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ABSTRACT 

A robotic manipulator's dynamic analysis based on various parameters such as velocity, acceleration and 

forces etc., is the examination of robotic arm motions in relation to a coordinate system known as a fixed 

frame. There exists always a challenge while solving the problem of inverse kinematics because many 

solutions are available for the same problem. This work focused on defined trajectory tracking in a given 

workspace. 

1. INTRODUCTION 

The origin of the robot word is come from Robota, which means “work” or “forced labor” in Czech. A robot 

is a multi-function control unit with reprogrammable abilities, to move materials, parts, tools or specialized 

devices, by means of varying programmed instructions. 

Robotics is a multidisciplinary science and engineering branch that integrate mechanical, electrical, software 

and other fields of study and implementation. It manages the purpose, expansion, and operation of robots, as 

well as IOT control, sensory feedback, and information handling systems. 

 Robot Kinematics 

The kinematics is mechanical division which explores the action of things without taking account of the 

forces that cause action. Robot arm kinematics conduct an analytical study of robot arm geometry as a time 

function, regardless of force / moment, against the fixed reference coordinating system.  

 

Figure 1:  Schematic representing of forward kinematics and inverse kinematics 

 

2. LITERATURE SURVEY 

 Forward Kinematics Problems 

The problems of the forward kinematics are explained by the transformation matrices between an end-

effector coordinate frame and base coordinate frame. The position vector is signified by the homogeneous 

transformation matrix in a 3-D space along with the rotation matrix of the body. The entire homogeneous 

transformation matrix is generated simply by multiplying specific frame transformations fixed in contiguous 

chain links. Denavit and Hartenberg [1] were the first to make this judgment for the manipulator's spatial 

geometry, and its benefit is in the universal algorithm to solve the kinematics of a manipulator. 

 Inverse Kinematics Problems 

Indirect kinematics problems can be resolved by using two types of approaches first one is closed form 

solutions and second is numerical approach. Closed form solutions are robot dependent and faster than the 

numerical approach. This approach classified into two type of methods Analytical method [2] and 

Geometric method [3]. Analytical method it is also called as algebraic method, analytically invert the direct 

kinematics equations. By solving an algebraic equations scheme, the problem of inverse kinematics can be 

summarized. If Cosine and Sine values are evaded by fixed substitutes, robot kinematics gives an 

arithmetical system or a sequence of equations.  Then algebraic method is used to solve these equations that 

are obtained. The numerical approach method can be applied to any kinematic arrangement because it is not 
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robot dependent. It is slower and, in some case, it is not possible to compute the solution. In this approach, 

there are different methods like symbolic elimination method [4], continuation method [5] and iterative 

method. Symbolic elimination method gives a set of nonlinear equations by eliminating variables to shorten 

it into a smaller set of equations. Different numbers of iterative methods are using now a day to resolve the 

inverse kinematics problems. Like Newton-Raphson method [6], Optimization approach [7,8], Cyclic 

coordinate descent method [9], Pseudoinverse method [10] 

 

3. DYNAMIC MODELING OF MANIPULATOR 

The set of equations related to the dynamics of a robot arm are its motion equations. A manipulator move at 

consistent speed, must accelerate, and decelerate amid the work cycle. In order to adjust internal forces and 

external forces, the time varies from one torque to the other with the help of actuators. In this section, 

numerical model and properties of dynamic motion equations for the robot arm dynamics have been 

developed Lagrange-Euler approach.  

Lagrange-Euler Mechanics 

In physics, Lagrangian mechanics is widely used to solve mechanical problems. In optimisation problems of 

dynamic systems Lagrange's equations are applied. The Lagrange function ′𝐿′ which is a scaler function is 

given by  

𝐿 = 𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 − 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 (3.1) 

To define the manipulator variables based on a set of generalized coordinates dynamic model formulation 

utilising Lagrange-Euler approach is used. In the generalized coordinates the joint variables are described as 

displacement ‘𝑞’. For prismatic joint which is defined as linear displacement ′𝑑′ and while for rotary joint 

defined as angular displacement ′𝜃′. The velocity for prismatic joint ′𝑞′̇  describes linear velocity ′𝑑′̇  and 

velocity for rotary joint ′𝑞′̇  describes angular velocity ‘𝜃′̇ . 

To obtain the dynamic model for robot arm based on Lagrange-Euler approach is given by the Lagrangian, 

as a set of equations, 

𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝑞𝑖̇
) −

𝑑𝐿

𝑑𝑞𝑖
= 𝜏𝑖

 (3.2) 

Here,  

L = Lagrangian function. 

𝑞𝑖 = Generalized coordinates of the manipulator. 

𝑞𝑖̇ = Generalized coordinates of the joint velocity. 

𝜏𝑖 = Generalized force at joint 𝑖. 

 Lagrange-Euler Formulation 

The dynamic model of a 𝑛 degree of freedom robotic arm can be systematically developed using L-E model. 

The 𝑛 degree of freedom open kinematic chain serial link manipulator has 𝑛 joint position, 

𝑞 = [𝑞1, … … 𝑞𝑖]
𝑇. (3.3) 

The derivation of equation of motion utilizing Lagrange-Euler formulation is done in the accompanying 

subtopics.  

Joint Velocity of a Point on the Manipulator 

For computing the K.E., link velocity is required. 

Let’s take a point 𝑝 on the link 𝑖 of as revealed in figure (2). The vector 𝑟𝑖
𝑖 represents the location of 𝑝 on the 

link w.r.t. frame {𝑖}. 

 Ti

ir 1zyx iii  (3.4) 

w.r.t. frame {0}, the position of point 𝑝 is given by  

i

iii rTr 00   
(3.5) 
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Figure 2: Manipulator’s 𝑖𝑡ℎ link 

If joint ′𝑖′ is prismatic, transformation matrix is  


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 (3.7) 

If joint ′𝑖′ is rotary, the transformation matrix is  


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 (3.8) 

Considering, 𝑎𝑖,𝛼𝑖 are link parameters of robot arm and 𝑑𝑖,𝜃𝑖 are joint parameters of joint 𝑖. The partial 

derivate of above rotary transformation matrix with respect to 𝜃𝑖 gives, 
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
 (3.9) 

The velocity of i

ir can be expressed as 

𝑣𝑖
0 ≡ 𝑣𝑖 =

𝑑

𝑑𝑡
(𝑟𝑖

0) =
𝑑

𝑑𝑡
( 𝑇𝑖

0𝑟𝑖
𝑖) (3.10) 

𝑑

𝑑𝑡
(𝑟𝑖

0) = (∑
𝜕 𝑇𝑖

0

𝜕𝑞𝑗

𝑖

𝑗=1
𝑞𝑗̇) 𝑟𝑖

𝑖 
(3.11) 

When equation number (3.8) and (3.9) are compared they gives a pattern, that equation (3.9) can be obtained 

from equation (3.8) by using some matrix operations, 

Hence, the partial derivation of homogeneous transformation matrix 𝑇𝑖
𝑖−1 with respect to 𝜃𝑖 can be obtained 

using a 4 × 4 matrix 𝑄𝑖. For revolute joint  𝑄𝑖 is defined as 
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
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iQ  (3.12) 

For prismatic joint 𝑄𝑖 is defined as 
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
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and by premultiplying 1i

iT  with 𝑄𝑖, 
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 (3.14) 
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 (3.15) 

It is observed that equation (3.9) and (3.13) are same, 

1
1







 i

ii

i

i

i TQ
T


 (3.16) 

Since 𝑇𝑖
0 = 𝑇1

0𝑇2
1 … 𝑇𝑖

𝑖−1, therefore the partial derivative 𝑇𝑖
0 with respect to 𝑞𝑗, 
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q
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 (3.17) 

After simplifying equation (3.17), the result is valid for 𝑗 ≤ 𝑖. Therefore, 



 









ijfor

ijforTQT

q

T
j

ijj

j

i

0

10

1

0

 (3.18) 

The link velocity 𝑣𝑖 as given in equation (3.11), is simplified using equation (3.18), 

𝑣𝑖 = (∑ 𝑇𝑗−1
0 𝑄𝑗𝑇𝑖

𝑗−𝑖
𝑖

𝑗=1
𝑞𝑗̇) 𝑟𝑖

𝑖 (3.19) 

The Inertia Tensor of the Manipulator 

During the motion of links, the mass of links contributes inertia forces. The symmetric matrix is a 4 × 4 

matrix characterizing the mass distributions of a inflexible thing. The moment of inertia tensor is  
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Where 𝑑𝑚𝑖 is the mass of the element on link 𝑖 located at  Tiii

i

i zyxr 1 . 
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   (3.21) 

Taking, 𝑖𝑡ℎ link mass = 𝑚𝑖 and center of mass =  1iii

i

i zyxr  .  

Manipulator’s Kinetic Energy 

K.E. of the small mass 𝑑𝑚𝑖 on link 𝑖, positioned at 𝑟𝑖
0 and moving with velocity 𝑣𝑖

0 w.r.t. base frame is, 

𝑑𝑘𝑖 =
1

2
 𝑑𝑚𝑖(𝑣𝑖)2 (3.22) 

(𝑣𝑖)2 = 𝑣𝑖 . 𝑣𝑖 = 𝑟𝑖
0̇𝑟𝑖

0̇ = 𝑇𝑟𝑎𝑐𝑒 (𝑟𝑖
0̇𝑟𝑖

0̇
𝑇

) = 𝑇𝑟𝑎𝑐𝑒(𝑣𝑖 . 𝑣𝑖
𝑇) (3.23) 

By substituting equation (3.19) in equation (3.22), 

𝑑𝑘𝑖 =
1

2
𝑇𝑟𝑎𝑐𝑒 [(∑ 𝑇𝑗−1

0 𝑄𝑗𝑇𝑖
𝑗−𝑖

𝑖

𝑗=1
𝑞𝑗̇𝑟𝑖

𝑖) (∑ 𝑇𝑘−1
0 𝑄𝑘𝑇𝑖

𝑘−𝑖
𝑖

𝑘=1
𝑞𝑘̇𝑟𝑖

𝑖)

𝑇

]  𝑑𝑚𝑖 (3.24) 

The total kinetic energy can be given by integration of equation (3.24), 

𝑘𝑖 = ∫ 𝑑𝑘𝑖 (3.25) 

𝑘𝑖 =
1

2
𝑇𝑟𝑎𝑐𝑒 [∑ ∑ (𝑇𝑗−1

0 𝑄𝑗𝑇𝑖
𝑗−𝑖

) ∫ 𝑟𝑖
𝑖𝑟𝑖

𝑖𝑇
𝑑𝑚𝑖(𝑇𝑘−1

0 𝑄𝑘𝑇𝑖
𝑘−𝑖)

𝑇
𝑞𝑗̇𝑞𝑘̇

𝑖

𝑘=1

𝑖

𝑗=1
] (3.26) 

Form equation (3.21), the term ∫ 𝑟𝑖
𝑖𝑟𝑖

𝑖𝑇
𝑑𝑚𝑖 of equation (3.26) is the moment of inertia tensor 𝐼𝑖, therefore 

the above equation (3.26) is , 

𝑘𝑖 =
1

2
𝑇𝑟𝑎𝑐𝑒 [∑ ∑ (𝑇𝑗−1

0 𝑄𝑗𝑇𝑖
𝑗−𝑖

) 𝐼𝑖(𝑇𝑘−1
0 𝑄𝑘𝑇𝑖

𝑘−𝑖)
𝑇

𝑞𝑗̇𝑞𝑘̇

𝑖

𝑘=1

𝑖

𝑗=1
] (3.27) 

The final K.E. of manipulator is, 

𝐾 = ∑ 𝑘𝑖

𝑛

𝑖=1
   

=
1

2
∑ 𝑇𝑟𝑎𝑐𝑒 [∑ ∑ (𝑇𝑗−1

0 𝑄𝑗𝑇𝑖
𝑗−𝑖

) 𝐼𝑖(𝑇𝑘−1
0 𝑄𝑘𝑇𝑖

𝑘−𝑖)
𝑇

𝑞𝑗̇𝑞𝑘̇

𝑖

𝑘=1

𝑖

𝑗=1
]

𝑛

𝑖=1
 

 

(3.28) 

By simplifying equation (3.28), 

𝐾 =
1

2
∑ ∑ ∑ 𝑇𝑟𝑎𝑐𝑒

𝑖

𝑘=1

𝑖

𝑗=1

𝑛

𝑖=1
[(𝑇𝑗−1

0 𝑄𝑗𝑇𝑖
𝑗−𝑖

) 𝐼𝑖(𝑇𝑘−1
0 𝑄𝑘𝑇𝑖

𝑘−𝑖)
𝑇

] 𝑞𝑗̇𝑞𝑘̇ (3.29) 

http://www.jetir.org/


© 2018 JETIR December 2018, Volume 5, Issue 12                                                  www.jetir.org (ISSN-2349-5162) 

JETIRDZ06121 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 940 
 

𝐾 =
1

2
∑ ∑ ∑ 𝑇𝑟𝑎𝑐𝑒

𝑖

𝑘=1

𝑖

𝑗=1

𝑛

𝑖=1
[(𝑈𝑖𝑗) 𝐼𝑖(𝑈𝑖𝑘)𝑇]𝑞𝑗̇𝑞𝑘̇ 

(3.30) 

Manipulator’s Potential Energy 

P.E for 𝑖𝑡ℎ link is  

𝑝𝑖 = −𝑚𝑖𝑔(𝑟𝑖
0̅̅ ̅) = −𝑚𝑖𝑔𝑇𝑖

0(𝑟𝑖
𝑖̅) (3.31) 

Considering, −ve sign represents the work is done on the system to raise link 𝑖 against gravity. 𝑟𝑖
𝑖̅̅ ̅ represents 

𝑖𝑡ℎ link COM w.r.t. frame {𝑖}, and 𝑟𝑖
0̅̅ ̅ represents 𝑖𝑡ℎ link COM w.r.t. base frame. The gravity vector w.r.t. 

bottom frame is  Tzyx gggg 0 . 

Total potential energy is given as, 

𝑝 = ∑ 𝑝𝑖

𝑛

𝑖=1
= ∑ −𝑚𝑖𝑔𝑇𝑖

0(𝑟𝑖
𝑖̅)

𝑛

𝑖=1
 (3.32) 

Manipulator’s Motion Equation 

Motion equation of manipulator is formulated as following. After substituting kinetic energy equation (3.30) 

and potential energy equation (3.32) in Lagrange-Euler equation (3.1), 𝐿 = 𝐾 − 𝑃, 

𝐿 =
1

2
∑ ∑ ∑ 𝑇𝑟𝑎𝑐𝑒

𝑖

𝑘=1

𝑖

𝑗=1

𝑛

𝑖=1
[(𝑈𝑖𝑗) 𝐼𝑖(𝑈𝑖𝑘)𝑇]𝑞𝑗̇𝑞𝑘̇ − (∑ −𝑚𝑖𝑔𝑇𝑖

0(𝑟𝑖
𝑖̅)

𝑛

𝑖=1
) (3.33) 

The generalized torque 𝜏𝑖 of actuator at joint 𝑖, as described in equation (3.2). by substituting above 

Lagrange-Euler equation (3.33) in equation (3.2), the final equation of motion is, 

𝜏𝑖 = ∑ 𝑀𝑖𝑗

𝑛

𝑗=1
(𝑞)𝑞𝑗̈ +  ∑ ∑ ℎ𝑖𝑗𝑘

𝑛

𝑘=1

𝑛

𝑗=1
𝑞𝑗̇𝑞𝑘̇ + 𝐺𝑖 (3.34) 

Where, 

𝑀𝑖𝑗 = ∑ 𝑇𝑟𝑎𝑐𝑒 [(𝑈𝑝𝑗) 𝐼𝑖(𝑈𝑝𝑘)
𝑇

]
𝑛

𝑝=max (𝑖,𝑗)
 

(3.35) 

ℎ𝑖𝑗𝑘 = ∑ 𝑇𝑟𝑎𝑐𝑒
𝑛

𝑝=max (𝑖,𝑗,𝑘)
[
𝜕(𝑑𝑝𝑘)

𝜕𝑞𝑝
𝐼𝑝𝑈𝑝𝑖

𝑇 ] 
(3.36) 

𝐺𝑖 = − ∑ 𝑚𝑝𝑔𝑈𝑝𝑖(𝑟𝑝
𝑝̅̅ ̅)

𝑛

𝑝=𝑖
 

(3.37) 
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1  (3.38) 

𝜕𝑈𝑖𝑗

𝜕𝑞𝑘
= {

𝑇𝑗−1
0 𝑄𝑗𝑇𝑘−1

𝑗−1
𝑄𝑘𝑇𝑖

𝑘−1                𝑓𝑜𝑟 𝑖 ≥ 𝑘 ≥ 𝑗

𝑇𝑘−1
0 𝑄𝑘𝑇𝑗−1

𝑘−1𝑄𝑗𝑇𝑖
𝑗−1

               𝑓𝑜𝑟 𝑖 ≥ 𝑗 ≥ 𝑘

0                                                 𝑓𝑜𝑟 𝑖 < 𝑗 𝑜𝑟 𝑖 < 𝑘

 (3.39) 

The dynamic model for a manipulator is given in equation (3.34)  

DEVELOPMENT OF DYNAMIC MODEL FOR 5-DOF MANIPULATOR 

The following is the example to develop dynamic model using Lagrange-Euler equation for 5- link 

manipulator which tracks square trajectory 

Let’s consider a 5-link manipulator which is having all revolute joint. The physical dimensions of the links 

of the manipulator and the link parameter are given in table (3.1). 
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Table no 3.1:- Physical dimensions and parameters of 5-link manipulator 

No. of 

links 

(𝑖) 

Link 

Masses 

(𝑚)(𝑘𝑔) 

Link Parameters 

Initial Joint 

Angle 

(𝜃𝑖)(𝑑𝑒𝑔) 

Link 

Length 

(𝑎𝑖)(𝑚) 

Joint Offset 

Distance 

(𝑑𝑖)(𝑚) 

Twist 

Angle (𝛼𝑖)(𝑑𝑒𝑔) 

Initial Joint Angle 

Velocity 

(𝜃̇𝑖)(𝑑𝑒𝑔/𝑚𝑖𝑛) 

1 40 70 0.8 0 0 1 

2 20 -30 0.7 0 0 1 

3 30 15 0.7 0 0 1 

4 20 -40 0.52 0 0 1 

5 20 2.5 0.3 0 0 1 

 

Dynamic model for 5 link manipulators as discussed in above section can be formulated using MATLAB 

The final homogeneous transformation matrices with respect to base frame {0} is, 

0

5

0.9537 0.3007 0 1.9997

0.3007 0.9537 0 1.9999

0 0 1.0000 0

0 0 0 1.0000

T

 
 
 
 
 
 

 (3.51) 

 

(3.64) 

4. NUMERICAL SIMULATIONS 

In this present section numerical simulations are carry out for a manipulator having five degrees of freedom, 

all the joint is rotary joint. The link lengths, masses, joint angles, max joint limits are specified in following 

table (5.1). 

Table 5.1: Parameters of 5-DOF manipulator 

No. of Links 

(𝑖) 

Link Lengths 

(𝑙𝑖)(𝑚) 

Link Masses 

(𝑚𝑖)(𝑘𝑔) 

Joint Angle 

(𝜃𝑖)(𝑑𝑒𝑔) 

Max, Joint Limit 

(𝜃𝑚𝑎𝑥)(𝑑𝑒𝑔) 

1 0.8 40 70 180 

2 0.7 20 -30 120 

3 0.7 30 15 120 

4 0.52 20 -40 150 

5 0.3 20 2.5 150 

 

The manipulator tracks the trajectory of four lines which forms a square, manipulator starts form a point 

(2,2) and reaches to same point. The square trajectory for the 1st manipulation variable 𝑟1
𝑑(𝑡) is the constant 

velocity motion along the square from point (2,2) at time 𝑡 = 0 𝑚𝑖𝑛, to the point (2,2) at time 𝑡 = 1 𝑚𝑖𝑛.  

389.2631 245.9620 131.7287 41.4152 7.2257

245.9620 168.7943 93.3589 32.7960 5.7647

131.7287 93.3589 55.4902 20.9589 3.8246

41.4152 32.7960 20.9589 10.9277 2.1585

7.2257 5.7647 3.8246 2.1585 0.6000

M

 
 
 
 
 
 
  
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From the above numerical simulation, it is observed that the manipulator due to its dynamics study can fulfil 

the task given.  

 

5. CONCULSION 

In this chapter, the idea of dynamic modeling is utilized, which helps to achieve defined manipulator motion 

in a given workspace 
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