
© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCD06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 133

ANALYSIS OF LOAD BALANCING ON

DISTRIBUTED FILE SYSTEM FOR EFFECTIVE

DATA RETRIVAL

1Salini R S, 2Nadiya S , 3Ramya K M, 4Sreelakshmi V, 5Vinodha K
1Student, 2Student, 3 Student, 4 Student,5Assistant professor

Information Science and Engineering

The Oxford College of Engineering, Bangalore, India

Abstract– Load Balancing and Resource utilization are two important factors of DFS(Distribution File

System). HDFS(Hadoop Distribution File System) plays a key role in Cloud computing environment and

BigData analytics. In the present DFS, the file chunk distribution is dependent on central node which is

susceptible for bottleneck and single point of failure. HDFS Uses 3 types of nodes Viz., namenode,

secondary namenode and datanode to overcome single point failure. In this paper, the challenges faced in

DFS are analyzed and a novel algorithm is proposed to address them. The imbalance in data access is due to

the conventional parallel file system striping policies used for unevenly distribution of data among storage

nodes.To overcome this HDFS stores each data unit, referred as chunk file, with several copies based on a

relative random policy, which can result in an even data distribution among storage nodes . Based on the

data retrieval policy in HDFS, if a storage node contains more requested data, the probability of accessing

that node will be high resulting in bottleneck situation.To reduce the imbalanced access of dataOpass

method is used. Opass adopts new matching-based algorithms to match processes to data so as to compute

the maximum degree of data locality and balanced data access. Furthermore, to retrive the data fastly

distribution algorithm and map reduce techniques are used.

IndexTerms – Parallel data access, Distributed file system, HDFS, MapReduce.

I.INTRODUCTION

A file system is a process that manages data

storage and access on a hard disk drive(HDD).

Distributed file systems such as GFS, HDFS, QFS

or ceph, could be directly deployed on the disks of

cluster nodes to reduce data movements. When

storing a data set, distributed file systems will

usually divide the data into small chunk files and

randomly distribute them with several identical

copies. Hadoop is an open source distributed

processing framework that manages data

processing and storage for big data applications

running in clustered systems.The Hadoop

Distributed File System (HDFS) is the primary

data storage system used by Hadoop applications.

It employs aNameNode and DataNode

architecture to implement a distributed file system

that provides high performance access to data

across highly scalable Hadoop clusters. When

retrieving data from HDFS, a client process will

attempt to read the data from the disk that it is

running on. If the required data is not on the local

disk then the process will read from another node

that contains the required data. The data requests

from the parallel processes are referred to as

parallel data requests. These data requests can be

issued from Hadoop MapReduce applications, but

also from MPI applications [2]. MapReduce is a

programming framework that allows the user to

perform distributed and parallel processing on

large data sets in a distributed environment. Map

Reduce consists of two distinct tasks – Map and

Reduce. The message passing interface is a

standardized means of exchanging messages

between multiple computers running a parallel

program across distributed memory.

Unfortunately, the data requests from parallel

processes or executors in big data processing will

be served in an imbalanced fashion on the

distributed storage servers and these parallel

requests over the storage will compete for shared

resources. Parallels Access is the simplest,fastest,

and most reliable way to remotely access all your

Windows/Mac applications and files on your

iPhone, iPad, or Android phone or tablet. The

Hadoop file system can allow parallel programs to

access data by using its libHDFS library. The I/O

interface, like hdfsread and hdfswrite, will be used

to read/write data from/to HDFS. Another method

is to use an I/O virtual translation layer to

translate the parallel I/O operations. [1] Load

balancing concept in a distributed system and a

fully distributed load balancing algorithm mainly

overcomes the load imbalance problem by using

load balance Nearest Search algorithm but

couldn’t achieve Downtime, Limited control and

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCD06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 134

Vendor lockin.[2] DataMPI, which provided

following MPI specifications: Dichotomic,

Dynamic, Data-centric, and Diversified features

.It provides advantages in performance and

flexibility, but not able to reduce I/O response

time, So SCALER is used. [3] SCALER, which

allows MPI based applications to directly access

HDFS without extra data movement and achieves

the design goal efficiently such as Scalable

parallel file write performance, Reducing I/O

response time and Effective buffer for burst write

workload. But this system is not suitable for small

files. [4] A new methodology for managing read-

write file sets across multiple file servers of a

Distributed File System, thus balancing the load

of file access requests across servers.It uses rule-

based data mining technique and graph theory

algorithms.

In section 2 represents an overview of HDFS andh

MapReducing technique followed in document by

section 3 that presents related work and followed

by section4 presents existing models on HDFS.

Various open research issues are presented in

Section 5. Section 6 presents about opass

technologies. A results explanation is given in

Section 7 followed by concluding remarks in

Section 8 .

II. HDFS AND MAPREDUCING

TECHNIQUE
The Hadoop Distributed File System (HDFS) is a

distributed file system designed to run on

commodity hardware. It is highly fault-tolerant

and provides high throughput access to

application data. It is designed to be deployed on

low-cost hardware and is suitable forapplications

that have large data sets. It is designed to reliably

store very large files across machines in a large

cluster. It stores each file as a sequence of blocks.

The blocks of a file are replicated for fault

tolerance. The block size and replication factor

are configurable per file. An application can

specify the number of replicas of a file. The

replication factor can be specified at file creation

time and can be changed later. Files in HDFS are

write-once and have strictly one writer at any

time.

Fig 1. HDFS Architecture

HDFS has master/slave architecture.As shown in

fig1, an HDFS cluster consists of a single

NameNode which is a master server that manages

the file system namespace and regulates access to

files by clients and there are a number of

DataNodes, usually one per node in the cluster,

which manage storage attached to the nodes that

they run on. The NameNode and DataNode are

pieces of software designed to run on commodity

machines.

These machines typically run a GNU/Linux

operating system (OS). HDFS is built using the

Java language; any machine that supports Java

can run the NameNode or the DataNode software.

Usage of the highly portable Java language means

that HDFS can be deployed on a wide range of

machines. A typical deployment has a dedicated

machine that runs only the NameNode software.

Each of the other machines in the cluster runs one

instance of the DataNode software.

The architecture does not preclude running

multiple DataNodes on the same machine but in a

real deployment that is rarely the case. HDFS

exposes a file system namespace and allows user

data to be stored in files.Internally, a file is split

into one or more blocks and these blocks are

stored in a set of DataNodes. The DataNodes are

responsible for serving read and write requests

from the file system’s clients. It also performs

block creation, deletion, and replication upon

instruction from the NameNode.The NameNode

executes file system namespace operations like

opening, closing, and renaming files and

directories and makes all decisions regarding

replication of blocks.It also determines the

mapping of blocks to DataNodes. It periodically

receives a Heartbeat and a Block report from each

of the DataNodes in the cluster.Receipt of a

Heartbeat implies that the datanode is functioning

properly.

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCD06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 135

Fig2. Operation of MapReduce

Hadoop MapReduce is a software framework

which is basically used for easy writing

applications to process vast amounts of data in-

parallel on large clusters of commodity hardware

in a reliable and fault-tolerant manner. A

MapReduce job usually splits the input data-set

into independent chunks which are processed by

the map tasks in a completely parallel manner as

shown in fig2. The framework sorts the outputs of

the maps, which are then input to the reduce tasks.

Typically both the input and the output of the job

are stored in a file-system.The framework takes

care of scheduling tasks, monitors them and re-

executes the failed tasks.Typically, the

MapReduce framework and the Hadoop

Distributed File System are running on the same

set of nodes.

This configuration allows the framework to

effectively schedule tasks on the nodes where data

is already present, resulting in very aggregate

bandwidth across the cluster.The MapReduce

framework consists of a single master JobTracker

and one slave TaskTracker per cluster-node.The

master is responsible for scheduling the jobs'

component tasks on the slaves, monitoring them

and re-executing the failed tasks.The slaves

execute the tasks as directed by the master.

The MapReduce framework operates on <key,

value> pairs, that is, the framework views the

input to the job as a set of <key, value> pairs and

produces a set of <key, value> pairs as the output

of the job, conceivably of different types.The key

and value classes have to be serializable by the

framework and hence need to implement the

Writable interface and also need to implement the

WritableComparable interface to facilitate sorting

by the framework.

III.RELATED WORK

Radha G. Dobale[1] discussed the load balancing

concept in a distributed manner and a fully

distributed load balancing algorithm is proposed

to cope with the load imbalance problem. The

load balance Nearest Search algorithm is used to

migrate one user’s whole file into any other node

instead of partitioning a file into a no. of chunks.

Radha G. Dobale[1] achieved Load

balancing,Scalability,Availability and

Maintenance, but couldn’t achieve Downtime,

Limited control and Vendor lockin.

Xiaoyi Lu[2] proposed DataMPI, which provided

following MPI specifications: Dichotomic,

Dynamic, Data-centric, and Diversified

features.Performance experiments showed that

DataMPI has significant advantages in

performance and flexibility,while maintaining

high productivity, scalability, and fault tolerance

of Hadoop.

Xiaoyi Lu[3] was not able to reduce I/O response

time. Xi Yang[3] introduced a system solution,

named SCALER, which allows MPI based

applications to directly access HDFS without

extra data movement.SCALER supports N-1 file

write at both the inter-block level andintra-block

level.Experimental results confirm that SCALER

achieves the design goal efficiently such as

Scalable parallel file write performance,reducing

I/O response time and Effective buffer for burst

write workload. Here, this system is not suitable

for small files.

Valeria Cardellini[4] proposed system that

reviewed the state of art in load balancing

techniques on distributed web server systems and

analyzed the efficiencies. Popular websites

canneither rely on a single powerful server nor on

independent mirrored servers to support the ever

increasing request load. Scalability and

availability can be provided by the distributed

web server architecture that schedule client

requests among the multiple server nodes in a

usertransparent way. The proposed system was

able to eliminate server overhead and bottleneck

but had limited applicability, increased latency

time and dispatcher bottleneck.

Amit Gajbhiye[5] discussed about Global

ServerLoad Balancing with Networked Load

Balancers for Geographically Distributed Cloud

Data-Centres and critically analysed the state-of-

the arttechniques used for Global Server

LoadBalancing and have proposed a novel

model of

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCD06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 136

networked load balancers for load balancing

across the datacenters in cloud computing

environment. The proposed model overcomes the

shortcomings of existing DNS based load

balancing by considering current load status of

datacenter, by making time to live of DNS server

cache redundant and by finding the exact location

by real IP of end user. The proposed system

achieved Load balancing with networking among

load balancers in datacenters in distributed

environment, A novel load calculation was done

and Response time was reduced to transfer the

request across multiple datacenters. The system

was unable to Deploy the model in real time

environment.

Alexandra Glagoleva [6] presented a new

methodology for managing read-write file sets

across multiple file servers of a Distributed File

System, thus balancing the load of file access

requests across servers. The proposed

methodology is based on a rule-based data mining

technique and graph theory algorithms. The rule-

based technique generates rules from access

request data to identify present file access patterns

in the system. The algorithm for fileset relocation

is based on the graph coloring problem.

IV.EXISTING SYSTEM MODELS

1.MapReduce technique for parallel-automata

analysis of large scale rainfall data:

MapReduce is a technique for executing

exceedingly parallelizable and distributable

algorithms across huge datasets utilizing countless

PCs. Utilizing MapReduce with Hadoop, the

large-scale rainfall could be determined without

adaptability issues. Vast scale rainfall information

assumes an imperative part in farming field thus

early expectation of rainfall is important for the

better financial development of a nation.

information for accurate rainfall Big Data

innovation like Hadoop have developed to fathom

the difficulties and issues of huge information

utilizing distributed computing.

In this model the huge scale rainfall information is

anticipated by utilizing MapReduce system which

plays out the capacities which are required and

decrease the task to get proficient arrangements

through taking the information and isolating into

smaller tasks. The three Regression Automata

(RA) algorithms such as Linear Regression

automata, Support Vector Regression Automata

and Logistic Regression Automata are utilized to

forecast the future esteem of large scale rainfall

data. This model also serves as a tool that takes in

the rainfall information from diminished

information as input and predicts the future

rainfall. The outcomes obviously demonstrate that

the all the three RA models can anticipate the

rainfall productively in different terms, such as,

error rate, coefficients and mean square error.

Fig 3. Map reduce technique for parallel-automata

analysis.

2.Unstructured Data Analysis on Big Data

using Map Reduce:

Large amount of unstructured data needs

structural arrangement for processing the data.

Hadoop is binary compatible with Map reduce.

Map Reduce is a shuffling strategy to perform

filtering and aggregation of data analysis tasks.

Map is nothing but the filtering technique used for

filtering the datasets and similarly Reduce is a

technique used for aggregation of data sets. In the

real time scenario, the volume of data used

linearly increases with time.

Social networking sites like Facebook, Twitter

discovered the growth of data which will be

uncontrollable in the future. In order to manage

the huge volume of data, the proposed method

will process the data in parallel as small chunks in

distributed clusters and aggregate all the data

across clusters to obtain the final processed data.

In Hadoop framework, MapReduce is used to

perform the task of filtering, aggregation and to

maintain the efficient storage structure. The data

are preferably refined using collaborative

filtering, under the prediction mechanism of

particular data needed by the user.Collaborative

Filtering Technique is used to generate

recommendations based on user data. Sentiment

Analysis is a technique which uses natural

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCD06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 137

language processing and Text analysis techniques

for predicting the user sentiments based on

polarity.

The proposed method is enhanced by using the

techniques such as sentiment analysis through

natural language processing for parsing the data

into tokens and emoticon based clustering. The

process of data clustering is based on user

emotions to get the data needed by a specific user.

The results show that the proposed approach

significantly increases the performance of

complexity analysis.

3.Mining on Big Data Using Hadoop

MapReduce Model:

The proposed hadoop model consists of five tools

namely data preprocessing, data migration with

sqoop, data analytics with hive, data analytics

with pig and data analytics with map reduce.Data

preprocessing module is used to create data set for

making item-set of product.

Fig 4. MRAP Technique for Date Restructuring

The data migration with sqoop module is used to

transfer the dataset into Hadoop. Sqoop is a tool

for transferring data between databases and

Hadoop. With the help of this module the dataset

is fetched into Hadoop using sqoop tool. Sqoop is

used to perform many functions, such as to fetch

the particular column or to fetch the dataset with

specific condition that will be supported by sqoop

tool and data will be stored in Hadoop.Data

analytic with hive module is used to

analyzestructure language.Hive is a data ware

house system for Hadoop.

 It runs structured query language (SQL) like

queries called hive query language (HQL). The

HQL is converted internally to map reduce jobs.

Hive was introduced by Facebook.Hive supports

functions like data definition language (DDL),

Data manipulation language (DML) and user

defined functions. In this module the dataset is

analyzed using hive tool which will be stored in

Hadoop. To analyze dataset hive is used with

HQL.Using hive Partition, Bucketing can be

performed.The module of data analytic with pig is

also used to analyze data set.

Apache pig is a high level data flow platform to

execute map reduce programs with Hadoop. Data

analytic with map reduce module is also used

analyze data set with map reduce. Map reduce is a

processing technique using program model of java

for distributed computing. The map reduce

algorithm contains two important tasks such as

map and reduce. The task map is used to map with

chart, record, plot, drawing, plan and diagram etc.

Whereas task reduce is used to minimize the

dimension.

Fig 5. Hadoop MapReduce Technique on mining

V.ISSUES IN HADOOP MAPREDUCE
Challenge 1: lack of performance and scalability

The hadoop mapreduce programming model do

not provide a fast, scalable distributed resource

management solution. Organisations require a

distributed Mapreduce solution that can deliver

competitive advantage by solving wider range of

data intensive analyticproblems faster. The

mapreduce implementation should help

organizations run complex datasimulation with

submillisecond latency,high data throughput and

Thousands of mapreduce tasks completed per

seconds depending on complexity.

Challenge2:Lack of flexible resource

management. The hadoop MapReduce

programming model are not able to react quickly

to real time changes in application or user

demands. Based on the volume of tasks, the

priority of the job and time varying resource

allocation policies, mapreduce jobs should be able

to quickly grow or shrink the number of

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCD06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 138

concurrently executing tasks to maximize

throughput,performance and cluster utilization

while respecting resource ownership and sharing

policies.

Challenge3: Lack of application deployment

support. The hadoop MapReduce programming

model do not make it easy to manage multiple

application integrations on production-scale

distributed system with automated application

service deployment capability.

Challenge4: Lack of quality of service

assurance.The hadoop Mapreduce programming

model are not optimized to take full advantage of

modern multicore servers.The implementation

shouls allow for both multithreaded an single

threaded tasks and be able to schedule them with a

view to maximize cache effectiveness and data

locality into consideration.

Challenge 5: Lack of multiple data source support

The hadoop Mapreduce programming model only

support a single distributed file system, the most

common being HDFS. A complete

implementation of the MapReduce programming

model should be flexible enough to provide data

access across multiple distributed file systems. In

this way,existing data does not need to be moved

or translated before it can be processed.

MapReduce services need visibility to data

regardless of where it resides.

Challenge 6: Privacy and security challenges

There are issues in auditing, access control.

Authentication and privacy when performing

mapper and reducer jobs.

To solve the mentioned challenges in this

section,the following opass methodologies are

used.

VI. METHODOLOGY

1. Encoding Process:

The parallel data read requests can be served in a

balanced way through maximizing the degree of

data locality read. To achieve this, we retrieve data

distribution information from storage and build the

locality relationship between processes and chunk

files, where the chunk files will be associated with

data processing operators/ tasks according to

different parallel applications[16].

Map reduce background: MapReduce is a

programming model suitable for processing of

huge data. Hadoop is capable of running

MapReduce programs written in various

languages: Java, Ruby, Python, and C++.

MapReduce programs are parallel in nature, thus

are very useful for performing large-scale data

analysis using multiple machines in the cluster.

MapReduce consists of several components,

including:

 Job Tracker -- the master node that

manages all jobs and resources in a cluster

 Task Trackers -- agents deployed to each

machine in the cluster to run the map and

reduce tasks.

Fig 6. A bipartite matching example of processes

and chunk files[16].

 JobHistoryServer -- a component that

tracks completed jobs, and is typically

deployed as a separate function or with

Job Tracker.

The basic architecture of map reduce is as shown

in fig 2. The term MapReduce actually refers to

two distinct jobs that Hadoop programs perform.

The first is the map job, which takes a set of data

and converts it into another set of data, where

individual elements are broken down into tuples

(key/value pairs). The reduce job takes the output

from a map as input and combines those data

tuples into a smaller set of tuples. Both these

functions can be prototyped as follows:

Map(K1,V1)→[(K2,V2)].

Reduce(K2,{V2})→[(K3,V3)].

When a file is divided into equal sized blocks

(64MB-128MB) and each block is assigned to a

cluster, the job tracker starts a map task for each

data block and typically assigns it to the task

tracker on the machine. Each data block will have

a mapper. Each mapper will have a corresponding

reducer. The mapper performs map function and

we get the intermediate results. This intermediate

results enters the reduce phase. The reducer

performs reduce function. The results of all task

tracker are combined to get the output.

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCD06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 139

Matching-Based Algorithm for Tasks with Multi-

Data Inputs is used for encoding process. This

algorithm is accessed through port number 50070.

2. Optimizing Parallel Single Data Accessin

DFS:

The overall execution time for parallel data

analysis will be decided by longest running

process.For a single task with multiple data inputs

as shown in fig 7, the required inputs may be

placed on a multiple data nodes, which imply that

some of the data associated with given task may

be local to the process assigned to that task and

some might be remote so, tasks with multiple

inputs will complicate the matching of processes

to data. we propose a novel matching based

algorithm for this type of parallel data accesses.

Our algorithm aims to associate each process with

data processing tasks, such that a large amount of

data can be read locally. We assign each process

with the equal number of tasks for parallel

execution. Our algorithm achieves the optimal

matching value from the perspective of each

process. To begin, we compute the amount of co-

located data associated with each task and each

process and encode these values as the matching

values between them and we will find a task .

Fig 7. The matching-based process-to-file

configuration for single-data access[16].

3. Optimizing Parallel Multi-Data Read Access

in DFS:

In previous method we are accessing single data

but here we are accessing multiple data.We

propose a novel matching based algorithm for this

type of parallel multi-data read access. Our

algorithm aims to associate each process with data

processing tasks such that a large amount of data

can be read locally.

4.Opass for Parallel Data Read Access in DFS:

HDFS uses an r-way replication to providehigh

availability. Files in HDFS are referred as chunks

Fig 8 The process-to-data matching example for

multiple data assignment[16].

 and each chunk will be copied to r DataNodes.

When a read request is initiated for a chunk, by

default, the NameNode will return a sorted list of

DataNodes that holds the requested chunk. The

nearest Data Node will be picked to serve the

read request. When the degree of imbalance

crosses a pre-defined threshold, we will replace

the default locality driven read strategy with our

matching based method.

Distribution algorithm is used to evenly distribute

the read requests for file’s chunks.In fig

9,Capacity is determined by each Data Node’s

current number of chunks served and the number

of chunks of newly requested file. Expected

matching is denoted in red doted line.

Fig 9. Balanced file read requests matching using

network flow[16].

Algorithm1.Algorithm to read chunks in

distributed file system.

Let the file f consists of m chunks stored on n

DataNodes.

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCD06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 140

Let the set NP ={np0,np1,…,npn-1} represent the

current number of chunk data requests served by

data nodes.

Let the set P ={p0,p1,…,pn-1}represent the number

of chunk data requests for file F that the data

nodes will serve.
Let the set l={l0,l1,….ln-1} represent the number of

chunks of F that each Data nodes holds.

Input: m,n,P,NP; Output: P

Steps:

Find the maximum number of read requests

served by current data bodes: npj=Max(nP)

* assign m chunks to n data nodes */

For npi in NP and npi<npjdo

if npj- npi>lithen

pi = li ; m=m-pi;

else

pi = npj- npi ; m=m-pi;

end if

while m>0 do

for npi in PC and m>0 do

if pi< li then

pi= pi+1; m=m-1

end if

end for

end while

Algorithm2.Dijkstra's algorithm

1. Mark all nodes unvisited. Create a set of

all the unvisited nodes called the unvisited

set.

2. Assign to every node a tentative distance

value: set it to zero for our initial node

and to infinity for all other nodes. Set the

initial node as current.

3. For the current node, consider all of its

unvisited neighbours and calculate

their tentative distances through the

current node. Compare the newly

calculated tentative distance to the current

assigned value and assign the smaller one.

For example, if the current node A is

marked with a distance of 6, and the edge

connecting it with a neighbour B has

length 2, then the distance

to B through A will be 6 + 2 = 8. If B was

previously marked with a distance greater

than 8 then change it to 8. Otherwise,

keep the current value.

4. When we are done considering all of the

unvisited neighbours of the current node,

mark the current node as visited and

remove it from the unvisited set. A visited

node will never be checked again.

5. If the destination node has been marked

visited (when planning a route between

two specific nodes) or if the smallest

tentative distance among the nodes in

the unvisited set is infinity (when

planning a complete traversal; occurs

when there is no connection between the

initial node and remaining unvisited

nodes), then stop. The algorithm has

finished.

6. Otherwise, select the unvisited node that is

marked with the smallest tentative

distance, set it as the new "current node",

and go back to step 3.

VII. RESULT:
To test OPASS on parallel processing

applications, we record the I/O time taken to read

each chunk files by comparing with three matrics,

the average sI/O time taken to read all chunk files,

the maximum I/O time and the minimum I/O time

as shown in fig 10,11. Fig 10. represents reading

data from HDFS without implementing opass .

This shows that the I/O time become more variant

has the cluster size increases. the maximum I/O

time increases drastically while the minimum I/O

time remains constant.For instance, on the 16

node to 80 node cluster the maximum I/O time to

read a chunk file reaches from 7 X to 18X. This is

not suitable for parallel programs which has

longest operation for

execution.

I/O Time(seconds) W/O Opass

Fig 10.Read data from HDFS without Opass.

0

5

10

15

8 nodes 16 nodes 32 nodes 64 nodes

min

average

max

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRCD06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 141

Fig. 11. Read data from HDFS with Opass.

With the use of Opass, as shown in Fig. 11, the

I/O performance remains constant as the cluster

sizeincreases, with an average I/O time of

around0.9 seconds. With the use of Opass, the I/O

time during the entire execution is approximately

oneto two seconds. In all, the average I/O

operation time with the use of Opass is a quarter

of that without opass.

VIII. CONCLUSION
In this paper the problems of parallel data

reads/writes on distributed file systems is analysed

due to the lack of consideration of data

distribution, parallel data requests are often

servedin an imbalanced and remote fashion.

To overcome the imbalance fashion in distributed

file system ,opass methods are used.The data

retrieve is improved by 10% compared to existing

system.

In future, on hadoop for dynamic and iterative

processing we are trying to identify the data

changes whenever there is a dynamic updation

using FP algorithm.

ACKNOWLEDGMENT

We would like to express our gratitude to Dr.

Praveena Gowda, Principal, The Oxford College

of Engineering for providing us a congenial

environment and surrounding to work in. Our

hearty thanks to Dr. R. Kanagavalli, Professor &

Head, Department of Information Science and

Engineering, The Oxford College of Engineering

for her encouragement and support. We convey

our gratitude to Dr. Vinodha K, Asst. Professor,

Department of Information Science and

Engineering for having constantly monitored the

completion of the Project Report and setting up

precise deadlines.

References:
[1] Review of Load Balancing for Distributed

Systems in Cloud

[2] DataMPI: Extending MPI to Hadoop-like Big

Data Computing

[3] SCALER: Scalable Parallel File Write in

HDFS

[4] Title Dynamic Load Balancing on Web-server

Systems

[5] Amit Gajbhiye discussed about Global Server

Load Balancing with Networked Load Balancers

for Geographically Distributed Cloud Data-

Centres and critically analysed the state-of-the art

techniques used for Global Server L

[6]Alexander Glagoleva presented a new

methodology for managing read-write file sets

across multiple file servers of a distributed file

system, thus balancing the load of file access

requests.

[7] Apache Hadoop YARN: Yet Another

Resource Negotiator

[8] G. King, "Big Data is Not About the Data!"

Presentation (Harvard University USA, 19

November 2013).

[9] Samee U. Khan Enabling Big Data Complex

Event Processing for Quantitative Finance

through a Data- Driven Execution.

[10] T. H. Davenport and J. Dyché, "Big data in

big companies," International Institute for

Analytics.

[11] B. Fang, P. Zhang, in BigData in Finance.

Big Data Concepts, Theories, andApplications,ed.

by S.Yu, S. Guo (Springer International

Publishing, Cham, 2016).

[12] T.-C. Dao and S. Chiba, “HPC-reuse:

Efficient process creation for running MPI and

Hadoop MapReduce on supercomputers,” in Proc.

16th IEEE/ACM Int. Symp. Cluster Cloud Grid

Comput., 2016, pp. 342–345.

[13] A. Darling, L. Carey, and W.-C. Feng,

“Thedesign, implementation, and evaluation of

mpiblast,” presented at the ClusterWorld, San

Jose, CA, USA, 2003.

[14] J. Dean and S. Ghemawat,“MapReduce:

Simplified data processing on large clusters,”

Commun. ACM, vol. 51, no. 1, pp. 107–113,

2008.

[15] L. R. Ford Jr and D. R. Fulkerson, “A

suggested computation for maximal multi-

commodity network flows,” Manag. Sci., vol. 5,

no. 1, pp. 97–101, 1958.

[16] “Achieving Load Balance for Parallel Data

Access on Distributed File Systems”,

Dan Huang, Dezhi Han, Jun Wang, Jiangling Yin,

Xunchao Chen , Xuhong Zhang, Jian Zhou, and

Mao Ye, vol.67,no.3, 2018

0

1

2

3

4

5

8 nodes 16
nodes

32
nodes

64
nodes

min

average

max

http://www.jetir.org/

