
© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b350

DIGIT-LEVEL SERIAL - IN PARALLEL - OUT

MULTIPLIER USING REDUNDANT

REPRESENTATION FOR A CLASS OF FINITE

FIELDS

AMAR HASSABALKAREEM ALMANSOB, A.DINESH REDDY, G.MADHAV,

P.NAGAVENI

ABSTRACT

Two digit-level finite field multipliers in F2m using redundant representation are presented. Embedding F2m in

cyclotomic field F(n) 2 causes a certain amount of redundancy and consequently performing field multiplication

using redundant representation would require more hardware resources. Based on a specific feature of redundant

representation in a class of finite fields, two new multiplication algorithms along with their pertaining architectures

are proposed to alleviate this problem. Considering area-delay product as a measure of evaluation, it has been shown

that both the proposed architectures considerably outperform existing digit-level multipliers using the same basis. It

is also shown that for a subset of the fields, the proposed multipliers are of higher performance in terms of area-

delay complexities among several recently proposed optimal normal basis multipliers. The main characteristics of

the postplace&route application specific integrated circuit implementation of the proposed multipliers for three

practical digit sizes are also reported.

CHAPTER-1 INTRODUCTION

1.1 SYNOPSIS

High performance Arithmetic units are essential since the speed of the digital processor depends heavily on the

speed of the Arithmetic units used is the system. Digital arithmetic operations are very important in the design of

digital processors and application-specific systems. Arithmetic circuits form an important class of circuits in digital

systems.

Adders are most commonly used in various electronic applications e.g. Digital signal processing in which adders are

used to perform various algorithms like FIR, IIR etc. In past, the major challenge for VLSI designer is to reduce

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b351

area of chip by using efficient optimization techniques. Then the next phase is to increase the speed of operation to

achieve fast calculations like, in today’s microprocessors millions of instructions are performed per second.

Speed of operation is one of the major constraints in designing DSP processors. Some central processing units are

comprised of two components, an arithmetic unit and a logic unit. Other processors may have an arithmetic unit for

calculating fixed-point operations and another AU for calculating floating-point computations.

Some PCs have a separate chip known as the numeric coprocessor. This coprocessor contains a floating-point unit

for processing floating-point operands. The coprocessor increases the operating speed of the computer because of

the coprocessor ability to perform computation faster and more efficiently. The redundancy associated with signed

digit numbers offers the possibility of carry free addition. The redundancy provided in signed-digit representation

allows for fast addition and subtraction because the sum or difference digit is a function of only the digits in two

adjacent digit positions of the operands for a radix greater than 2, and 3 adjacent digit positions for a radix of 2.

Thus, the add time for two redundant signed-digit numbers is a constant independent of the word length of the

operands, which is the key to high speed computation. The advantage of carry free addition offered by QSD numbers

is exploited in designing a fast adder circuit. Additionally adder designed with QSD number system has a regular

layout which is suitable for VLSI implementation which is the great advantage over the BSD adder. An Algorithm

for design of QSD adder is proposed. Binary signed-digit numbers are known to allow limited carry propagation

with a somewhat more complex addition process requiring very large circuit for implementation.

A special higher radix based (quaternary) representation of binary signed digit numbers not only allows carry-free

addition and borrow-free subtraction but also offers other important advantages such as simplicity in logic and higher

storage density.

1.2 MOTIVATION

The major challenges in VLSI design are reducing the area of chip and increasing speed of the circuit. Reducing

area can be achieved by optimization techniques and number of instructions executed per second increases as speed

increases. The performance of a digital system depends upon performance of adders. Adders are also act as basic

building blocks for all arithmetic circuits for example DSP processors.

Binary adders are easy to implement because of logic levels involved in it ‘0’ and ‘1’, but they have their own

limitations in the area of circuit complexity and chip area which ultimately increases propagation delay of the circuit.

Is it time to move beyond zeroes and ones? This is the title of Bernard Cole article’s published in 2003 on the official

site of the Embedded Development Community. The conclusion is “I think that the economics of semiconductor

manufacturing now is forcing us to move beyond zero and one. Shouldn't we also take another look at multi-valued

logic?”

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b352

Fig 1.1 Levels of Switching Algebra

This very thought brought many researches to work upon multi-valued logic to bring a new era of technology. Many

authors have directed their efforts to the implementation of Multi-Valued logic looking for benefit from all

advantages it possess over the binary logic. It is possible for ternary logic to achieve simplicity and energy efficiency

in digital design since the logic reduces the complexity of interconnects and chip area, in turn, reducing the chip

delay.

1.3 OVERVIEW OF NUMBER SYSTEMS

Humans are speaking to one another in a particular language made of words and letters. While we type words and

letters in the computer, the computer does not understand the words and letters. Rather, those words and letters are

translated into numbers. It means that computers “talk” and understand in numbers. Although many students know

the decimal (base 10) system, and are very comfortable with performing operations using this system, it is too

important for students to understand that the decimal system is not the only system.

By studying other number systems such as binary (base 2) quaternary (base 4), octal (base 8), and hexadecimal (base

16) and so forth, students will gain a better understanding of how number systems work in general.

1.3.1 DIGITS

Before understanding the number systems and the conversion concepts of numbers from one number system to

another, the digit of a number system must be understood. The first digit in any numbering system is always a zero.

For example, a base 2 (binary) numbers contains 2 digits: 0 and 1, a base 3 (ternary) numbers contains 3 digits: 0, 1

and 2, a base 4(quaternary) numbers contains 4 digits: 0 through 3 and so forth. Note that a base 10 (decimal)

numbers does not contain the digit 10, similarly base 16 numbers does not contain a digit 16. Same is the case for

the other number systems. Once the digits of a number system are understood, larger numbers can be constructed

using positional notation or place-value notation method.

According to the positional notation method, in decimal number the first right most digits (integer) have a unit’s

position. Further, to the left of the units position is the ten’s position, the position to the left of the ten’s position is

the hundred’s position and so forth. Here, the units position has a weight of 100, or 1; the tens position has a weight

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b353

of 101, or 10; and the hundreds position has a weight of 102, or 100.

The exponential powers of the positions are critical for understanding numbers in other numbering systems.

Remember the position to the left of the radix point is always the unit’s position in any number system. For example

the position to the left of the binary point is always 20, or 1; the position to the left of the senary point is always 60,

or 1; the position to the left of the octal point is always 80 or 1 and so on. The position to the left of the unit’s position

is always the number whose base is raised to the first power; i.e. 21, 61, 81 and so on. These concepts can be extended

to each and every number system.

Number Representation

A number in any base system can be represented in a generalized format as follows: N = An Bn + An-1 Bn-1 + - - -

+ A1 B1 + A0B0,

Where N = Number, B=Base, A= any digit in that base

1.3.2 MOST SIGNIFICANT DIGIT (MSD) AND LEAST SIGNIFICANT DIGIT (LSD)

The MSD in a number is the digit that has the greatest effect on that number, while The LSD in a number is the digit

that has the least effect on that number.

Look at the following examples:

You can easily see that a change in the MSD will increase or decrease the value of the number in the greatest amount,

while changes in the LSD will have the smallest effect on the value.

1.3.3 DECIMAL NUMBER SYSTEM

The decimal number system is known as international system of numbers. It is also called base ten or occasionally

denary number system. It has ten as its base. It is the numerical base most widely used by modern civilization.

Decimal notation often refers to a base-10 positional notation however; it can also be used more generally to refer to

non positional systems. Positional decimal systems include a zero and use symbols (called digits) for the ten values

(0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) to represent any number, no matter how large or how small.

Let’s examine the decimal (base 10) value of 427.5. You know that this value is four hundred twenty-seven and

one half. Now examine the position of each number:

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b354

427.5

This represents 1/2 unit This represents 7 units

This represents 20 units

This represents 400 units

Each digit has its own value (weight) as described in the above figure. Now let’s look at the value of the base 10

number 427.5 with the positional notation line graph

1.3.4 BINARY NUMBER SYSTEM

The number system with base (or radix) 2, is known as the binary number system. Only two symbols are used to

represent numbers in this system and these are 0 and 1, these are known as bits. It is a positional system i.e. every

position is assigned a specific weight. Moreover, it has two parts the Integral part or integers and the fractional part

or fractions, set a part by a radix point.

For example (1101.101)2 In binary number system the left–most bit is known as most significant bit (MSB) and the

right–most bit is known as the least significant bit (LSB), similar to decimal number system. The following graph

shows the position and the power of the base (2 in this case):

… 23 22 21 20. 2-1 2-2 2-3 ……

The arithmetic operations such as addition, subtraction, multiplication and division of decimal numbers can be also

performed on binary numbers. Also binary arithmetic is much simpler than decimal arithmetic because here only

two digits, 0 and 1 are involved.

1.3.5 QUATERNARY NUMBER SYSTEM

The number system with base (or radix) 4, is known as the quaternary number system. Only four symbols are used

to represent numbers in this system and these are 0, 1, 2 and 3. It is also a positional system i.e. every position is

assigned a specific weight. Moreover, it has two parts the Integral part or integers and the fractional part or fractions,

set a part by a radix point.

For example (121.133)4 In binary number system the left–most digit is known as most significant digit (MSB) &

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b355

the right–most digit is known as the least significant digit (LSB). The following graph shows the position and the

power of the base (4 in this case):

… 43 42 41 40. 4-1 4-2 4-3 …

The arithmetic operations such as addition, subtraction, multiplication and division of decimal numbers can be also

performed on quaternary numbers. Quaternary numbers are used in the representation of 2D Hilbert curves, while

many of the Chumash an languages originally used a base 4 counting system, in which the names for numbers were

structured according to multiples of 4 and 16.

INTRODUCTION

Modern computers are based on binary number system (radix =2). It has two logical states ‘0’ and ‘1’. In such

system, ‘1’ plus ‘1’ is ’0’ with carry ‘1’ (i.e. 1+1=10). This carry should have to add with another ‘1’, as a result

further carry ‘1’ generates. This creates the delay problem in computer circuits. So to get rid of this carry formation

again and again signed digit is essential. In high-speed arithmetical calculation, carry free adders improves the

operational performance.

Binary logic is restricted to only two logical states; Multi-Valued Logic (MVL) replaces these with finite and infinite

numbers of values. Multi-valued logic is a higher radix (R>2) logic system. Non- binary data requires less physical

storage space than binary data [2-4]. Depending upon the radix number R, the number system are named as ternary

(R = 3), quaternary (R = 4) etc. Ternary logic is based on ternary number system. They can further be divided into

two groups; symmetric ternary

{1, 0, 1} and ordinary ternary {0,1, 2}. Both groups are important in logical and arithmetical operations [5-8].

Quaternary logic is based on radix-4 number system.

In quaternary system, the positive integer set {0, 1, 2, 3} is called ordinary quaternary digit (OQD) and the set of

both positive and negative integer { 3, 2, 1, 0, 1, 2, 3} is called quaternary signed digit

(QSD), where 3= -3, 2= -2, 1 -1. In signed digit representation QSD number can be written as:

1.3.6 SIGNED DIGIT NUMBER

Signed digit number representations are prefixed with a – (minus) sign to indicate that they are negative numbers.

Signed digit numbers used to accomplish fast addition, subtraction, multiplication and division of integers because

it can eliminate carry.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b356

Signed digit representation is essentially required for carry free arithmetic operation. As such, binary to quaternary

signed digit conversion is very much interesting and required topics. This is called ‘radix conversion’. The

importance of radix conversion is shown in Flexogram. Quaternary is the base-4 numeral system. It uses the digits

0, 1, 2 and 3 to represent any real number. It shares with all fixed-radix numeral systems many properties, such as

the ability to represent any real number with a canonical representation (almost unique) and the characteristics of

the representations of rational numbers and irrational numbers.

1.4 RELATION TO BINARY

As with the octal and hexadecimal numeral systems, quaternary has a special relation to the binary numeral system.

Each radix 4, 8 and 16 is a power of 2, so the conversion to and from binary is implemented by matching each digit

with 2, 3 or 4 binary digits, or bits. For example, in base 4,

Although octal and hexadecimal are widely used in computing and computer programming in the discussion and

analysis of binary arithmetic and logic, quaternary does not enjoy the same status. By analogy with bit, a quaternary

digit is sometimes called a crumb.

Figure 1.2: The Importance of Radix Conversion

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b357

1.5 HOW DO BASE 4 WORK?

Bases have to do with how you write numbers in a number system, and how the place values work in that system.

Let's start with the system you already know. We usually work in base 10. In base 10, the place values are ones,

tens, hundreds, thousands and so on. So when we see a number like 437, it really means four hundreds, 3 tens and 7

ones.' We understand that to be worth ‘four hundred and thirty seven'. The place values are d In base 10, ones is

10^0, tens is 10^1, hundreds

is10^2, thousands is 10^3 and so on. When we start to count in base 10, we can write as, 1, 2, 3, 4, 5, 6, 7, 8,9.

Each of those stands for how many ones we have. The number 8 means 8 ones, or 8 * 1. But when we go past 9 to

the number 10, we don't have a single digit that stands for '10 ones.' So instead, we use a two-digit number, 10,

which stands for '1 ten and 0 ones.' Once we get to 99, we have reached 9 ten’s and 9 ones. Going past that, we move

to a three-digit number, 100, which means '1 hundred, 0 tens and 0 ones. It's kind of hard to think about this, because

your brain just does it without thinking about it, but that's what's really going on. So what happens in base 4? The

place values are again given by raising 4 to powers. Determined by raising the base to powers.

4^0 = 1

4^1 = 4

4^2 = 16

4^3 = 64

So, the number 23 in base 4 is NOT worth twenty three. It's only twenty three in base 10, where it means2 tens and

3 ones. In base 4, 23 (which is read as two-three) means 2 fours and 3 ones So it has a value of 2*4 + 3*1 or 8 + 3

or 11. Now think about how we count in base 4. We start with 1, 2, 3. But there is no digit '4' to use--the number 4

is written 1four and 0 ones,' so it's 10. I know this may be confusing, but here are the numbers from 1 to 10 in base

4:

Binary logic is restricted to only two logical states. Multi-Valued Logic (MVL) replaces these with finite and infinite

numbers of values. Multi-valued logic is a higher radix (R>2) logic system. Non- binary data requires less physical

storage space than binary data. Depending upon the radix number R, the number system are named as ternary (R =

3), quaternary (R = 4) etc.

Ternary logic is based on ternary number system. Quaternary logic is based on Quaternary number system.

Quaternary is the base 4redundant number system. The degree of redundancy usually increases with the increase of

the radix. The signed digit number system allows us to implement parallel arithmetic by using redundancy.QSD

numbers are the Signed Digit numbers with the digit set as: {-3, -2, -1, 0, 1, 2, 3} respectively.

1.6 QSD NUMBER REPRESENTATION

In general, a signed-digit decimal number D can be represented in terms of an n digit quaternary signed digit number

as Where xi can be any value from the set { -3, -2, -1, 0,1, 2, 3 }for producing an appropriate decimal representation.

A QSD number can be represented in Binary in 2’b (2 bit) notation for unsigned QSD number.

For digital implementation, QSD numbers are represented using 3-bit 2’s complement notation. AQSD negative

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b358

number is the QSD complement of the QSD positive number. For example, using the primes to denote

complementation, we have 3= -3, 2= -2 and 1= -1.

1.6.1 COMPARISION OF QSD WITH BSD

It offers the advantage of reduced circuit complexity both in terms of transistor count and interconnections.QSD

number uses 25% less space than BSD to storenumber.QSD numbers store 25% storage compared to BSD. To

represent a numeric value N│log4N│ number of QSD digits and 3│log4N│ binary bits are required while for the

same log 2N BSD digits and 2│ log2N│binary bits are required in BSD representation. Ratio of number of bits in

QSD to BSD representation for an arbitrary number N is,

3│log4N│/ 2│log2N│

This roughly equals to ¾. Therefore, QSD saves ¼ of the storage used by BSD. The computation speed and circuit

complexity increases as the number of computation steps decreases. The computation speed mainly depends on the

number of bits required to represent a number, since the less the number of bit’s the easy is the computation. In

general the number of bits required by a QSD number system is less when compared to BSD number system, which

in turn results in better speeds and performance.

1.6.2 ADVANTAGES OF QSD NUMBER SYSTEM

The main advantage of Quaternary logic is that it reduces the number of required computation steps for developing

digital design. Furthermore memory, control unit, and processor can be carried out faster if the Quaternary logic is

easily employed and memory utilization also less than binary. These advantages have been shown to be useful for

the design of Quaternary computers, for digital filtering. Quaternary representation admits sign convention also.

 Quaternary logic is mainly applied in new transforms for encoding and more efficient for Compression, error

correction, and state assignment, representation of discrete information and in automatic telephony.

 Quaternary logic also offers greater utilization of transmission channels because of the higher. Information

content carried by every line. It gives exact and more efficient error detection and correction codes and possesses

potentially higher density of information storage.

 We can achieve a carry free arithmetic operation by using higher radix number system such as QSD (Quaternary

Signed Digit).

 Signed digit number system has redundancy associated with it. The redundancy provided in signed digit number

system offers the possibility of carry free arithmetic operations which in terms allows for faster processing. In signed

digit representation of the system the add time for two redundant signed digit numbers is a constant independent of

the word length of the operands which is the key to high speed computation. Binary signed digit numbers allows

limited carry propagation with a more complex addition process which requires very large circuit for

implementation.

 A higher radix based representation of binary signed digit numbers such as quaternary allows carry free arithmetic

operations as well as it offers the important advantage of logic simplicity and storage density.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b359

1.7 OBJECTIVE

The objective is to design carry free adder using QSD number system to achieve fast addition with the help of

Verilog which integrates novel design of high speed QSD adder and multiplier for higher input bit sequences. The

programming objective of the VLSI Implementation of fast addition using QSD number system into the following

categories

 QSD Adder Unit

 QSD Sub tractor Unit

 QSD Multiplication Unit

 QSD Division Unit

 Synthesis Reports

 Physical designing

CHAPTER- 2 LITERATURE SURVEY

2.1 INTODUCTION

Binary Signed Digit Numbers are known to allow limited carry propagation with more complex addition process.

Arithmetic operations such as addition, subtraction and multiplication still suffer from known problems including

limited number of bits, propagation delay, and circuit Complexity. Some of the limitations of this system are

computational speed which limits formation and propagation of carry especially as the number of bits increases.

Therefore it provides large complexity and low storage density. To construct combinational logic circuits that

performs binary addition.

A binary signed digit representation of an integer k ∈ [0, 2n− 1] is abase-2 representation denoted by (Kn, Kn−1.

K0) BSD where κi∈ {−1, 0, 1}. We will call the K is signed bits, or s bits. An integer can have several BSD

representations. For example, k =(9)10 can be written as (01001) BSD among other possibilities. Among the possible

BSD representations of an integer there are two unique representations: one is conventional the binary representation

where there are no 1s and the other is the non-adjacent form (NAF).

The NAF of an integer can be generated using different methods. Recently, algorithms that generate a random BSD

representation of an integer have been proposed. The original purpose of the algorithms has been to provide

protection against differential side-channel attacks by randomly changing the BSD representation of the secret key

of elliptic curve cryptosystems. Subsequent work has however shown that randomly changing BSD representation

of the secret key alone is not sufficient. Tanay Chattopadhyay and Tamal Sarkar described that Quaternary Signed

Digit (QSD) Number System has radix 4. “+3” is the Maximum digit and “-3” is the minimum digit in QSD Number

System. In QSDNS 3 bits are required to represent a single digit, among these 2bits are used to represent magnitude

(0,1,2,3) , 1 bit is used to represent sign (+ve/-ve).

To convert n-bit binary data to its equivalent q-digit QSD data, we have to convert this n-bit binary data into 3q-bit

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b360

binary data. To achieve the target, we have to split the 3rd, 5th, 7th bit…. i.e. odd bit (from the LSB to MSB) into

two portions. But we cannot split the MSB. If the odd bit is1 then, it issplit into 1 & 0 and if it is 0 then, it is split

into 0 & 0. So we have to split the binary data (q−1) times (as example, for conversion of 2-bit quaternary number,

the splitting is 1 time; for converting 3-digit quaternary number the split is 2-times and so on). In each such splitting

one extra bit is generated.

So, the required binary bits for conversion to its QSD equivalent (n) = (Total numbers of bits generated after

divisions) – (extra bit generated due to splitting). n =2q+1 Sachin Dubey1, Reena Rani2, Saroj Kumari 3,Neelam

Sharma4 Member, IEEE Electronics& Communication Engineering Department Hindustan Institute of Technology

& Management, Keetham, Agra, U.P, India, described that QSD adders are perfectly suitable for high speed

operations. QSD number system radix is 4 whereas the binary number system has radix 2. QSD, each digit can be

represented by a number from -3 to 3. QSD number system requires a different set of prime modulo based logic

elements for each arithmetic operation.

Using a quaternary Signed Digit number system one may perform carry free addition, borrow free subtraction and

multiplication. Carry free addition and other operations on a large number of digits such as 64,128, or more can be

implemented with constant delay and less complexity.

2.2 MULTIPLIERS

Multipliers play an important role in today’s digital signal processing and various other applications. With advances

in technology, many researchers have tried and are trying to design multipliers which offer either of the following

design targets – high speed, low power consumption, regularity of layout and hence less area or even combination

of them in one multiplier thus making them suitable for various high speed, low power and compact VLSI

implementation. The common multiplication method is “add and shift” algorithm. In parallel multipliers number of

partial products to be added is the main parameter that determines the performance of the multiplier.

To reduce the number of partial products to be added, Modified Booth algorithm is one of the most popular algorithms.

To achieve speed improvements Wallace Tree algorithm can be used to reduce the number of sequential adding stages.

Further by combining both Modified Booth algorithm and Wallace Tree technique we can see advantage of both

algorithms in one multiplier. However with increasing parallelism, the amount of shifts between the partial products and

intermediate sums to be added will increase which may result in reduced speed, increase in silicon area due to irregularity

of structure and also increased power consumption due to increase in interconnect resulting from complex routing.

On the other hand “serial-parallel” multipliers compromise speed to achieve better performance for area and power

consumption. The selection of a parallel or serial multiplier actually depends on the nature of application. In this lecture

we introduce the multiplication algorithms and architecture and compare them in terms of speed, area, power and

combination of these metrics.

2.2.1 WALLACE TREE MULTIPLIER

The Wallace tree multiplier is considerably faster than a simple array multiplier because its height is logarithmic in

word size, not linear. However, in addition to the large number of adders required, 1 the Wallace tree’s wiring is

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b361

much less regular and more complicated. As a result, Wallace trees are often avoided by designers, while design

complexity is a concern to them. Wallace tree styles use a log-depth tree network for reduction.

Faster, but irregular, they trade ease of layout for speed. Wallace tree styles are generally avoided for low power

applications, since excess of wiring is likely to consume extra power. While subsequently faster than Carry-save

structure for large bit multipliers, the Wallace tree multiplier has the disadvantage of being very irregular, which

complicates the task of coming with an efficient layout. The Wallace tree multiplier is a high speed multiplier. The

summing of the partial product bits in parallel using a tree of carry-save adders became generally known as the

“Wallace Tree”. Three step processes are used to multiply two numbers.

 Formation of bit products.

 Reduction of the bit product matrix into a two row matrix by means of a carry save adder.

 Summation of remaining two rows using a faster Carry Look Ahead Adder (CLA).

Figure 2.1 Wallace Tree Block Diagram

In order to design an n-bit Wallace tree Multiplier (Generic: =N) an algorithm was derived from the flow diagram

developed below. The flow diagram below shows the intermediate state reductions of the multipliers are being done

by Carry save adders and half adders while the final step additions being done by a Carry Look Ahead Adder. The

flow diagram was done in Microsoft Excel sheet and Paint. After generating the flow diagram for 8-bit × 8-bit we

generalized the algorithm for n-bit and hence we designed a GENERIC WALLACE TREE.

2.2.2 THE BOOTH’S MULTIPLIER

Booth multiplier can be used in different modes such as radix-2, radix-4, radix-8 etc. But we decided to though

Wallace Tree multipliers were faster than the traditional Carry Save method, it also was very irregular and hence

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b362

was complicated while drawing the Layouts. Slowly when multiplier bits gets beyond 32-bits large numbers of logic

gates are required and hence also more interconnecting wires which makes chip design large and slows down

operating speed use Radix-4 Booth’s Algorithm because of number of Partial products is reduced to n/2.

2.2.3 BOOTH MULTIPLICATION ALGORITHM (radix – 4)

One of the solutions realizing high speed multipliers is to enhance parallelism which helps in decreasing the number

of subsequent calculation stages. The Original version of Booth’s multiplier (Radix – 2) had two drawbacks.

 The number of add / subtract operations became variable and hence became inconvenient while designing Parallel

multipliers.

 The Algorithm becomes inefficient when there are isolated 1s .

These problems are overcome by using Radix 4 Booth’s Algorithm which can scan strings of three bits with the

algorithm given below. The design of Booth’s multiplier in this project consists of four Modified Booth Encoded

(MBE), four sign extension corrector, four partial product generators (comprises of 5:1 multiplexer) and finally a

Wallace Tree Adder. This Booth multiplier technique is to increase speed by reducing the number of partial products

by half. Since an 8bit booth multiplier is used in this project, so there are only four partial products that need to be

added instead of eight partial products generated using conventional multiplier. The architecture design for the

modified

Bn+1 Bn Bn-1

MBE(x4)

5 TO 1 MUX
(x4)

Multiplicand A (8-bits)
PRODUCT GENERATOR

X0 X1 X-1 X2 X-2

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b363

Booths Algorithm used in this project is shown below.

Figure 2.2 Architecture of designed Booth Multiplier in the Project.

2.2.4 MODIFIED BOOTH ENCODER (MBE)

Modified Booth encoding is most often used to avoid variable size partial product arrays. Before designing a MBE,

the multiplier B has to be converted into a Radix-4 number by dividing them into three digits respectively according

to Booth Encoder Table given afterwards. Prior to convert the multiplier, a zero is appended into the Least

Significant Bit (LSB) of the multiplier. The figure above shows that the multiplier has been divided into four

partitions and hence that mean four partial products will be generated using booth multiplier approach instead of

eight partial products being generated using conventional multiplier.

Zn = -2* Bn+1 + Bn + Bn-1

Lets take an example of converting an 8-bit number into a Radix-4 number. Let the number be -36

= 1 1 0 1 1 1 0 0. Now we have to append a ‘0’ to the LSB. Hence the new number becomes a 9-

digit number, that is 1 1 0 1 1 1 0 0 0. This is now further encoded into Radix-4 numbers according to the following

given table. Starting from right we have 0*Multiplicand, -1*Multiplicand, 2*Multiplicand, -1*Multiplicand.

Bn+1 Bn Bn-1 Zn Partial Product 1M 2M 3M

0 0 0 0 0 1 1 0

0 0 1 1 1×Multiplicand 0 1 0

0 1 0 1 1×Multiplicand 0 1 0

0 1 1 2 2×Multiplicand 1 0 0

1 0 0 -2 -2×Multiplicand 1 0 1

1 0 1 -1 -1×Multiplicand 0 1 1

1 1 0 -1 -1×Multiplicand 0 1 1

1 1 1 0 0 1 1 0

Table 2.1

Modified Booth Encoder’s table to generate M, 2M, 3M control signal

OUTPUT

PP1 PP2 PP3 PP4

WALLACE TREE ADDER

A7 Bn+1 Bn Bn-1

SIGN EXTENSION
CORRECTOR

(x4)

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b364

Table 2.1 shows Bn+1,Bn and Bn-1 which are three bits wide binary numbers of the multiplier Bin which Bn+1 is the

most significant bit (MSB) and Bn-1 is the least significant bit (LSB). Zn is representing the Radix-4 number of the

3-bit binary multiplier number. For example, if the 3-bit multiplier value is “111”, so it means that multiplicand A

will be 0.And it’s the same for others either to multiply the multiplicand by -1, -2 and so on depending on 3 digit

number. And thing to note is generated numbers are all of 9-bit.

From the table 2.1, the M, 2M and 3M are the elect control signals for the partial product generator. It will determine

whether the multiplicand is multiplied by 0,-1, 2 or -2. M and 2M are designed as an active low circuit which means

if let’s say the multiplicand should be multiplied by 1 then the M select signal will be set to low “0” whereas If the

multiplicand should be multiplied by 2 then the 2M select signal will be set to low “0”. The 3M is representing the

sign bit control signal and its active high circuit which means if the multiplicand should be multiplied by -1 or -2,

then the sign, 3M will be set to high “1”.

2.2.5 PARTIAL PRODUCT GENERATOR (PPG)

Partial product generator is the combination circuit of the product generator and the 5 to 1 MUX circuit. Product

generator is designed to produce the product by multiplying the multiplicand A by 0, 1, -1, 2 or -2. A 5 to 1 MUX

is designed to determine which product is chosen depending on the M, 2M, 3M control signal which is generated

from the MBE. For product generator, multiply by zero means the multiplicand is multiplied by “0”.Multiply by

“1” means the product still remains the same as the multiplicand value. Multiply by “-1” means that the product is

the two’s complement form of the number. Multiply by “-2” is to shift left one bit the two’s complement of the

multiplicand value and multiply by “2” means just shift left the multiplicand by one place.

2.2.6 SIGN EXTENSION CORRECTOR

Sign Extension Corrector is designed to enhance the ability of the booth multiplier to multiply not only the unsigned

number but as well as the signed number. As shown in Table 2.2 when bit 7 of the multiplicand A(A7) is

zero(unsigned number) and Bn+1 is equal to one, then sign E will have one value (become signed number for resulted

partial product). It is the same when the bit 7 of the multiplicand A (A7) is one (signed number) and Bn+1 is equal to

zero, the sign E will have a new value. However when both the value of A7 and Bn+1 are equal either to zero or one,

the sign E will have a value zero(unsigned number). For the case when all three bits of the multiplier value Bn+1,

Bn and Bn-1 are equal to zero or one, the sign E will direct have a zero value independent to the A7 value. The table

for the Sign Extension Corrector is shown below.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b365

TABLE 2.2 (A) Sign E when A& is Zero

A7 Bn+1 Bn Bn-1 E

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

TABLE 2.2 (B) Sign E when A& is One

A7 Bn+1 Bn Bn-1 E

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

2.3 EXISTED SYSTEM

2.3.1 Binary Extension Field GF (2
m

)

A finite field is defined as a set of finite many elements, where addition and multiplication are the operations defined

on the set. A binary extension field, GF(2m), is generated by a degree m irreducible polynomial, p(x) = x m +pm−1x

m−1 + · · · + p2x 2 + p1x + 1, where pi is either 0 or 1. p(x) also specifies a PB {1, x , x 2, . . . , x m−1}. Each element of

GF(2m) can be represented as a polynomial of degree at most m − 1 over GF(2m) with respect to the PB. For

instance, an element A

∈ GF(2m) can be expressed as

A(x) = am−1x m−1 + am−2 x m−2 + · · · + a2x 2 + a1 x + a0

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b366

(1)

With ai ∈ GF(2), 0 ≤ i ≤ m − 1.

Multiplication of two field elements A(x) and B(x) of the

inary extension field can be given by

(x) = A(x) B(x) mod p(x).)

2.3.2. Digit-Serial PB Multiplication

In digit-serial multiplication, the bits of one operand are divided into digits of size k while the bits of the other input

operand are processed in parallel. Only one digit of the first operand is accessible in each clock cycle.

MSD digit-serial multiplication can be realized in several ways depending on when and where polynomial modular

reduction is performed.

2.3.3. Power Dissipation for CMOS-Based Circuits

Power consumption in a CMOS-based design contains two major components: static power and dynamic power.

For a CMOS-based design, dynamic power plays a dominant role in the total power consumption. Dynamic power

consumption of a CMOS-based design

Switching activity, αi , denotes the probability of a 0 → 1 transition during a clock period on the output node of cell

i . CLi represents total load capacitance at the output of cell i and P is a variable independent of switching activity

and load capacitance, but related to clock frequency of the circuit, and supply voltage.

The second term, Pinternal, in (4) is the total internal power obtained by summing over all cells. The internal power

of each cell i (Pinternali) is the power consumed within the cell because of the charging and discharging of internal

nodes capacitances of a cell and short-circuit current. During the transitions of the input signals and the output node

for a short period of time, both pull-up and pull- down paths in the CMOS cell conduct and the current flows from

VDD to GND. The current is called short-circuit current. It can be concluded that Pinternal is also a function of

switching activity and

correlates positively with the switching activity. As can be seen in (4), dynamic power (Pdynamic) can be reduced by

lowering Pswitching or Pinternal or the both.

In this paper, we have utilized a factoring technique, which is explained later, to reduce Pswitching by minimizing the

switch-ing activities (αi s). We have also reduced Pinternal through logic gate substitution in which gates with larger

number of internal nodes are replaced by gates with smaller number of internal nodes.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b367

2.3.4. Low-Power Techniques for Dynamic Power Reduction

Factoring is an effective method to reduce power consump-tion applicable at both architecture and gate level. This

method reduces Pswitching by reducing the logic depth, which is connected to the nets with high switching activity [38]

to reduce the switching activity of the circuit.

Fig. 1 shows a simple gate level example of using factoring to reduce the switching activity of a small circuit. Both

circuits shown in Fig. 1 realize function f = ab + cb + cd. Assume that input b has higher switching activity compared

with the three other inputs, a, c, and d.

In Fig, input b with high switching activity propagates through two gates at the first stage, which results in larger

number of high activity nets, and as a result, it causes higher switching activity in the whole circuit. While in the

circuit shown in Fig, input b propagates through one gate at the second stage, and thus, it results in lower number of

high activity nets. Therefore, the circuit shown in Fig has lower switching activity, and thus, it has lower Pswitching

compared with the circuit presented in Fig. Logic gate substitution reduces Pinternal by replacing the gates with higher

internal power with those that consume lower internal power.

Fig 2.3 Existed Low Power Design of a Digital Serial Multiplier in GF(2m)

In this section, we present a factoring-based circuit design for a digit-serial PB multiplier in GF(2m) that reduces

Pswitching effectively. A logic gate substitution technique is also presented that reduces Pinternal by using gates with

lower internal power consumption. Gate count of the proposed digit- serial PB multiplier is also optimized.

2.3.5. Multiplier Architecture

An architecture diagram for the proposed digit-serial PB multiplier in GF(2m). There are three modules, namely,

k ×m multiplier, constant multiplier, and field adder.

1) k × m multiplier takes one operand B of m-bit and the other operand A j of k-bit. Note that A j changes for

different clock cycles j . Thus, it has higher switching activity compared with operand B. A straightforward realization of

this module was used. For the comparison purpose, it is given in Algorithm 1. Note that a modification to this algorithm using

a factoring method is proposed. The three steps in Algorithm 1 are, respectively, realized with the circuit blocks from left to

right.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b368

2) Constant multiplier module realizes multiplication between a field element and the constant x k .

3) Field adder module implements finite field addition using m two-input XOR gates formed as a one- layer network.

Note that k × m multiplier is the most complex module among the three modules. In fact, it takes majority of system

complexity in terms of gate count. By experiment, we also found that its power consumption is much higher than

all the other modules combined.2 In the following, we will propose a low-power design of the k × m multiplier using

factoring and logic gate substitution methods. Complexity optimization of this module is also presented.

CHAPTER-3 PROPOSED SYSTEM

The operation of cryptographic protocol is point multiplication. The implementation of point multiplication is

separated into three distinct layers (1) finite filed arithmetic (2) elliptic curve point addition (3) point multiplication

technique.

Finite field arithmetic can be designed into any hardware implementation accelerator for finite field arithmetic to

perform the higher level functions of elliptic curve point arithmetic. Along with program and data memory, the three

components are arithmetic logic unit (AU), an arithmetic unit controller (AUC) and a main controller.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b369

FIG. 3.1 HIERARCHY OF OPERATIONS IN CRYPTOGRAPHY

The function of AU is to perform the basic field operation of addition, squaring, multiplication, and inversion, and

it is controlled by the AUC. The function of AUC is to execute the elliptic curve operation of point addition and

doubling. The micro controller coordinates and executes the method chosen for point multiplication and interacts

with the lost system.

In the proposed system the total input bits are converted into s-box and initial key is converted into s-box. The two

s-boxes are created at a time and then the data from two s-boxes are given to F.T and mux. The mux consisting of

finite filed arithmetic, elliptic curve point addition and point multiplication technique. The F.T and mux outputs are

mapped to parseval's checks, the checking operation of errors is over come in this parseval's check block and the

finalized output encryption data is send to decryption block.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b370

FIG. 3.2 ALGORITHM

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b371

The decryption block takes P.C outputs and they are given to I.F.T and de-mux. The total data is done the inverse

operations of mux and encrypted F.T block. The total data from de-mux and I.F.T is given to s-box to store the

decrypted data.

we proposed an efficient VLSI architecture for advanced encryption standard design methodology in order to

provide a high-speed and effective cryptographic operation. High-performance and fast implementation of proposed

multiplication is applied to cryptographic systems. The internal multiplier consists of three stages of operations to

focuses on final result. In this paper, we propose efficient and high speed architectures to implement cryptography

using proposed multiplier.

Cryptography is the operation in wireless communication between transmissions and receiving of data, the secured

data is communicated in an unsecured channel between transmitter and receiver with high security. The total

proposal is done in XILINX 14.7 with Spartan 3E family.

CHAPTER-4 SOFTWARE USED

XILINX SOFTWARE

4.1 INTRODUCTION TO VERILOG HDL

In lab, we will be using a hardware description language (HDL) called Verilog. Writing in Verilog lets us focus on

the high‐level behavior of the hardware we are trying to describe rather than the low‐level behavior of every single

logic gate.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b372

4.2 Design Flow

 erilog Source

ynthesis and Implementation Tools (Xilinx ISE)

ate‐level Netlist

 ace and Route Tools (Xilinx ISE)

erilog Source with Testbench

PGA Bitstream

 odelSim Compiler itstream Download Tool (ChipScope)

mulation

PGA

 odelSim SE ilinx XC2VP30

Fig 4.1 Simulation flow (left) and synthesis flow (right)

The design of a digital circuit using Verilog primarily follows two design flows. First, we feed our Verilog source

files into a simulation tool, as shown by the diagram on the left. The simulation tool simulates in software the actual

behavior of the hardware circuit for certain input conditions, which we describe in a test bench. Because compiling

our Verilog for the simulation tool is relatively fast, we primarily use simulation tools when we are testing our design.

When we are confident that design is correct, we then use a hardware synthesis tool to turn our high level Verilog

code to a low level gate net list. A mapping tool then maps the netlist to the applicable resources on the device we

are targeting in our case, a field programmable grid array (FPGA). Finally, we download a bit stream describing the

way the FPGA should be reconfigured onto the FPGA, resulting in an actual digital circuit.

4.3 Philosophy

Verilog has C‐like syntax. However, it is philosophically different than most programming languages since it is used

to describe hardware rather than software. In particular verilog statements are concurrent in nature; except for code

between begin and end blocks, there is no defined order in which they execute. In comparison, most languages like

C consist of statements that are executed sequentially; the first line in main () is executed first, followed by the line

after that, and so on. Synthesizable Verilog code is eventually mapped to actual hardware gates. Compiled C code,

on the other hand, is mapped to some bits in storage that a CPU may or may not execute.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b373

4.4 Synthesizable Combinational Verilog Syntax

4.4.1 Modules

The basic building block of Verilog is the module statement. It is somewhat analogous to defining a function in

C:

Here is a module that takes in three inputs: two 5‐bit operands called a and b, and an enable input called en. The

module’s name is comparator.

In this state, the module just does nothing, for two reasons. First, there is no code in the body of the module—both

the inputs and outputs are dangling. Secondly, defining a module in and of itself does nothing (unless it is the top

level module). We need to create an instance of a module in our design to actually use it.

4.4.2 Instantiating Modules

We can include an instance of a module within another module using the following syntax:

For example, to instantiate a comparator module with the name comparator1, input wires in1, in2, and en, and

an output wire gt, we could write:

This instantiation depends on the ordering of the ports in the comparator module. There is an alternate syntax for

instantiating modules which does not depend on port ordering, and is thus usually vastly preferred. The syntax is:

module comparator(a, b, en, a_gt_b); input [4:0] a, b;

input en; output a_gt_b;

endmodule

module<module_name>(<input_list>, <output_list>); input <input_list>;
output<output_list>;

endmodule

<module_name><instance_name>(<port_list>);

comparator comparator1 (in1, in2, en, gt);

<module_name><instance_name>(.<port_name>(ioname), ...);

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b374

/* General syntax: <bits>'<base><number>

where<base> is generally b, d, or h */

Continuing from the last example, we could instead write:

Notice that although we switched the order of ports b and a in this example, the instantiation will still work because

we have named which ports we are connecting to.

4.4.3 Comments

Comments in Verilog are exactly the same as in C.

4.4.4 Numerical Literals

Many modules will contain numerical literals. In Verilog, numerical literals are unsigned 32‐bit numbers by default,

but in this class you should probably get into the habit of declaring the width of each numerical literal. This leads

to less guesswork when, for example, you concatenate a wire and a numerical literal together (as shown later).Here

are a few example numerical literals:

ire [2:0] 3'b111; 3 it binary

ire :0] 5'd31; it decimal

ire 1:0] c 32'hdeadbeef; // 2 bit hexadecimal

4.4.5 Constants

We can use `define to define global constants in our code (like the #define preprocessor directive in C). Note that

unlike C, when referencing the constant, we need to append a back tick to the front

of the constant: e.g., in our case we had to use `FRI instead of FRI. Also, do not append a semicolon to the `define

statement.

comparator comparator1(.b(in2), .a(in1), .en(en),

.a_gt_b(gt));

// This is a comment /* Multi-line

comment */

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b375

efine RED b00 DON’T add a semicolon to these

efine WHITE b01 statements, just as with C’s #define

efine BLUE b10

ire [1:0] color1 = RED;

ire [1:0] color2 = WHITE;

ire [1:0] color3 = BLUE;

4.4.6 Wires

To start with, we will declare two kinds of data types in our modules: wires and registers. You can think of wires as

modeling physical wires—you can connect them either to another wire, an input or output port on another module,

or to a constant logical value. To declare a wire, we use the wire statement:

We then use the assign statement to connect them to something else. Assuming that we are in a module that takes

a two bit input named two_bit_input, we could do the following:

assigntwo_bit_wire = two_bit_input;

// Connect a_wire to the lowest bit of two_bit_wire assign a_wire = two_bit_wire[0];

/* {} is concatenation – 3 MSB will be 101, 2 LSB will be connected to two_bit_wire */ assignfive_bit_wire =
{3'b101, two_bit_wire};

1.4.2 This is an error! You cannot assign a wire twice!
1.4.3 assign a_wire = 1’b1;

Note that these are continuous assignments. That means that in the previous example, whenever the input

two_bit_input changes, so do the values of two_bit_wire, a_wire, and five_bit_wire. There is no “order” by which

wire a_wire;

wire [1:0] two_bit_wire;

wire [4:0] five_bit_wire;

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b376

they change—the changes occur at the same time. This is also why you cannot assign the same wire twice in the

same module—a wire cannot be driven by two different signals at the same time. This is what we mean when saying

Verilog is “naturally concurrent.”

Finally, there is a shortcut that is sometimes used to declare and assign a wire at the same time:

4.4.7 Registers

The other data type we will use is register. Despite the name, registers do not imply memory. They are simply a

language construct denoting variables that are on the left hand side of an always block (and in simulation code,

initial and forever blocks). You declare registers, like wires, at the top level of a module, but you use them within

always blocks. You cannot assign registers values at the top level of a module, and you cannot assign wires while

inside an always block.

4.4.8 Always Blocks

Always blocks are blocks which model behavior that occurs repeatedly based on a sensitivity list. Whenever a signal

in the sensitivity list changes values, the statements in the always block will be run sequentially in the simulator. In

terms of actual hardware, the synthesis tool will synthesize circuits that are logically equivalent to the statements

within the always block.

In the degenerate case, a register in an always statement acts like a wire data type, as in this simple module:

// Declaresgnd, and assigns it to 0 wire gnd =1'b0;

modulebitwise_not(a_in, a_out);

input [1:0] a_in; output [1:0] a_out;

/* Declare the 2-bit output a_out as a register, since it is used on the LHS of an always block */ reg
[1:0] a_out;

// better to use always @* – see next example always @(a_in) begin a_out =

~a_in; // out = bitwise not of in end

endmodul

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b377

So whenever the input a_in changes, the code within the always block is evaluated—a_out takes the value of a_in.

It is as if we declared a_out to be a wire, and assigned it to be ~a_in.

4.4.9 Initial Blocks

Initial and forever blocks are like always blocks in that the statements within an initial block execute in order when

triggered. Also, only registers are allowed on the left hand side of an initial block. However, while an always blocks

executes every time a condition changes, initial blocks are executed once—at the beginning of the program.

The following code sets opcode, op_a, and op_b to 0, 10, and 20 respectively at t=0 in the simulation, and then

changes those values to 2, 10, and 20 respectively at t=5 in the simulation:

In this state, the module just does nothing, for two reasons. First, there is no code in the body of the module—both

the inputs and outputs are dangling. Secondly, defining a module in and of itself does nothing (unless it is the top

level module). We need to create an instance of a module in our design to actually use it.

4.5 PROCEDURE

This XILINX software is used for creating, synthesizing, simulating, implementing, and downloading a simple

VHDL design using the XILINX Project Navigator.

4.5.1 Create a New Project

Create a new ISE project which will target the FPGA device on the Spartan-3 Startup Kit demo board.

To create a new project:

 Select File > New Project... The New Project Wizard appears.

 Type tutorial in the Project Name field.

 Enter or browse to a location (directory path) for the new project. A tutorial subdirectory is created automatically.

 Verify that HDL is selected from the Top-Level Source Type list.

 Click Next to move to the device properties page.

 Fill in the properties in the table as shown below fig:

♦ Product Category: All

reg [2:0] opcode;

reg [4:0] op_a, op_b;

initial begin opcode = 3’b000; op_a = 5’d10; op_b = 5’d20;

#5 opcode = 3’b010; op_a

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b378

♦ Family: Spartan3A and Spartan3AN

♦ Device: XC3S50A

♦ Package: TQ144

♦ Speed Grade: -5

♦ Top-Level Source Type: HDL

♦ Synthesis Tool: XST (VHDL/Verilog)

♦ Simulator: ISIM (VHDL/Verilog)

♦ Preferred Language: Verilog (or VHDL)

♦ Verify that Enable Enhanced Design Summary is selected.

Leave the default values in the remaining fields.

Fig. 4.2: Project Device Properties

 Click Next to proceed to the Create New Source window in the New Project Wizard. Atthe end of the next section,

your new project will be complete.



http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b379

4.5.2 Starting the Project Navigator

Next, create a new source by selecting File

New Project. The following “New Project” window appears

In this section, you will create the top-level HDL file for your design. Determine the language that you wish to use

for the tutorial. Then, continue either to the “Creating a VHDL Source” section below, or skip to the “Creating a

Verilog Source” section.

Creating a VHDL Source

Create a VHDL source file for the project as follows:

1.Click the New Source button in the New Project Wizard.

2.Select VHDL Module as the source type.

3.Type in the file name counter as shown below fig.

4.Verify that the Add to project checkbox is selected.

5.Click Next.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b380

Fig. 4.3: create new files window

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b381

6.Declare the ports for the counter design by filling in the port information as shown below fig. 4.4

Fig. 4.4: declaring ports

7.Click Next, then Finish in the New Source Wizard - Summary dialog box to complete the new source file template

shown below fig. 4.5.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b382

Fig. 4.5: Summary dialog box

8.Click Next, then Next, then Finish.

The source file containing the entity/architecture pair displays in the Workspace, and the counter displays in the

Source tab, as shown fig. 4.6.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b383

Fig. 4.6: New Project in ISE

The “Process view”

window displays

messages to the user.

A check mark

indicates check

syntax.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b384

4.5.3 Checking Syntax and Simulating

Check the Syntax of the code that has just typed. Follow the instructions and on the same time keep an eye on Fig.

4.7.

First, check that top file is selected (highlighted) under the Sources in Project window shown in Fig. 4.7. If it is not,

then select it by left clicking on it. Next, locate the Processes for source window on the left of the screen (If the

window is not visible, enable it by selecting view processes). On this window, locate the synthesize menu and

expand it by pressing on the +. Locate the “Check Syntax” command under the synthesize menu. Left double-

click on “Check Syntax” and wait for the software to finish checking the code.

Fig. 4.7: A check mark indicates check syntax

4.5.4 Synthesizing

First, check that the top file is selected (highlighted) under the Sources in Project window, as shown for “DFF.vhd”

in Figure. If it is not, then select it by left clicking on it. Next, synthesize the design by left double-clicking on

“Synthesize XST”, located in the Process for Source window. If there are any errors, fix the errors and re-synthesize

the corrected code again.

There are several options for synthesis that can change to optimize the design. Right click on “Synthesize XST” and

click on properties. The main options that are interested are: Optimization Goal, Optimization Effort, and FSM

Encoding Algorithm. The first two options can be found under the Synthesis Options tab. By selecting Speed in this

option box, Xilinx will try to synthesize the code to produce faster design. By selecting Area, Xilinx will sacrifice

speed and try to build the smallest design possible. The Optimization Effort option can be set to Normal or High,

and tells Xilinx just how “hard to try” to get a design that is as fast as possible or as small as possible. Clicking on

the HDL Options tab will find the FSM Encoding Algorithm at the top.

If the synthesizer generates any errors, then synthesis will fail and errors have to be fixed in the code before re-

synthesize. If the synthesizer succeeds, then it is still important to check if the synthesizer has generated any

warnings. Check for warnings (and errors) in the Synthesis Report.

After you have synthesized your design, double left-click on “View Synthesis Report.” The report should contain a

summary of any errors or warnings that were generated. The report should not contain any latches as these can cause

timing problems, when not properly used. If the report contains latch warnings, then it need to go over your code,

and fix these latches, and re- synthesize the code again.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b385

CHAPTER-5 RESULTS

5.1 RTL SCHEMATIC

REPORT

Release 14.7 - xst P.20131013 (nt)

Copyright (c) 1995-2013 Xilinx, Inc. All rights reserved.

--> Parameter TMPDIR set to xst/projnav.tmp

Total REAL time to Xst completion: 0.00 secs Total CPU time to Xst completion: 0.12 secs

--> Parameter xsthdpdir set to xst

Total REAL time to Xst completion: 0.00 secs Total CPU time to Xst completion: 0.12 secs

--> Reading design: H_S_CRYPTOGRAPHY.prj

TABLE OF CONTENTS

1) Synthesis Options Summary

2) HDL Parsing

3) HDL Elaboration

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b386

4) HDL Synthesis

4.1) HDL Synthesis Report

5) Advanced HDL Synthesis

5.1) Advanced HDL Synthesis Report

6) Low Level Synthesis

7) Partition Report

8) Design Summary

8.1) Primitive and Black Box Usage

8.2) Device utilization summary

8.3) Partition Resource Summary

8.4) Timing Report

8.4.1) Clock Information

8.4.2) Asynchronous Control Signals Information

8.4.3) Timing Summary

8.4.4) Timing Details

8.4.5) Cross Clock Domains Report

* Synthesis Options Summary *

---- Source Parameters

Input File Name: "H_S_CRYPTOGRAPHY.prj" Ignore Synthesis Constraint File : NO

---- Target Parameters

Output File Name: "H_S_CRYPTOGRAPHY"

Output Format: NGC

Target Device: xc6vlx75tl-1L-ff484

---- Source Options

Top Module Name: H_S_CRYPTOGRAPHY Automatic FSM Extraction : YES

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b387

FSM Encoding Algorithm : Auto Safe Implementation : No FSM Style : LUT

RAM Extraction : Yes RAM Style : Auto ROM Extraction : Yes Shift Register Extraction

 : YES ROM Style : Auto

Resource Sharing : YES Asynchronous To Synchronous : NO Shift Register Minimum Size 2

Use DSP Block : Auto Automatic Register Balancing : No

---- Target Options

LUT Combining : Auto

Reduce Control Sets : Auto

Add IO Buffers : YES

Global Maximum Fanout 100000

Add Generic Clock Buffer(BUFG) 32

Register Duplication : YES Optimize Instantiated Primitives : NO Use Clock Enable : Auto

Use Synchronous Set : Auto

Use Synchronous Reset : Auto Pack IO Registers into IOBs : Auto Equivalent register Removal

 : YES

---- General Options

Optimization Goal : Speed

Optimization Effort 1

Power Reduction : NO

Keep Hierarchy : No

Netlist Hierarchy : As_Optimized

RTL Output : Yes

Global Optimization : AllClockNets Read Cores : YES

Write Timing Constraints : NO Cross Clock Analysis : NO

Hierarchy Separator : / Bus Delimiter : <>

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b388

Case Specifier : Maintain Slice Utilization Ratio 100

BRAM Utilization Ratio 100

DSP48 Utilization Ratio 100

Auto BRAM Packing : NO Slice Utilization Ratio Delta 5

* HDL Parsing *

Analyzing Verilog file "C:\.Xilinx\SHARON\VXCV.v" into library work Parsing module <ACS>.

Analyzing Verilog file "C:\.Xilinx\SHARON\VCXVXC.v" into library work Parsing module <PM>.

Analyzing Verilog file "C:\.Xilinx\SHARON\NVCX.v" into library work Parsing module <BMC>.

Analyzing Verilog file "C:\.Xilinx\SHARON\NNN.v" into library work Parsing module <ASMU>.

Analyzing Verilog file "C:\.Xilinx\SHARON\CCCV.v" into library work Parsing module <AACS>.

Analyzing Verilog file "C:\.Xilinx\SHARON\CC.v" into library work Parsing module <APM>.

Analyzing Verilog file "C:\.Xilinx\SHARON\C.v" into library work Parsing module <SMU>.

Analyzing Verilog file "C:\.Xilinx\SHARON\BB.v" into library work Parsing module <ABMC>.

Analyzing Verilog file "C:\.Xilinx\SHARON\CXXVXC.v" into library work Parsing module

<H_S_CRYPTOGRAPHY>.

Summary:no macro.

Unit <H_S_CRYPTOGRAPHY> synthesized. Synthesizing Unit <ABMC>.

Related source file is "C:\.Xilinx\SHARON\BB.v". Summary:no macro.

Unit <ABMC> synthesized. Synthesizing Unit <APM>.

Related source file is "C:\.Xilinx\SHARON\CC.v".

Summary: no macro. Unit <APM> synthesized.

Synthesizing Unit <SMU>.

Related source file is "C:\.Xilinx\SHARON\C.v".

WARNING:Xst:647 - Input is never used. This port will be preserved and left unconnected if it belongs to a

top-level block or it belongs to a sub-block and the hierarchy of this sub-block is preserved.

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b389

Summary: no macro. Unit <SMU> synthesized.

HDL Synthesis Report Found no macro

Advanced HDL Synthesis Report Found no macro

* Low Level Synthesis *

Optimizing unit <H_S_CRYPTOGRAPHY> ...

Mapping all equations...

Building and optimizing final netlist ...

Found area constraint ratio of 100 (+ 5) on block H_S_CRYPTOGRAPHY, actual ratio is 0. Final Macro Processing

...

Final Register Report Found no macro

* Partition Report *

Partition Implementation Status

No Partitions were found in this design.

* Design Summary *

Top Level Output File Name : H_S_CRYPTOGRAPHY.ngc

Primitive and Black Box Usage:

IO Buffers 16

IBUF 8

OBUF 8

Device utilization summary:

Selected Device : 6vlx75tlff484-1l

Slice Logic Utilization:

Slice Logic Distribution:

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b390

Number of LUT Flip Flop pairs used: 0

Number with an unused Flip Flop: 0 out of 0

Number with an unused LUT: 0 out of 0

Number of fully used LUT-FF pairs: 0 out of 0 Number of unique control sets: 0

IO Utilization:

Number of IOs: 24

Number of bonded IOBs: 16 out of 240 6% Specific Feature Utilization:

Partition Resource Summary:

No Partitions were found in this design.

Timing Report

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT GENERATED AFTER

PLACE-and-ROUTE.

Clock Information:

No clock signals found in this design

Asynchronous Control Signals Information:

No asynchronous control signals found in this design Timing Summary:

Speed Grade: -1

Minimum period: No path found

Minimum input arrival time before clock: No path found Maximum output required time after clock: No path found

Maximum combinational path delay: 0.405ns

Timing Details:

All values displayed in nanoseconds (ns)

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b391

Timing constraint: Default path analysis

Total number of paths / destination ports: 8 / 8

Delay: 0.405ns (Levels of Logic = 2)

Source: u<7> (PAD) Destination: v_decoder<7> (PAD)

Data Path: u<7> to v_decoder<7>

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

IBUF:I->O 1 0.003 0.399 u_7_IBUF (v_decoder_7_OBUF) OBUF:I->O 0.003 v_decoder_7_OBUF

(v_decoder<7>)

Total 0.405ns (0.006ns logic, 0.399ns route) (1.5% logic, 98.5% route)

Cross Clock Domains Report:

Total REAL time to Xst completion: 5.00 secs Total CPU time to Xst completion: 4.96 secs Total memory usage is

208252 kilobytes Number of errors : 0 (0 filtered)

Number of warnings : 75 (0 filtered) Number of infos : 34 (0 filtered)

5.2 OUTPUT

http://www.jetir.org/

© 2023 JETIR January 2023, Volume 10, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2022 Journal of Emerging Technologies and Innovative Research (JETIR)
www.jetir.org

b392

CHAPTER - 6 CONCLUSION

Two new digital level SIPO finite fields multipliers using redundant representation have been proposed. For about

60% of the field sizes with in the practical range of ECC applications, the relationship between extension degree m

and the size of the smallest cyclotomic field, (n), in which F2 can be embedded is expressed as n=Tm+1 for T even

and greater than or equal to. In the case, a specific feature of redundant was used to alleviate the redundancy problem

in this representation system. Numericaly complexity comparision showed that both new architecture have the

lowest day cost compared with the existing RB archistecture. VLSI implementation of the prposed architecture for

binary extension field of 233 and three practical digital sizes in 65mm CMOS technology was also presented.

CHA PTER – 7 REFERENCES

[1] T.ElGamal, “A public key cryptosystem and a signature scheme based on descrete logarithms”, IEEE trans.

Inf. Theory, vol. 31, no. 4, pp. 469-472, sep-2006.

[2] I.F.Blake , G. Seroussi, and N.P.Smart, Elliptic curves in cryptography (London mathematical society lecture

note series). Cambridge , U.K:Cambridge Univ . press, 1990.

[3] A.J.Memezes, p.c. van oorschiot, and S.A. Vanstone, Handbool pf applied crystography (Discrete mathematical

and its applications). Boca Raton, FL, USA: CRC Press, 1996.

[4] T.IOTH and S.Tsujji,”A fast algorithm for for computing multiplicative inverse in GF(2m) using normal basis,”

Inf. Comput., vol. 78,no.3,PP.171-177,1988.

[5] E.D.Mastrovito, “VLSI architectures for computations in gols fields,” ph.D. dissertation, Dept. Electr. Eng.,

Linkoping univ., Linkoping, Sweden, 1991.

http://www.jetir.org/

