Complementary Tree Domination in Jahangir Graph $J_{2,m}$

P. Vidhya

Department of Mathematics
E.M.G. Yadava Women's College, Madurai.

Abstract

A set D of a graph $G = (V,E)$ is a dominating set if every vertex in $V - D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree dominating set if the induced sub graph $< V - D >$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$. In this paper, results on complementary tree domination number γ_{ctd}, total complementary tree domination number γ_{tctd} and connected complementary tree $\gamma_{cc_{td}}$ in Jahangir graph $J_{2,m}$ are found.

Keywords: Complementary tree domination number, total, connected complementary tree domination number, Jahangir graphs.

1 Introduction

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively. The concept of domination was first studied by Ore [6]. A set $D \subseteq V$ is said to a dominating set of G, if every vertex in $V - D$ is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the domination number of G and is denoted by $\gamma(G)$. The concept of complementary tree domination was introduced by S. Muthammal M. Bhanumathi and P. Vidhya in [5]. A dominating set $D \subseteq V$ is called a complementary tree dominating (ctd) set, if the sub graph $< V - D >$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$.

A dominating set D_t is called a total complementary tree dominating set of every vertex $v \in V$ is adjacent to an element of D_t and $< V - D_t >$ is a tree. The minimum cardinality of a total complementary tree dominating set (tctd) is called the total complementary tree domination number of G and is denoted by $\gamma_{tctd}(G)$.

A dominating set D_c is called complementary tree dominating set (cc_{td}) if the induced sub graph $< D_c >$ is connected. The connected complementary tree domination number $\gamma_{cc_{td}}(G)$ is the minimum cardinality of cc_{td} set. In this paper, complementary tree domination number(γ_{ctd}), total and connected complementary tree domination number in Jahangir graphs are found.

Definition 1 Jahangir graphs $J_{n,m}$ for $m \geq 3$, is a graph on $nm + 1$ vertices i.e., a graph consisting of a cycle C_{nm} with one additional vertex which is adjacent to m vertices of C_{nm} distance n to each other on C_{nm}.
Example 1 Figure 1 shows Jahangir graph $J_{2,8}$. It appears on Jahangir's tomb in his mausoleum. It lies in 5 kilometer north-west of Lahore, Pakistan across the river Ravi [1].

![Figure 1: J_{2,8}](image)

Example 2

In Figure 2 $\gamma_{ctd}(J_{2,m}) = 2$ where $D = \{3,6\}$.

2 Complementary Tree Domination Number, Total and Connected Domination Number of $J_{2,m}$

In this section, we study γ_{ctd}, γ_{ctd}, and γ_{ctd} in Jahangir graphs $J_{2,m}$.

Remark 1 Let v_{2m+1} be the label of the center vertex and v_1, v_2, ..., v_{2m} be the label of the vertices that incident clockwise on cycle C_{2m} so that $\deg(v_1) = 3$.

Theorem 2.1 For $m \geq 3$ the $\gamma_{ctd}(J_{2,m}) = \left\lceil \frac{2m}{3} \right\rceil$

Proof. Let v_{2m+1} be the label of the center vertex and v_1, v_2, ..., v_{2m} be the label of the vertices that incident clockwise on cycle C_{2m} so that $\deg(v_1) = 3$. Let D be a minimum ctd set of $J_{2,m}$. Therefore $|D| = \gamma_{ctd}(J_{2,m})$.

Case (i) $2m = 0 \pmod{3}$

Let $D = \{v_3, v_6, v_9, ..., v_{3i}\}$ where $i = 1,2, ..., m$ Then D is a minimum ctd-set of $J_{2,m}$ and $3i = 2m$. Since v_3 dominates v_2 and v_4, v_6 dominates v_5 and v_7 etc and v_{3i} dominates v_{3i-1} and v_1 and odd label vertices dominated by the central vertex v_{2m+1}. Also $<V - D \geq T$, Where T is a tree.
Therefore \(|D| = \gamma_{ctd}(G) = \left\lceil \frac{2m}{3} \right\rceil \)

Let \(D = \{v_1, v_4, \ldots, v_{3i-2}\} \) is a minimum ctd-set of \(J_{2,m} \).

If \(3i - 2 = 2m \), then \(|D| = \gamma_{ctd}(J_{2,m}) = \left\lceil \frac{2m}{3} \right\rceil \)

If \(3i - 2 \neq 2m \), then \(v_{2m} \) is a isolate vertex in \(<V - D> \) so that \(v_{2m} \in D \).

Therefore \(|D| = \left\lceil \frac{2m}{3} + 1 \right\rceil \)

= \(\left\lceil \frac{2m}{3} \right\rceil + 1 \)

Which contradicts the minimality

Let \(D = \{v_2, v_3, \ldots, v_{3i-1}\} \) is a minimum ctd-set of \(J_{2,m} \).

If \(3i - 1 = 2m \), then \(|D| = \gamma_{ctd}(J_{2,m}) = \left\lceil \frac{2m}{3} \right\rceil \)

If \(3i - 2 \neq 2m \), then \(v_{2m} \) is a dominated by \(v_{3i-1} \) and \(v_1 \) is dominated by \(v_2 \)

Therefore \(|D| = \gamma_{ctd}(J_{2,m}) = \left\lceil \frac{2m}{3} \right\rceil \)

Case (ii) \(2m = 1 \) (mod 3)

Let \(D = \{v_3, v_6, \ldots, v_{3i}\} \) is a minimum ctd-set of \(J_{2,m} \). Hence \(v_4 \) is not dominated by \(D \) so that \(v_{2m} \in D \).

Therefore \(|D| = \left\lceil \frac{2m}{3} + 1 \right\rceil \)

= \(\left\lceil \frac{2m}{3} \right\rceil + 1 \)

Let \(D = \{v_1, v_4, \ldots, v_{3i-2}\} \) is a minimum ctd-set of \(J_{2,m} \).

If \(3i - 2 = 2m \), then \(D \) is a minimal ctd-set of \(J_{2,m} \) then \(|D| = \gamma_{ctd}(J_{2,m}) = \left\lceil \frac{2m}{3} \right\rceil \)

If \(3i - 2 \neq 2m \), then \(v_{2m} \) is a isolate in \(<V - D> \), so that \(v_{2m} \in D \).

Therefore \(|D| = \left\lceil \frac{2m}{3} + 1 \right\rceil \)

= \(\left\lceil \frac{2m}{3} \right\rceil + 1 \)
Which contradicts the minimality

Let \(D = \{v_2, v_5, \ldots, v_{3i-1}\} \)

If \(3i - 1 = 2m \), then \(|D| = \left\lceil \frac{2m}{3} \right\rceil \)

If \(3i - 2 \neq 2m \), then \(v_{2m} \) is dominated by \(v_{3i-1} \) and \(v_1 \) is dominated by \(v_2 \)

Therefore \(|D| = \left\lceil \frac{2m}{3} \right\rceil \)

Case (iii)\(2m = 1 \mod 3 \)

Let \(D = \{v_1, v_4, \ldots, v_{3i-2}\} \)

If \(3i - 2 = 2m \) or \(3i - 2 = 2m - 2 \) then \(|D| = \left\lceil \frac{2m}{3} \right\rceil \)

From the above three cases

\[\gamma_{ctd}(J_{2,m}) = \left\lceil \frac{2m}{3} \right\rceil, \text{ for } m \geq 3 \]

Total Complementary tree domination of \(J_{2,m} \)

Theorem 2.2 For \(m \geq 3 \), \(\gamma_{ctd}(J_{2,m}) > \gamma_{ctd}(J_{2,m}) \)

Proof:

Let \(D_t \) be a minimum tctd set of \(J_{2,m} \).

Case (i) \(m \) is odd

Let \(D_i = \{v_1, v_2, v_5, \ldots, v_{2m-1}, v_{2m}\} \)

\[\therefore |D_i| = m + 1 \]

\[i.e., \quad \frac{2m}{2} + 1 \]

\[= \left\lceil \frac{2m}{2} \right\rceil + 1 \]

\[= \left\lceil \frac{2m}{2} \right\rceil \]

Case (ii) \(m \) is even
Let \(D_t = \{v_1, v_2, v_5, v_6, \ldots, v_{2m-1}, v_{2m}\} \)

\[\therefore |D_t| = m \]

\[= \left\lfloor \frac{2m}{2} \right\rfloor \]

Which is minimum tctd set of \(J_{2m} \).

\[\therefore \gamma_{ctd}(J_{2m}) = \left\lfloor \frac{2m}{2} \right\rfloor > \left\lfloor \frac{2m}{3} \right\rfloor \]

\[= \gamma_{ctd}(J_{2m}) \]

Connected complementary tree domination of \(J_{2m} \).

Theorem 2.3 For \(m \geq 3 \), \(\gamma_{ctd}(J_{2m}) = 2m - 2 \)

Proof. We know \(\gamma_{ctd}(C_m) = m - 2 \) for \(m \geq 3 \)

Let \(D_c = \{v_1, \ldots, v_{2m-3}, v_{2m+1}\} \). Where \(D_c \) is the minimum ctd-set of \(C_m \).

Here \(v_{2m} \) is dominate by \(v_1 \), \(v_{2m-3} \) dominate \(v_{2m-2} \) and \(v_{2m-1} \) is dominate by \(v_{2m+1} \).

\[\therefore |D_c| = 2m - 3 + 1 = 2m - 2 \]

\[\therefore \gamma_{ctd}(J_{2m}) = 2m - 2 \]

References:

