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Abstract: This review paper primarily discusses on 

neural network machine learning techniques for 

large data analysis using r programming. Although 

there is large gap between analysis of research 

data when there were large set of in associative 

variables. This paper tries to explore the analysis 

of predicative modeling procedures steps of large 

data sets were explained sufficiently to reach 

conclusion. Its purpose is to explain the simplest 

way of neural network analysis whose data 

structure were in scattered using R software whose 

outputs were sufficiently summarized with various 

intermediate output and graphical interpretation to 

get conclusion with example bostonhousing 

datasets. Therefore, this paper presents easiest way 

of neural network analysis when data sets with 

large dimensions and its strengths for data analysis 

using R programming. 

Keywords: Hidden Neuron, Neural Network, over 

fitted Data, Rectified Linear Unit, Multi-Layer 

Perceptron 

Introduction 

The neural network is the science of neurons similar to 

the neuronal system of the human body, in which each 

neuron is connected to dendrites that transmit signals to 

another neuron in the form of electrical impulses; the 

body refers to those signals and decides which special 

actions should be taken for such cases. The artificial 

neuron is the heart of the neural network (Noon, 2013). 

The activation node always takes input from the 

dendrites which performs a competitive probability 

action (Johnson, 2004). Where the multiple input 

process produces and produces a single output in which 

all input signals are analyzed progressively until the 

appropriate decision is taken (Gurney, 2004). The 

various terms of input as variables whose magnitude is 

considered as a certain weight denoted as (w) are 

passed to the summary function which already has a 

certain fixed distortion, the bias always evaluates and 

produces both true and false judgment. After obtaining 

zero or one of the activation functions, the limit is 

calculated, which is further tested with the real 

prediction with the value with y. This process is 

continuously tested with binary, categorical or 

numerical values of the search variables; This process 

is known as single-level perception using a single node. 

Basically, there are three parts of the neural network: 

input levels, hidden levels and output levels. Input 

levels always take the input of variables and output 

levels always output. The middle layer has all the 

powers to analyze data that takes all the input and 

produces output for output levels. The terms of the 

input level as a subscript x (1,2,3,4 ... m) and hidden 

layer h (1,2,3 ... n) could easily be determined during 

the design of the model formulation. If a network has 

multiple hidden levels, it is known as deep learning. 

Deep learning is a machine learning technique that 

teaches the computer to do what is natural for human 

learning through examples taken from previous 

recordings. Therefore, a neural network is a hardware 

training and software system modeled after the 

operation (Lim, 2018). 

There are several activation functions, the most popular 

is the threshold or pass function that passes 1 if the 

activation with bios is greater than zero, otherwise it 

goes to zero. The sigmoid or logistic (1/1 + ex) 

function is a widely used activation function that is best 

for predicting probability. Another is a hyperbolic 

tangent sigma based on but over -1 to 1 is similar to the 

regression values where the gradient is deeper y = (ex-

ex) / (ex-ex).). The rectified linear unit (RELU) is the 

best version of the neural network model; it also 

produces 1 if x is + ve; otherwise, it produces 0 

(Sycorax, 2017). It is popular because of the less 

expensive architecture and the quicker approach, but 

requires more iteration of experiments. The desired 

task output is only obtained when their errors and 

previous hat values go back to neuronal function, so 

that errors are minimal in each pass. The next extension 

is the error feedback process to enter the weight is 

greatly reduced to the spread of the next time, so the 

network could easily be adjusted their weight at any 

time iteration to have minimal errors (errors = errors-

1). J (Ø) = 1 / mΣmi-m (ZM-yi) 2, this requires more 
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computing power, using the descent of the systematic 

gradient finally finds the minimum rate of learning. 

Big Data and neural networks are becoming one of the 

driving forces of innovation, social promotion and the 

development of life (Zhang, 2017). It can be clearly 

demonstrated how neural and large data networks are 

perfectly combined and reinforced by reviewing the 

basic concepts and key technology in large quantities, 

as well as the induction of the neural network research 

framework. On the one hand, neural networks are able 

to extract abstract features from raw data (Stephen 

Notley, 2018). They can combine multiple sources of 

information, process heterogeneous data and acquire 

dynamic changes in data (Haluk Demirkan, 2015). 

They are the bridge for the implementation of the 

transformation of the value of big data. On the other 

hand, a large volume of big data provides huge 

examples of training that allow the training of neural 

networks with a large number of parameters. However, 

there are still some problems in the neural network 

model. In the aspect of neural network research, the 

structure needs more research and development; The 

network scale lacks theoretical guidelines; and the 

learning algorithm is having some inherent problem. In 

the big data aspect there are also three fundamental 

scientific problems to guarantee coherence in the high-

dimensional dispersed space; implement storage space; 

and to represent the temporal correlation and 

implement the big data forecast. More research is 

urgently needed in this area, including theoretical and 

practical aspects. In particular, inter domain surveys 

are important. Research in the area can be carried out 

in coordination with the understanding of processing 

large amounts of data in the human brain. It needs a 

greater combination with cognitive science and 

neuroscience to solve the fundamental scientific 

problems in the search for neural networks and Big 

Data, in order to improve the big data analysis using 

neural networks (Bruke, 2017). The neural network is a 

hardware and / or software system modeled on the 

functioning of neurons in the human brain. Neural 

networks, also called artificial neural networks, are a 

variety of deep learning technology, which also falls 

within artificial intelligence (Rouse, 2018). Although 

ANN researchers are generally not worried that their 

networks are similar to biological systems, some have 

done so. Neural social networks are generally 

organized in layers. The layers are composed of a 

series of interconnected "nodes" that contain an 

"activation function". Patterns are presented to the 

network through the "input level", which 

communicates with one or more "hidden levels" in 

which the actual processing is performed through a 

system of weighted "connections". The hidden layers 

are then linked to an "output level" where the response 

is sent as shown in the graph below. Most RNAs 

contain some form of "learning rule" that modifies link 

weights based on the input models presented. In a 

sense, ANN learns from the example how their 

biological counterparts do; A child learns to recognize 

dogs of other pets. Although there are many different 

types of learning rules used by neural networks, this 

demonstration only affects one; The delta rule The 

delta rule is often used by the most common class of 

RNA called inverse neural networks (BPNN). 

Backpropagation is an abbreviation for backtrack error 

propagation. 

With the delta rule, as with other types of backward 

propagation, "learning" is a supervised process that 

occurs with each cycle or "epoch" through a flow of 

activation of forward outputs and the propagation of 

errors towards behind the adjustments. of weight. The 

number of neurons in the output layer must be directly 

related to the type of work performed by the neural 

network. To determine the number of neurons in the 

output layer, first consider the intended use of the 

neural network. (Saxena, 2018). In a feedforward 

network, information moves in one direction - forward 

- from input nodes, through hidden nodes (if any), and 

to output nodes. There are no cycles or cycles, there is 

no specific rule for this, in general, they are empirically 

determined through a cross-validation methodology 

(Bouziane, 2018).  

Neural Network Using R Programming  
 

Here I m using housing data for 506 data sets of census data 

of Boston from the 1970 census. The data 

frame BostonHousing contains the original data of 14 

variables as independent  additional spatial information 

(Leisch, 2018). 

> #bostonhousing 

> library(keras) 

> library(mlbench) 

> library(dplyr) 

> library(magrittr) 
> library(neuralnet) 

> data("BostonHousing") 

> data=BostonHousing 

> ?BostonHousing # description of data sets 

> str(data) 

'data. frame': 506 obs. of 14 variables: 

 $ crim   : num  0.00632 0.02731 0.02729 0.03237 0.0690 

 $ zn     : num  18 0 0 0 0 0 12.5 12.5 12.5 12.5 ... 

 $ indus  : num  2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7 

 $ chas   : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ... 

 $ nox    : num  0.538 0.469 0.469 0.458 0.458 0.458 0.524 
0.524 0.524 0.524  

 $ rm     : num  6.58 6.42 7.18 7 7.15 ... 

 $ age    : num  65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 1 

 $ dis    : num  4.09 4.97 4.97 6.06 6.06 ... 

 $ rad    : num  1 2 2 3 3 3 5 5 5 5 ... 
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 $ tax    : num  296 242 242 222 222 222 311 311 311 3 

 $ ptratio: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 

15.2 ... 

 $ b      : num  397 397 393 395 397 ... 

 $ lstat  : num  4.98 9.14 4.03 2.94 5.33 ... 

 $ medv   : num  24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16 

> data%<>% mutate_if(is.factor,as.numeric)  
This line convert factor variable into numeric variable neural 

network works on only numeric variables. 

> str(data) 

'data.frame': 506 obs. of  14 variables: 

 $ crim   : num  0.00632 0.02731 0.02729 0.03237 0.0690 

 $ zn     : num  18 0 0 0 0 0 12.5 12.5 12.5 12.5 ... 

 $ indus  : num  2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7 

 $ chas   : num  1 1 1 1 1 1 1 1 1 1 ... 

 $ nox    : num  0.538 0.469 0.469 0.458 0.458 0.458 0.524 

0.524 0.524 0.524 

 $ rm     : num  6.58 6.42 7.18 7 7.15 ... 

 $ age    : num  65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 1 
 $ dis    : num  4.09 4.97 4.97 6.06 6.06 ... 

 $ rad    : num  1 2 2 3 3 3 5 5 5 5 ... 

 $ tax    : num  296 242 242 222 222 222 311 311 311 31 

 $ ptratio: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2  

 $ b      : num  397 397 393 395 397 ... 

 $ lstat  : num  4.98 9.14 4.03 2.94 5.33 ... 

 $ medv   : num  24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16 

> 

n=neuralnet(medv~crim+zn+indus+chas+nox+rm+age+dis+

rad+tax+ptratio+b+lstat, 

data=data,hidden=c(10,5),linear.output=F,lifesign='full',rep=
1) 

Here the medv is dependent variables of all other 13 

variables are independent. The hidden layer are two 10 is 

first and 5 is in second hidden layer. 

hidden: 10, 5    thresh: 0.01    rep: 1/1    steps:      16

 error: 138664.5781  time: 0.02 secs 

> plot(n)  

 
Neural variable plot there were 10 and 5 two hidden layer. 

> plot(n,col.hidden='darkgreen', 

+      col.entry.synapse ='red',show.weights = T, 

+      information =F,fill='lightblue' ) 

 
This color plot describes the 13 input variables with numeric 

values and two hidden layers with 10 and 5 neurons in each 

layer completely connected network with single bias in each 

layer is connected with some weight and finally medv is 
single neuron. There were four layers there were 13 input 

and single output. 

> data=as.matrix(data)# converting into matrix 

> dimnames(data)=NULL 

> set.seed(1234) 

> ind=sample(2,n row(data),replace=T,prob=c(.7,.3)) 

# splitting data 

> training=data[ind==1,1:13] 

# keeping independent variables 

> test=data[ind==2,1:13] 

> trainingtarget=data[ind==1,14] 

# keeping dependent variable 
> testtarget=data[ind==2,14] 

Normalizing independent variable is calculated using 

formula (value-mean/standard deviation. Out of 506 data sets 

test will divided into two independent variables be 151 and 

training is 355 records parted for model design. 

> m=colMeans(training)# calculate mean 

> m 

 [1]   3.6488963099  10.0521126761  10.9879718310   

1.0591549296   0.5540053521   6.2853436620   

69.0267605634   3.7887416901   9.4140845070 

405.3267605634  18.4290140845 358.5856619718 [13]  
12.7420563380 

> s=apply(training,2,sd)#calculates standard deviation 

> s 

 [1]   9.0825860903  21.3949137202   6.6116126523   

0.2362474194   0.1147606135   0.6790055916   

27.9627261879   2.0379791678   8.5579001030 

164.2190910798   2.1507528277  89.9415900215  [13]   

7.1117072650 

> training=scale(training,center=m,scale=s) 

> test=scale(test,center=m,scale=s) 

This process calculates normalization in both training and 

test samples. Here the point is to consideration is that we use 
same mean and standard deviation for both samples. 

install.packages("devtools") 

require(devtools) 

library(devtools) 

devtools::install_github("rstudio/reticulate", force=TRUE) 

library(reticulate) 

devtools::install_github("r-lib/processx",force=TRUE) 

library(processx) 

devtools::install_github("rstudio/tensorflow",force=TRUE) 

library(tensorflow) 

devtools::install_github("rstudio/keras",force=TRUE) 
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library(keras) 

> model <- keras_model_sequential() 

> model %>%  

+   layer_dense(units = 5, activation='relu',input_shape = 

c(13)) %>%  

+   layer_dense(units = 1)# for output 

> model %>% compile(loss='mse',optimizer='rmsprop',   
+                   metrics='mae') 

Here this neural network is densely connected to each nodes 

from one level to another level. Here units 5 represents the 

number of hidden layer and outputs single neuron with 

activation function is Rectified Linear Unit where there were 

13 variables as input variables.  After design model the 

model is compiled with optimizer is rmsprop and metrics is 

mean absolute errors.  

> mymodel<-model %>%  

+   fit(training, 

+       trainingtarget, 

+       epochs = 100 , 
+       batch_size = 32 , 

+       validation_split = 0.2) 

Here the above model is fitting with target and source with 

epochs 100 with validation split 0.2 which use 20 percent 

data from training data sets for out of sample errors, which 

produces following output 

Train on 284 samples, validate on 71 samples 

Epoch 1/100 

284/284 [====] - 0s 1ms/step - loss: 656.6251 –

mean_absolute_error: 24.1395 –  

val_loss: 309.5449 – val_mean_absolute_error: 16.8285 
Epoch 2/100 

284/284 [====] - 0s 54us/step - loss: 650.8414 - 

mean_absolute_error: 24.0361 - val_loss: 308.5933 - 

val_mean_absolute_error: 16.8073 

 

Epoch 99/100 

284/284 [====] - 0s 67us/step - loss: 137.8865 - 

mean_absolute_error: 9.6698 - val_loss: 244.4070 - 

val_mean_absolute_error: 14.6707 

Epoch 100/100 

284/284 [====] - 0s 85us/step - loss: 135.5420 - 
mean_absolute_error: 9.5453 - val_loss: 243.7032 - 

val_mean_absolute_error: 14.6438 

 
The above figure represents two lines, the lower lines 
describes the validation loss and above lines describes the 

mean square errors. Initially there were large gap gradually 

reduced narrower and converse at 90. 

> summary(mymodel) 

 Length Class  Mode 

params  8      -none- list 

metrics 4      -none- list 

> model %>% evaluate(test,testtarget) 

151/151 [=====] - 0s 13us/step 

$loss    [1] 202.038932 

$mean_absolute_error   [1] 11.52268751 

The evaluate function express that there is 202 

percentage loss and mean absolute errors is 11 percent 
> pred=model%>% predict(test) 

> mean((testtarget-pred)^2) 

[1] 202.0389313 

 Which is similar to loss value 

> plot(testtarget,pred) 

 
This scattered plot describes there is high overfitting of data 

therefore for good prediction the scatter data is in diagonal 

straight line. Therefore, there is lots of improvement in this 

model. 

>  model <- keras_model_sequential() 

> model %>%  

+   layer_dense(units = 100, activation='relu',input_shape = 

c(13)) %>%  

+   layer_dropout(rate=0.4)%>% 
+   layer_dense(units = 50, activation='relu') %>%  

+   layer_dropout(rate=0.3)%>% 

+   layer_dense(units = 20, activation='relu') %>%  

+   layer_dropout(rate=0.2)%>%  

+   layer_dense(units = 1) 

> #layer_activation('softmax') 

> summary(model) 

Here we are adding 100 neurons in first hidden layers 

13*100+100 become 1400 neuron similarly in second hidden 

layer there were 50*13+50 become with dropout of 40 

percent and 30 percent and 20 percent in each subsequent 

which means that 40 percent of components were dropped 
out to zero.  

_____________________________________ 

Layer (type)    Output Shape    Param #          

===================================== 

dense_22 (Dense)(None, 100) 1400             

_____________________________________ 

dropout_7 (Dropout) (None, 100) 0                

_____________________________________ 

dense_23 (Dense)    (None, 50)        5050             

____________________________________ 

dropout_8 (Dropout) (None, 50)        0                
____________________________________ 

dense_24 (Dense)    (None, 20)       1020             

__________________________________ 

dropout_9 (Dropout) (None, 20)     0                

______________________________________ 

dense_25 (Dense)    (None, 1)        21               

===================================== 

Total params: 7,491 

Trainable params: 7,491 

Non-trainable params: 0 

__________________________ 
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> model %>% compile(loss='mse', 

+             optimizer=optimizer_rmsprop(lr=0.001), 

+                   metrics='mae') 

> #fit model 

> mymodel<-model %>%  

+   fit(training, 

+       trainingtarget, 
+       epochs = 100 , 

+       batch_size = 32 , 

+       validation_split = 0.2) 

Train on 284 samples, validate on 71 samples 

Epoch 1/100 

284/284 [====] - 0s 2ms/step - loss: 636.9227 - 

mean_absolute_error: 23.5547 - val_loss: 262.7128 - 

val_mean_absolute_error: 15.0683 

Epoch 2/100 

284/284 [====] - 0s 109us/step - loss: 579.2154 - 

mean_absolute_error: 22.3369 - val_loss: 232.0326 - 

val_mean_absolute_error: 13.8860 
Epoch 3/100 

284/284 [====] - 0s 55us/step - loss: 509.4533 - 

mean_absolute_error: 20.6511 - val_loss: 200.0774 - 

val_mean_absolute_error: 12.6300 

 

Epoch 98/100 

284/284 [====] - 0s 88us/step - loss: 43.6551 - 

mean_absolute_error: 4.8959 - val_loss: 19.7974 - 

val_mean_absolute_error: 3.6739 

Epoch 99/100 

284/284 [====] - 0s 78us/step - loss: 35.2704 - 
mean_absolute_error: 4.3979 - val_loss: 19.1389 - 

val_mean_absolute_error: 3.5984 

Epoch 100/100 

284/284 [=====] - 0s 85us/step - loss: 40.1729 - 

mean_absolute_error: 4.7151 - val_loss: 19.2505 - 

val_mean_absolute_error: 3.6201 

 
This picture describes there is large drop in overfitting of 

data when increasing 10 to 100 neuron in first hidden layers  

> summary(mymodel) 
        Length Class  Mode 

params  8      -none- list 

metrics 4      -none- list 

> model %>% evaluate(test,testtarget) 

151/151 [=====] - 0s 0us/step 

$loss [1] 24.59003024 

$mean_absolute_error [1] 2.937888456 

The loss and mean square errors were significantly reduced 

from 202 to 24 percentage and mean absolute errors is nearly 

to 3 percent. 

> pred=model%>% predict(test) 
> mean((testtarget-pred)^2) 

[1] 24.59003043 

> plot(testtarget,pred) 

 

This scattered plot also has largely improvement in the 

model whose values are more or less in diagonal 

implies improvement which could further improvement 

with using learning rate of 0.001.  

Conclusion  

A neural network is a powerful computational data 

model capable of capturing and representing 

complex input / output relationships. Neural 

networks are the most successful methods for 

analyzing large amounts of data. The simulation of 

the neural structure in the brain to construct neural 

network structure models and the simulation of a 

memory mechanism in the brain to develop 

learning algorithms are two basic methodologies 

in the investigation of neural networks. Although 

the neuronal network has less interpretability than 

the decision tree. But it is more suitable for noisy 

datasets for unrecognized patterns. Deep neural 

networks are powerful types of artificial neural 

networks that use different hidden levels; It has a 

versatile application in modern society for its 

superior predictive properties, including 

robustness and over-tightening. However, its 

application to algorithmic commerce has not been 

previously studied, partly due to its computational 

complexity. This paper describes the general 

description of the neural network prediction using 

boston multilayer data sets concealed to predict the 

dependent variable. Neural networks have been 

very successful in several model recognition 

applications in modern society. Therefore, the loss 

and mean square errors were significantly reduced from the 

506 data sets of census data of Boston from the 1970 census 

with from 202 to 24 percentage and mean absolute errors is 

nearly to 3 percent and Therefore, over fitted data in any 

data base can be easily summarized using neural 

network model with adding hidden layers in-between 

input to output variables.  
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