
© 2019 JETIR May 2019, Volume 6, Issue 5                                                           www.jetir.org (ISSN-2349-5162) 

JETIRCJ06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 112 
 

A Numerical Approach for the Telegraph 

Equations using Haar Wavelets 
 

A. Padmanabha Reddya, Nagaveni Kb 

 

Department of Studies in Mathematics, V. S. K. University, Ballari. 

 

Abstract: 

In this paper, we present a numerical scheme to solve the telegraph equations based on Haar wavelets. Haar 

wavelets with the aid of collocation method have become very useful in providing highly accurate solution 

to the telegraph equations. Some illustrative examples are included to demonstrate the validity and 

applicability of the present technique. Based on the obtained results, we concluded that the proposed method 

has good accuracy and efficiency compared to Sinc-collocation method (SCM), Adomian decomposition 

method (ADM) and Modified Adomian decomposition method (MADM). 
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1. Introduction  

 

Naturally questions was arises in our mind is that from where this telegraph equation originated and why we 

need?. The telegraph equation initially found in a paper by Kirchhoff in 1857[9] and later one by Oliver 

Heaviside [16], who created the transmission line model and are based on Maxwell’s equations. In 

telecommunication system an information can be send over a long or short distance by using radio signals or 

coded electrical signals sent along a transmission medium [ coaxial cable, optical fiber,… etc] are connected 

to a transmitting and a receiving instruments. During this process there is some loss of information. Telegraph 

equation is invented to discover these losses and ultimately ensure a maximum output and minimum error. 

 

Wavelets theory is a moderately new and a developing area in mathematical research. It has been applied in 

a wide range of mathematical problems related to scientific and engineering fields. In wavelet analysis we 

can use almost accurate function that is contained nicely in finite domain. This makes wavelet analysis more 

attractive and beneficial. Wavelet study is probably the new solution to succeed the limitations of Fourier 

transform. Let us consider an example of a piece of music. Fourier transform is a strong tool for studying the 

pitches of the music on other hand less useful in studying the melody of the music. Wavelet transform allows 

the analysis of both the pitches and melody of the music. It shows that wavelet transform has capable of 

yielding the time and frequency data concurrently. In numerical analysis, wavelet derived algorithms have 

become a vital tool because of features of localization, compactness, fast convergence and minimum 

computational cost. 

 

The layout of this paper is arranged as follows. In section 2, a brief note of telegraph equation is given. In 

section 3, Haar wavelets and their integrals are introduced. In section 4, we applied Haar wavelet method to 

the telegraph equation. In section 5, the introduced method is applied to numerical examples and also to 

demonstrate the efficiency of the proposed method, comparison with the other methods is given. Finally a 

conclusion is written in section 6.  

 

 

 

 

 

 

2. Telegraph Equation 
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Telegraph equation is the hyperbolic partial differential equation arising in many fields such as 

vibrational systems, wave propagation of electrical signals in a cable transmission line, pulsating blood 

flow in arteries, continuous-time random walk, etc. In order to understand the mathematical derivation 

of telegraph equation, here below given explanation of model of a small portion of telegraph cable wire 

as an electrical circuit. As well as that a small telegraph wire and the long transmission line have similar 

characteristics. Let us consider that if the cable is partially insulated then the pair of current and 

capacitance outflow to ground. 

 

FIG1.Schematic diagram of telegraphic transmission line with leakage [ 19 ]. 

Suppose we are sending information at a distance ' y ' . If g(y, t)  is the voltage through the wire, similarly 

current at any time on the cable is i(y, t) .Where R, C, L, G denotes the resistance, capacitance to the 

ground, inductance and conductance to the ground in the cable respectively. 

By Ohm’s law, the voltage around the resistor is  

                                                         g iR ,                                                                        (2.1)                                                                                                     

further, the voltage drip around the inductance and capacitance as follows 

                                                     
i

g L ,
t





                                                                        (2.2) 

                                                    
1

g idt .
C

                                                                        (2.3)                                                             

 

To find the drip of voltage or loss of voltage between the end points A and D is, 

 voltage drip at the terminal D = voltage at the terminal A-[drip of voltage along AD], 

                

voltage drip at the terminal D = voltage at the terminal A-[drip of voltage around the resistor                                                                                                                                  

                                                             + drip of voltage around the inductance],                                                                                                       

 voltage drip at the terminal D-voltage at the terminal A = - drip of voltage around the   

                                                                resistor - drip of voltage around the inductance,                                                                                                                                                                                                                               
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i

dg iRdy Ldy .
t


  

                                                           (2.4)                                                            
 

Let us assume that also current can leak from the wire to ground, either by means of a resistor of 

conductance Gdy  or as a result of a capacitor of capacitance Cdy. The load that outflows through 

resistor is gGdy.  Because the charge on the capacitor is q gCdy,  the load that outflow from the 

capacitor is t tq g Cdy , where    t tq q y, t and g g y, t .
t t

 
 
 

 

                                                        tdi gGdy g Cdy.  
                                                 (2.5) 

 

Dividing (2.4) and (2.5) by dy  both sides and taking the limit dy 0,  we get the following differential 

equations 

                                                        
y tg iR i L 0 ,                                                          (2.6)                                                       

                                                        
t yCg Gg i 0.                                                         (2.7) 

                                                           

By from 
y




 of (2.6)    and  

t




 of (2.7) we obtain 

                                                  yy y t yg i R i L 0 ,                                                          (2.8)   

                                                  
tt t y tCg Gg i 0.                                                          (2.9) 

                                                          

From (2.7) and (2.9) 

                                                   y ti Cg Gg ,                                                            (2.10) 

                                                   yt tt ti Cg Gg .                                                          (2.11) 

                                                              

Substituting (2.10) and (2.11) in   (2.8) we get  

                                                      yy t t tg g [RC GL] RGg LCg .   
                         (2.12) 

 

Let us consider 2 2 2 1
α c [RC GL], β c RG and c

LC
     then equation (2.12) reduces to  

                                                           
2

tt t yyg αg βg c g .  
                                      (2.13)   
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Where g(y, t)  is voltage at position ' y ' and time ' t ' . Also by using  
t




 of (2.6) and 

y




of (2.7), we 

obtain 

                                                         
2

tt t yyi αi β i c i .  
                                          (2.14)                              

 

Where i(y, t)  is current through the wire. The equations (2.13) and (2.14) both are called    telegraph 

equations. 

Consider the telegraph equation given in [5] 

                             

2 2

2 2
( , ), , 0,

  
      

  

g g g
g k y t b y d t

t t y
 

                         (2.15)

 

   

subject to the initial conditions 

                                        1

( ,0) ( ), ,

( ,0) ( ), ,

  


  



g y f y b y d

g y f y b y d
t  

      

     and boundary conditions 

 

       Where α  and β  are constant coefficients related to resistance, inductance, capacitance and capacitor of 

the cable, forα 0 ,β 0 equation (2.15) indicates a damped wave equation and α 0,β 0   it is called 

telegraph equation. We assume that 1f (y), f (y)  and their derivatives are continuous functions of ' y '  

and 1q(t),q (t)  and their derivatives are continuous functions of ' t ' .  

In recent years, many researchers have worked on development of various numerical and analytical 

methods to solve telegraph equations. M. Abdou [1] developed Adomian decomposition method for 

solving the telegraph equation in charged particle transport. M. Javidi [8] used Chebyshev spectral 

collocation method for computing numerical solution of telegraph equation. A. Mohebbi, M. Dehghan 

[12] used high order compact solution to solve the telegraph equation. A numerical scheme is developed 

in [2,3] to solve telegraph equation using Quadratic B-spline collocation method and cubic B-spline 

quasi-interpolation method. R. K. Mohanty [13] applied a new technique to solve the linear one-space-

dimensional hyperbolic equation which is unconditionally stable and is of second-order accurate in both 

time and space components. Also this author proposed in [14] an unconditionally stable finite difference 

formula for a linear second order one space dimensional hyperbolic equation with variable coefficients.   

 An effective way to get the solution of telegraph equation is the Haar wavelet method. In numerical 

analysis, Haar wavelet had become a fruitful tool for solving ordinary and partial differential equations 

[10,7 and 18]. U. Lepik [11] have solved evolution equation by using Haar wavelet method. Hariharan 

et al.[4] have solved numerically Fisher’s equation. B.Naresh et al. [15] used Haar wavelet collocation 

method (HWCM) for computing numerical solution of wave equation. In this paper, we approximate the 

solution of telegraph equation by using Haar wavelet collocation method and compared our results with 

other methods [5, 6].  

3. Haar wavelets and their integrals 

1( , ) ( ), ( , ) ( ), 0.  g b t q t g d t q t t
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Wavelet analysis is recently developed mathematical tool for numerical solution of differential equation, 

Integral equation, Stiff equation, etc. We have various types of wavelets like Haar, Coiflet and 

Daubechies, etc. Among the wavelets mathematically most uncomplicated wavelet is Haar wavelet 

because of orthogonality with localization, compact and scaling properties. Haar wavelet is intially 

introduced by a Hungarian mathematician named Alfred Haar in 1910. Haar wavelet is piecewise 

constant function which form an orthogonal basis for the subspace of  2L b,d called Haar wavelet 

family. 

Haar wavelet for y [b,d)  is as follows 

                                            1

1 , b y d,
h y

0 , otherwise,

 
 
  

this characterizes basic scale.

 

                                                   2

b d
1, b y ,

2

b d
h y 1, y d ,

2

0, otherwise ,


 




   





 

       this characterizes basic wavelet shape. 

Where  1h y  and   2h y  indicates the father and mother wavelets respectively. 

Now, Haar wavelet family defined as  

                                                     

 

   

     

1 2

i 2 3

1 , for y λ i ,λ i ,

h y 1 , for y λ i ,λ i , 3.1

0 , otherwise.

 


   



 

Where     1 2

k k 0.5
λ i , λ i

m m


     and   3

k 1
λ i

m


 .  ih y  is true for i 2 . Haar wavelet family  ih y  

constructed from dilatation and translation of a single function  2h y (mother wavelet).  

Where 
jm 2 ( j 0,1,2,..., J)   which indicates the level of the parameter. Where ' J '  is the maximal level of 

resolution and k 0,1,...,m 1   denotes translation parameter. The index ' i '   is evaluated according to the 

formula i m k 1   . The minimal value of ' k '  and 'm ' are 0 and 1 respectively. The maximal value of 

J 1i 2 2L.   It is assumed that the interval  b ,d will be divided into 2L  subintervals, hence d b
y

2L


  . Let 

us define the collocation points 
l

l 0.5
y ,

2L


  where l 1,2,....,2L.
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Any function which is having finite energy in  b ,d , i.e. 2s L [b,d]  can be decomposed as infinite sum of 

Haar wavelets: 

                                                            i i

i 1

s(y) a h y




  

Here, ia ’s are Haar wavelet coefficients. If 's '  is either piecewise constant or wish to approximate by 

piecewise constant on each subinterval, then the above infinite series will be determined at a finite number 

of terms. 

We introduce the following notations are as follows 

                                                
y

1,i i

b

P (y) h y dy , 3.2   

                                               
y y y

2,i i 1,i

b b b

P (y) h y dy P y dy,     

                                           ............................................ 

Integrating the Haar functions for 'α ' times .We get 

                                             

y y y

α

α,i i

b b b

P (y) .... h (r)dr ,   
 

 
   

α 1y

α,i i

b

1
P (y) y r h (r)dr. 3.3

α 1 !



 
  For  i 1    

equation (3.3) becomes     

 

                                             
 

   
α

α,1

1
P (y) y b . 3.4

α !
        

Taking into account of  ih y  these integrals can be calculated analytically by doing it we obtain  

 

 

     

         

        

1

α

1 1 2

α α
α,i

1 2 2 3

α α α

1 2 3 3

0, if y b, λ i ,

y λ i , if y λ i , λ i ,
1

P y
y λ i 2 y λ i , if y λ i , λ i , 3.5α!

y λ i 2 y λ i y λ i , if y λ i , d ,

 

     


               

                     

 

    equation (3.5) is valid for i 2.  

 

 

http://www.jetir.org/


© 2019 JETIR May 2019, Volume 6, Issue 5                                                           www.jetir.org (ISSN-2349-5162) 

JETIRCJ06028 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 118 
 

4. Method for solving telegraph equation 

Consider a telegraph equation (2.15) with the initial conditions ( ,0) ( ) ,g y f y 1( ,0) ( ) , 0 1  g y f y y  

and the boundary conditions  

Now based on Haar wavelet method [10,11], the solution of the telegraph equation (2.15) can be expanded 

as 

                                
2M

''

i i

i 1

g y, t a h (y).


                                                                       (4.1) 

Where '..'  and  ''' '  means differentiation with respect to ' t '  and ' y '  respectively. Where ia ’s are Haar 

wavelet coefficients in the interval n n 1t [t , t ]  and  ih y  is Haar wavelet family. 

On twice integration of equation (4.1) w.r.t. to t  from nt  to t  and w.r.t. y from 0 to y , following equations 

are obtained 

 

                                        
n n

t t 2M

i i

i 1t t

g y, t dt a h y dt ,


   
            (4.2) 

                               

       
2M

n n i i

i 1

g y, t g y, t t t a h y ,


    
             (4.3) 

                                                       

   
 

    
2

2M
n

n i i n n

i 1

t t
g y, t g y, t a h y g y, t t t ,

2 


     

                     (4.4) 

 
 

         

   

2
2M

n

i 1,i n n n n

i 1

n

t t
g y, t a P y t t g y, t g 0, t g y, t

2

g 0, t g 0, t ,




          

 



      
(4.5)

 

 
 

           

       

2
2M

n

i 2,i n n n n n

i 1

n n

t t
g y, t a P y t t g y, t g 0, t yg 0, t g y, t

2

g 0, t y g 0, t g 0, t g 0, t ,




        

     



                                                                                                                                                    

(4.6) 

               
2M

n i 2,i n n n

i 1

g y, t t t a P y g y, t g 0, t yg 0, t yg 0, t g 0, t ,


         
                                                                                                                                                  

(4.7) 

1(0, ) ( ) , (1, ) ( ) , 0.  g t q t g t q t t
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       
2M

i 2,i

i 1

g y, t a P y yg 0, t g 0, t . (4.8)


  

                                  
 

Put y=1 in the equations (4.6) and (4.8) and we have 

   
 

           

     

2
2M

n

n i 2,i n n n n n

i 1

n

t t
g 0, t g 0, t a P 1 t t g 1, t g 0, t g 0, t g 1, t

2

g 0, t g 0, t g 1, t , (4.9)




           

 



 
                        

       
2M

i 2,i

i 1

g 0, t a P 1 g 0, t g 1, t . (4.10)


   

                                                                                                             

 If the equation (4.9) is substituted into equation (4.6), we obtain
 

 
 

           
 

 

               

 

2 2
2M 2M

n n

i 2,i n n n n n i 2,i

i 1 i 1

n n n n n

t t y t t
g y, t a P y t t g y, t g 0, t g y, t g 0, t a P 1

2 2

y t t g 1, t g 0, t y g 1, t g 0, t g 0, t g 1, t g 0, t ,

4.11

 

 
        

             

 

                          

 
 

       
 

 

             

 

2 2
2M 2M

n n

i 1,i n n n i 2,i

i 1 i 1

n n n n n

t t t t
g y, t a P y t t g y, t g y, t a P 1

2 2

t t g 1, t g 0, t g 1, t g 0, t g 0, t g 1, t ,

4.12

 

 
         

           

 

 
 

         
2

2M
n

i i n n n

i 1

t t
g y, t a h y t t g y, t g y, t , 4.13

2 


     

             

           

2M 2M

n i 2,i n n n i 2,i

i 1 i 1

n n n n

g y, t t t a P y g y, t g 0, t y t t a P 1

y g 1, t g 0, t y g 0, t g 1, t g 0, t , 4.14

 

        

         

 

             
2M

i 2,i 2,i

i 1

g y, t a P y yP 1 y g 0, t g 1, t g 0, t . 4.15


         

The equations from (4.11) to (4.15)   are discritized by assuming  yyl and t tn+1
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 
 

         

 
 

       

           

2
2M

n 1 n

l n 1 i 2,i l n 1 n l n n l n

i 1

2
2M

l n 1 n

n i 2,i l n 1 n n n

i 1

l n n n 1 n 1 n 1

t t
g y , t a P y t t g y , t g 0, t g y , t

2

y t t
g 0, t a P 1 y t t g 1, t g 0, t

2

y g 1, t g 0, t g 0, t g 1, t g 0, t , 4.16



 









  


       


      

     




 

 
 

       

 
       

         

2
2M

n 1 n

l n 1 i 2,i l n 1 n l n l n

i 1

2
2M

n 1 n

i 1,i n 1 n n n

i 1

n n n 1 n 1

t t
g y , t a P y t t g y , t g y , t

2

t t
a P 1 t t g 1, t g 0, t

2

g 1, t g 0, t g 0, t g 1, t , 4.17



 









 


       


     

     





 
 

         
2

2M
n 1 n

l n 1 i i l n 1 n l n l n

i 1

t t
g y , t a h y t t g y , t g y , t , 4.18

2



 




     

 

 

                        

             

         

 

2M 2M

l n 1 n 1 n i 2,i l l n n l n 1 n i 2,i

i 1 i 1

l n n l n 1 n 1 n 1

g y , t t t a P y g y , t g 0, t y t t a P 1

y g 1, t g 0, t y g 0, t g 1, t g 0, t ,

4.19

  

 

  

        

         

 

             
2M

l n 1 i 2,i l 2,i n 1 n 1 n 1

i 1

g y , t a P y yP 1 y g 0, t g 1, t g 0, t . 4.20   



         

5. 

Numerical studies
 

In this section, we apply the HWCM to few of the telegraph equation problems whose exact solutions are 

known. The potency of proposed method is presented for each example in the form of graph and table. All 

computations are carried out by MATLAB software. To show the preciseness of the present technique, the

L , 2L  errors and Root-Mean-Square (RMS) of errors are calculated using the following definitions: 

  

                                       

2

2
1

1

2

1

max ( ) ( ) , ( ) ( ) ,

1
( ) ( ) .


 





   

 
  

 





N

exat exat
p N

p

N

exat

p

L g p g p L g p g p

RMS g p g p
N
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Where N number of nodes, g(p) =approximate solution, ( )exatg p =exact solution for p 1,2,.., N.  

 

Example 1.Consider the linear homogeneous telegraph equation (2.15) with the following conditions [5] , 

               

y y t 1 t

1 1α 1,β 1,0 y 1,k(y, t) 0,f (y) e ,f (y) e , q(t) e ,q (t) e .          

 

The exact solution of this equation is  

                                                   
  y tg y, t e .

 

When t=0.4, the comparison of absolute errors of the Haar and Sinc solutions are represented in Figure 1. 

In Table 1, the comparisons of the Exact, Haar and Sinc solutions along with the absolute errors of Haar and 

Sinc solutions are inserted [5].The 2,L L and RMS errors of the Sinc and Haar solutions are calculated in 

Table 2.
 

TABLE 1: Comparison of the values of Haar, Sinc solutions with their absolute errors for example 1. 

 

 

 

 

 

 

y Exact 

solution 

Sinc  

solution[5] 

Haar 

solution 

Absolute 

error 

(Sinc  

solution)[5] 

Absolute 

error 

(Haar 

solution) 

0.01 0.677 0.674 0.677 0.003 0.000139 

0.02 0.683 0.679 0.684 0.004 0.000239 

0.03 0.690 0.684 0.691 0.006 0.000310 

0.04 0.697 0.689 0.698 0.008 0.000362 

0.05 0.704 0.694 0.705 0.010 0.000403 

0.06 0.711 0.700 0.712 0.011 0.000437 

0.07 0.718 0.705 0.719 0.013 0.000466 

0.08 0.726 0.711 0.727 0.015 0.000490 

0.09 0.733 0.717 0.734 0.016 0.000512 

0.1 0.740 0.723 0.741 0.017 0.000532 
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Figure 1: Comparison of absolute errors at t=0.4 of example 1. 

 

TABLE 2 : The estimated numerical errors for  example1 with

  

 dy=0.01,dt=0.1  at t=0.4. 

Also 

when 

y=0.01, we compared Haar wavelet collocation method with Sinc collocation method with their absolute 

errors in Table3.

 

In Figure2 and Figure3 indicates the comparisons of Exact, Haar and Sinc solutions along 

with their absolute errors respectively [5].
 

TABLE 3: Comparison of the values of Haar, Sinc solutions at y=0.01 with their absolute
   

errors for example 1.
 

 

 

 

 

 

 
L - error 2L - error RMS

 

SCM 0.017 0.0359 0.011336 

HWCM 0.000532 0.0013 0.0004073 

t Exact 

solution 

Sinc  

solution[5] 

Haar 

solution 

Absolute error 

(Sinc 

solution)[5] 

Absolute error 

(Haar solution) 

0.3 0.748 0.744 0.748 0.0040 0.000074 

0.4 0.677 0.674 0.677 0.0030 0.000139 

0.5 0.612 0.611 0.613 0.0010 0.000218 

0.6 0.554 0.555 0.555 0.0010 0.000307 

0.7 0.501 0.504 0.502 0.0030 0.000407 

0.8 0.453 0.458 0.454 0.0050 0.000519 

0.9 0.410 0.418 0.411 0.0080 0.000640 

1 0.371 0.382 0.372 0.0110 0.000771 
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Figure 2: Comparison of Exact, Haar and Sinc solution for y=0.01 of example1. 

 

Figure 3: Comparison of absolute errors for y=0.01 of example1. 

 

Example 2. 

 

Consider the linear non-homogeneous telegraph equation as follows [5] ,       

                             

2 2
2

2 2
1,0 1, 0,

  
        

  

g g g
g y t y t

t t y  

with the given initial and boundary conditions as follows 
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   

   

2

1

1

f y y , f y 1,

q t t,q t 1 t .

 

                     

The exact solution of this equation is                                                                                               

                                                          
  2g y, t y t . 

 

When t=0.3, Figure 4 represents the comparison of Exact, Haar and Sinc solution.  Figure 5 and Figure 6 

indicates the absolute errors of Sinc and Haar solutions respectively.  In Table 4 the comparisons of the 

Exact, Haar and Sinc solutions along with their absolute errors are shown [5]. The 2,L L and RMS errors of 

Sinc and Haar solutions are calculated in Table 5.

           

 

TABLE 4: Comparison of the values of Haar and Sinc solutions for t=0.3 of example2. 

 

 

Figure 4: Comparison of Exact, Haar and Sinc solution for t=0.3 of example2.

 

y Exact 

solution 

Sinc  

solution[5] 

Haar 

solution 

Absolute error 

(Sinc 

solution)[5] 

Absolute 

error 

(Haar 

solution) 

0.01 0.300 0.304 0.300 0.004 0 

0.02 0.300 0.308 0.300 0.008 0 

0.03 0.300 0.312 0.300 0.012 0 

0.04 0.301 0.317 0.301 0.016 0 

0.05 0.302 0.322 0.302 0.020 0 

0.06 0.303 0.327 0.303 0.024 0 

0.07 0.304 0.332 0.304 0.028 0 

0.08 0.306 0.337 0.306 0.031 0 

0.09 0.308 0.343 0.308 0.035 0 

0.1 0.310 0.349 0.310 0.039 0 
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Figure 5:  Absolute errors of Sinc solution for      Figure 6: Absolute errors of Haar solution                          

t=0.3 of example 2.                                                                          for t=0.3 of example 2. 

 

 

TABLE5: Comparison of 2,L L and RMS errors for example 2 with dy=0.01, dt=0.1 at t=0.3.

   

 

 

Example 3.  

Consider the non–linear and non-homogeneous telegraph equation as follows [6],       

                             
   

2 2
2

2

2 2
2 2 cosh cosh , 0 1, 0,   

           

t tg g g
g e y e y y t

t t y  

with the given initial and boundary conditions as      

                                                 

       

     

1

t t

1

f y cosh y , f y cosh y ,

q t e , q t e cosh 1 . 

  

 
 

The exact solution of this equation is  

                                                 
   , cosh . tg y t e y

 

The comparison of Exact, HWCM, ADM and MADM solutions are displayed in Figure 7. Figure8 indicate 

the comparison of absolute error curve obtained by HWCM, ADM and MADM. In Table6, the comparisons 

of the Exact, HWCM, ADM and MADM along with their absolute errors are shown [6]. The 2,L L and 

RMS errors of ADM, MADM and HWCM are obtained in Table 7. 

 
L - error 2L - error RMS

 

SCM 0.039 0.077117 0.024387 

HWCM 0 0 0 
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TABLE 6: Comparison of the values of HWCM, ADM and MADM with their absolute errors for example 

3. 

 

 

Figure 7: Comparison of Exact, HWCM, ADM and MADM for example3.

 

y Exact 

solution

 

Adomian 

decomposition 

solution 

(ADM)[6] 

Modified 

Adomian 

decomposition 

solution 

(MADM) [6] 

Haar 

solution 

(HWCM)

 

Absolute 

error 

(ADM)[6]

 

Absolute 

error 

(MADM)[6]

 

Absolute 

error 

(HWCM)

 

0 0.90483742 0.91366178 0.91451972 0.90483742 0.00882436 0.00968230 0.00000 

0.1 0.90936538 0.91825217 0.91914260 0.90959803 0.00888679 0.00977722 0.00023265 

0.2 0.92299457 0.93215657 0.93305989 0.92345575 0.00916200 0.01006532 0.00046113 

0.3 0.94586140 0.95545619 0.95641958 0.94652742 0.00959479 0.01055818 0.00066602 

0.4 0.97819473 0.98848184 0.98946965 0.97898349 0.01028710 0.01127492 0.00078876 

0.5 1.02031817 1.03152442 1.03256015 1.02114134 0.01120625 0.01224198 0.00082317 
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Figure 8: Comparison of absolute errors of HWCM, ADM and MADM for example3. 

 

TABLE 7: Computational errors in 2,L L and RMS of example 3 with dy=0.1, dt=0.1 at t=0.1.

   

 

 

 

Conclusion  
 

                          In this paper, we used Haar wavelet collocation (HWCM) for solving telegraph equation. 

HWCM is best shoot with less errors for solving the telegraph equations. HWCM has been verified on three 

test problems. The graphs and tables conformed that the numerical results obtained from HWCM are better 

than Sinc-collocation method, Adomian decomposition method and Modified Adomian decomposition 

method.In order to establish the accuracy of the proposed method 2,L L and RMS errors are calculated.It is 

observed that HWCM gives more accurate results in comparison with Sinc-collocation method, Adomian 

decomposition method and Modified Adomian decomposition method. From the examples we concluded 

that proposed method is very reliable, simple, fast, minimal computational costs and flexible 
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