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16

> data%<>% mutate_if(is.factor,as.numeric)
This line convert factor variable into numeric variable neural

network works on only numeric variables.

> str(data)

'data.frame': 506 obs. of 14 variables:

 $ crim : num 0.00632 0.02731 0.02729 0.03237 0.0690

 $ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...

 $ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7

 $ chas : num 1 1 1 1 1 1 1 1 1 1 ...

 $ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524

0.524 0.524 0.524

 $ rm : num 6.58 6.42 7.18 7 7.15 ...

 $ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 1
 $ dis : num 4.09 4.97 4.97 6.06 6.06 ...

 $ rad : num 1 2 2 3 3 3 5 5 5 5 ...

 $ tax : num 296 242 242 222 222 222 311 311 311 31

 $ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2

 $ b : num 397 397 393 395 397 ...

 $ lstat : num 4.98 9.14 4.03 2.94 5.33 ...

 $ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16

>

n=neuralnet(medv~crim+zn+indus+chas+nox+rm+age+dis+

rad+tax+ptratio+b+lstat,

data=data,hidden=c(10,5),linear.output=F,lifesign='full',rep=
1)

Here the medv is dependent variables of all other 13

variables are independent. The hidden layer are two 10 is

first and 5 is in second hidden layer.

hidden: 10, 5 thresh: 0.01 rep: 1/1 steps: 16

 error: 138664.5781 time: 0.02 secs

> plot(n)

Neural variable plot there were 10 and 5 two hidden layer.

> plot(n,col.hidden='darkgreen',

+ col.entry.synapse ='red',show.weights = T,

+ information =F,fill='lightblue')

This color plot describes the 13 input variables with numeric

values and two hidden layers with 10 and 5 neurons in each

layer completely connected network with single bias in each

layer is connected with some weight and finally medv is
single neuron. There were four layers there were 13 input

and single output.

> data=as.matrix(data)# converting into matrix

> dimnames(data)=NULL

> set.seed(1234)

> ind=sample(2,n row(data),replace=T,prob=c(.7,.3))

splitting data

> training=data[ind==1,1:13]

keeping independent variables

> test=data[ind==2,1:13]

> trainingtarget=data[ind==1,14]

keeping dependent variable
> testtarget=data[ind==2,14]

Normalizing independent variable is calculated using

formula (value-mean/standard deviation. Out of 506 data sets

test will divided into two independent variables be 151 and

training is 355 records parted for model design.

> m=colMeans(training)# calculate mean

> m

 [1] 3.6488963099 10.0521126761 10.9879718310

1.0591549296 0.5540053521 6.2853436620

69.0267605634 3.7887416901 9.4140845070

405.3267605634 18.4290140845 358.5856619718 [13]
12.7420563380

> s=apply(training,2,sd)#calculates standard deviation

> s

 [1] 9.0825860903 21.3949137202 6.6116126523

0.2362474194 0.1147606135 0.6790055916

27.9627261879 2.0379791678 8.5579001030

164.2190910798 2.1507528277 89.9415900215 [13]

7.1117072650

> training=scale(training,center=m,scale=s)

> test=scale(test,center=m,scale=s)

This process calculates normalization in both training and

test samples. Here the point is to consideration is that we use
same mean and standard deviation for both samples.

install.packages("devtools")

require(devtools)

library(devtools)

devtools::install_github("rstudio/reticulate", force=TRUE)

library(reticulate)

devtools::install_github("r-lib/processx",force=TRUE)

library(processx)

devtools::install_github("rstudio/tensorflow",force=TRUE)

library(tensorflow)

devtools::install_github("rstudio/keras",force=TRUE)

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRBW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 100

library(keras)

> model <- keras_model_sequential()

> model %>%

+ layer_dense(units = 5, activation='relu',input_shape =

c(13)) %>%

+ layer_dense(units = 1)# for output

> model %>% compile(loss='mse',optimizer='rmsprop',
+ metrics='mae')

Here this neural network is densely connected to each nodes

from one level to another level. Here units 5 represents the

number of hidden layer and outputs single neuron with

activation function is Rectified Linear Unit where there were

13 variables as input variables. After design model the

model is compiled with optimizer is rmsprop and metrics is

mean absolute errors.

> mymodel<-model %>%

+ fit(training,

+ trainingtarget,

+ epochs = 100 ,
+ batch_size = 32 ,

+ validation_split = 0.2)

Here the above model is fitting with target and source with

epochs 100 with validation split 0.2 which use 20 percent

data from training data sets for out of sample errors, which

produces following output

Train on 284 samples, validate on 71 samples

Epoch 1/100

284/284 [====] - 0s 1ms/step - loss: 656.6251 –

mean_absolute_error: 24.1395 –

val_loss: 309.5449 – val_mean_absolute_error: 16.8285
Epoch 2/100

284/284 [====] - 0s 54us/step - loss: 650.8414 -

mean_absolute_error: 24.0361 - val_loss: 308.5933 -

val_mean_absolute_error: 16.8073

Epoch 99/100

284/284 [====] - 0s 67us/step - loss: 137.8865 -

mean_absolute_error: 9.6698 - val_loss: 244.4070 -

val_mean_absolute_error: 14.6707

Epoch 100/100

284/284 [====] - 0s 85us/step - loss: 135.5420 -
mean_absolute_error: 9.5453 - val_loss: 243.7032 -

val_mean_absolute_error: 14.6438

The above figure represents two lines, the lower lines
describes the validation loss and above lines describes the

mean square errors. Initially there were large gap gradually

reduced narrower and converse at 90.

> summary(mymodel)

 Length Class Mode

params 8 -none- list

metrics 4 -none- list

> model %>% evaluate(test,testtarget)

151/151 [=====] - 0s 13us/step

$loss [1] 202.038932

$mean_absolute_error [1] 11.52268751

The evaluate function express that there is 202

percentage loss and mean absolute errors is 11 percent
> pred=model%>% predict(test)

> mean((testtarget-pred)^2)

[1] 202.0389313

 Which is similar to loss value

> plot(testtarget,pred)

This scattered plot describes there is high overfitting of data

therefore for good prediction the scatter data is in diagonal

straight line. Therefore, there is lots of improvement in this

model.

> model <- keras_model_sequential()

> model %>%

+ layer_dense(units = 100, activation='relu',input_shape =

c(13)) %>%

+ layer_dropout(rate=0.4)%>%
+ layer_dense(units = 50, activation='relu') %>%

+ layer_dropout(rate=0.3)%>%

+ layer_dense(units = 20, activation='relu') %>%

+ layer_dropout(rate=0.2)%>%

+ layer_dense(units = 1)

> #layer_activation('softmax')

> summary(model)

Here we are adding 100 neurons in first hidden layers

13*100+100 become 1400 neuron similarly in second hidden

layer there were 50*13+50 become with dropout of 40

percent and 30 percent and 20 percent in each subsequent

which means that 40 percent of components were dropped
out to zero.

Layer (type) Output Shape Param #

=====================================

dense_22 (Dense)(None, 100) 1400

dropout_7 (Dropout) (None, 100) 0

dense_23 (Dense) (None, 50) 5050

dropout_8 (Dropout) (None, 50) 0

dense_24 (Dense) (None, 20) 1020

dropout_9 (Dropout) (None, 20) 0

dense_25 (Dense) (None, 1) 21

=====================================

Total params: 7,491

Trainable params: 7,491

Non-trainable params: 0

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRBW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 101

> model %>% compile(loss='mse',

+ optimizer=optimizer_rmsprop(lr=0.001),

+ metrics='mae')

> #fit model

> mymodel<-model %>%

+ fit(training,

+ trainingtarget,
+ epochs = 100 ,

+ batch_size = 32 ,

+ validation_split = 0.2)

Train on 284 samples, validate on 71 samples

Epoch 1/100

284/284 [====] - 0s 2ms/step - loss: 636.9227 -

mean_absolute_error: 23.5547 - val_loss: 262.7128 -

val_mean_absolute_error: 15.0683

Epoch 2/100

284/284 [====] - 0s 109us/step - loss: 579.2154 -

mean_absolute_error: 22.3369 - val_loss: 232.0326 -

val_mean_absolute_error: 13.8860
Epoch 3/100

284/284 [====] - 0s 55us/step - loss: 509.4533 -

mean_absolute_error: 20.6511 - val_loss: 200.0774 -

val_mean_absolute_error: 12.6300

Epoch 98/100

284/284 [====] - 0s 88us/step - loss: 43.6551 -

mean_absolute_error: 4.8959 - val_loss: 19.7974 -

val_mean_absolute_error: 3.6739

Epoch 99/100

284/284 [====] - 0s 78us/step - loss: 35.2704 -
mean_absolute_error: 4.3979 - val_loss: 19.1389 -

val_mean_absolute_error: 3.5984

Epoch 100/100

284/284 [=====] - 0s 85us/step - loss: 40.1729 -

mean_absolute_error: 4.7151 - val_loss: 19.2505 -

val_mean_absolute_error: 3.6201

This picture describes there is large drop in overfitting of

data when increasing 10 to 100 neuron in first hidden layers

> summary(mymodel)
 Length Class Mode

params 8 -none- list

metrics 4 -none- list

> model %>% evaluate(test,testtarget)

151/151 [=====] - 0s 0us/step

$loss [1] 24.59003024

$mean_absolute_error [1] 2.937888456

The loss and mean square errors were significantly reduced

from 202 to 24 percentage and mean absolute errors is nearly

to 3 percent.

> pred=model%>% predict(test)
> mean((testtarget-pred)^2)

[1] 24.59003043

> plot(testtarget,pred)

This scattered plot also has largely improvement in the

model whose values are more or less in diagonal

implies improvement which could further improvement

with using learning rate of 0.001.

Conclusion

A neural network is a powerful computational data

model capable of capturing and representing

complex input / output relationships. Neural

networks are the most successful methods for

analyzing large amounts of data. The simulation of

the neural structure in the brain to construct neural

network structure models and the simulation of a

memory mechanism in the brain to develop

learning algorithms are two basic methodologies

in the investigation of neural networks. Although

the neuronal network has less interpretability than

the decision tree. But it is more suitable for noisy

datasets for unrecognized patterns. Deep neural

networks are powerful types of artificial neural

networks that use different hidden levels; It has a

versatile application in modern society for its

superior predictive properties, including

robustness and over-tightening. However, its

application to algorithmic commerce has not been

previously studied, partly due to its computational

complexity. This paper describes the general

description of the neural network prediction using

boston multilayer data sets concealed to predict the

dependent variable. Neural networks have been

very successful in several model recognition

applications in modern society. Therefore, the loss

and mean square errors were significantly reduced from the

506 data sets of census data of Boston from the 1970 census

with from 202 to 24 percentage and mean absolute errors is

nearly to 3 percent and Therefore, over fitted data in any

data base can be easily summarized using neural

network model with adding hidden layers in-between

input to output variables.

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRBW06019 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 102

References
[1] Bouziane, A. (2018). Neural network analysis .
[2] Bruke, j. (2017). Big data analysis using neural

networks.

[3] Gurney, K. (2004). An introduction to Neural

Network. UCL Press Limited is an imprint of
the Taylor & Francis Grou.

[4] Haluk Demirkan, C. B. (2015). Innovations with

Smart Service Systems: Analytics, Big Data,
Cognitive Assistance, and the Internet of

Everything.

[5] Johnson, S. a. (2004). Neural Coding Strategies and
Mechanisms of Competition. Cognitive

Syatems Research.

[6] Leisch, F. (2018). BostonHousing R Data sets of

ML Bench data sets.
[7] Lim, S. (2018). Adaptive Learning Rule for

Hardware based Deep Neural Networks .

[8] Noon, H. (2013). Artificial Neural Network :
Beginning of the AI revolution.

[9] Rouse, M. (2018).

Big_data_analysis_using_neural_networks.

[10]Saxena, S. (2018). Becoming Human: Artificial
Intelligence Magazine.

[11] Stephen Notley, M. M.-I. (2018). Examining the

Use of Neural Networks for Feature
Extraction: A Comparative Analysis using

Deep Learning, Support Vector Machines, and

K-Nearest Neighbor Classifiers.
[12]Sycorax, P. F. (2017). How does the Rectified

Linear Unit (ReLU) activation function

produce non-linear interaction of its inputs.

[13] Zhang, Y. (2017). Big data analysis using neural
networks.

http://www.jetir.org/

