
© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 257

OPTIMIZATION OF A HYBRID-BASED

RANDOM FOREST ALGORITHM FOR

NETWORK SYSTEMS USING RANDOMIZED

SEARCH HYPERPARAMETER TUNING

METHOD.

Amaku Amaku1, Olumide Owolabi2 , Agbogun B. Joshua3, Bamidele, Oluchi Jennie4 , Igbinosa O. G5

1Department of Computer Science, Godfrey Okoyo University, Enugu State, Nigeria.

2Department of Computer Sciences, University of Abuja, Abuja, Nigeria.

3Department of Mathematics and Computer Science, Godfrey Okoyo University, Enugu State, Nigeria.

4Computer Science Programme, National Mathematical Centre, Kwali, Abuja

5Department of Computer Science, College of ICT, Salem University, P.M.B. 1060 Lokoja, Kogi State, Nigeria.

ABSTACT

Random Forest models have been providing a notable performance on her predictive capacity to applications in the

realm of behavioural-based Intrusion Detection Systems and other related fields of specialization which includes

medicines, Banking, commerce, etc in terms high magnitude forecasting and optimal predictions . In this work, in-

depth evaluation analysis of the Random Forest tuning are carried out with respect to classification, feature

selection, and proximity metrics. This empirical research will provide an inclusive review of the general basic

concepts related to Intrusion Detection Systems, which includes taxonomies, data collection, modeling and

evaluation metrics. This work further remodels the Random Forest algorithm using RandomizedSearchCV

method hyperparameter tuning as base-behavioral classifier to check and compare with its default in terms of

efficiency in the realm of machine learning. NSL-KDD dataset were used for both training and testing of the

tuned model using a supervised learning method. The predictive performance in the tuned model with respect to its

matrix was higher, and comparison with other algorithms like Naïve bayes and Perception model, Ridge classifier

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 258

proved that the RandomizedSearchCV hyperparameter tuning Random Forest algorithm performed more

efficiently its results analysis and computation.

Keywords: RandomizedSearchCV, Hyperparameter, Decision Tree, Classifier, Random forest, Optimization,

Tuning.

 DECISION TREE

Decision Tree is a graphical representation of all possible solutions to a decision, decision tree is based on some

conditions and it can be easily be explained. It represents a function that takes as Input a vector of attribute values

and returns a “decision” – a single output value.

Decision tree is a flow-chart-like tree structure that uses a branching method to illustrate every possible outcome of

a decision. Each node within the tree represents a test on a specific variable- and each branch is the outcome of

that test. It is also a simple flowchart that selects labels for input values.

This flowchart consists of decision nodes, which check feature values, and leaf nodes, which assign labels. To

choose the label for an input value, we begin at the flowchart’s initial decision nodes, known as its roots node.

This node contains a condition that checks one of the input value’s features, and selects a branch based on that

features value. Following the branch that describes our input value, we arrive at a new decision node, with a new

condition on the input value’s features. We continue following the branch selected by each node’s condition, until

we arrive at a leaf node which provides a label for the input value.

Decision tree algorithm falls under the category of supervise learning. They can be used to solve both regression

and classification problems. A decision tree reaches its decision by performing a sequence of tests.

For Example

 Figure

1.1 Decision Tree Learning Algorithm

 Each nodes tests an attribute

Each branch corresponds to an attribute

value nodes.

Each assigns a classification

Sunny =1 Overcast =2 Raining =3

3

No Yes No

Outlook

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 259

ID3 (Iterative Dichotomies 3)

 ID3 is on of the most common decision tree algorithm.

 Dichotomies means dividing into two completely opposite things.

 Algorithm iterative divides attribute into two groups are the most dominant attribute and others to

construct a tree.

 Then, it calculate the Entropy and information gain of each attribute. In this way, the most

dominant attribute can be founded.

 After then, the most dominant one is put on the tree as decision node. For

 Entropy and gain scores would be calculated again among the other attributes.

 Procedure continues until reaching a decision for that branch.

Formulas:

Entropy(s) = Є – P(I) . LogP2 (I) …………………………………………….. (1)

Gain (S,A) = Entropy(s) – Є [P(S/A) . Entropy (S/A)] -------------------------------- (2)

A decision tree is also a simple flowchart that selects labels for input values. This flowchart consists of decision

nodes, which check feature values, and leaf nodes, which assign labels. To choose the label for an input value, we

begin at the flowchart’s initial decision nodes, known as its roots node. This node contains a condition that checks

one of the input value’s features, and selects a branch based on that features value. Following the branch that

describes our input value, we arrive at a new decision node, with a new condition on the input value’s features. We

continue following the branch selected by each node’s condition, until we arrive at a leaf node which provides a

label for the input value.

Once we have a decision tree, it is straightforward to use it to assign labels to new input values. What’s less

straightforward is how we can build a decision tree that models a given training set. But before we look at the

learning algorithm for building decision tress, we’ll consider a simpler task: picking the best “decision stump” for

a corpus.

A decision stump is a decision tree with a single node that decides how to classify inputs based on a single

feature. It contains one leaf for each possible feature value, specifying the class label that should be assigned to

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 260

inputs whose features have that value. In order to build a decision stump, we must first decide which features

should be used. The simplest method is to just build a decision stump for each possible feature, and see which one

achieves the highest accuracy on the training data, although there are other alternatives that we will discuss later.

Once we’ve picked a feature, we can build the decision stump by assigning a label to each based on the most

frequently for the selected examples in the training set (i.e. the examples where the selected feature has that value).

Given the algorithm for choosing decision stumps, the algorithm for growing larger decision tress is

straightforward. We begin by selecting the overall best decision stump for the classification task. We then check

the accuracy of each of the leaves on the training set. Leaves that do not achieve sufficient accuracy are then

replaced by new decision stumps, trained on the subset of the training corpus that is selected by the path to the

leaf.

RANDOM FOREST

The random forest (Breiman, 2001) is an ensemble approach that can also be thought of as a form of nearest

neighbor predictor.

Ensembles are a divide-and-conquer approach used to improve performance. The main principle behind ensemble

methods is that a group of “weak learners” can come together to form a “strong learner”. The figure below

provides an example. Each classifier, individually, is a “weak learner,” while all the classifiers taken together are a

“strong learner”.

The data to be modeled are the blue circles. One can assume that they represent some underlying function plus

noise. Each individual learner is shown as a gray curve. Each gray curve (a weak learner) is a fair approximation to

the underlying data. The red curve (the ensemble “strong learner”) can be seen to be a much better approximation

to the underlying data.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 261

Trees and Forests: The random forest starts with a standard machine learning technique called a “decision tree”

which, in ensemble terms, corresponds to the to weak learner. In a decision tree, an input is entered at the top and

as it traverses down the tree the data gets bucketed into smaller and smaller sets. For details see the figure below is

taken.

In this example, the tree indicates that, based upon weather conditions, whether to play ball. For example, if the

outlook is sunny and the humidity is less than or equal to 70, then it’s probably OK to play.

The random forest takes this notion to the next level by combining trees with the notion of an ensemble. Thus, in

ensemble terms, the trees are weak learners and the random forest is a strong learner.

Here is how such a system is trained; for some number of trees T:

1. Sample N cases at random with replacement to create a subset of the data. The subset should be

about 66% of the total set.

2. At each node:

1. For some number m, m predictor variables need to be selected at random from all the

predictor variables.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 262

2. The predictor variable that provides the best split, according to some objective function, is

used to do a binary split on that node.

3. At the next node, choose another m variables at random from all predictor variables and do

the same.

Depending upon the value of m, there are three slightly different systems:

 Random splitter selection: m =1

 Breiman’s bagger: m = total number of predictor variables

 Random forest: m << number of predictor variables. Brieman suggests three possible values form:

½√m, √m, and 2√m

Running a Random Forest. When a new input is entered into the system, it is run down all of the trees. The result

may either be an average or weighted average of all of the terminal nodes that are reached, or, in the case of

categorical variables, a voting majority.

Note that:

 With a large number of predictors, the eligible predictor set will be quite different from node to

node.

 The greater the inter-tree correlation, the greater the random forest error rate, so one pressure on the

model is to have the trees as uncorrelated as possible.

 As m goes down, both inter-tree correlation and the strength of individual trees go down. So some

optimal value of m must be discovered.

Strengths and weaknesses: Random forest runtimes are quite fast, and they are able to deal with unbalanced and

missing data. A Random Forest weakness is that when used for regression they cannot predict beyond the range in

the training data, and that they may over-fit data sets that are particularly noisy. Of course, the best test of any

algorithm is how well it works upon your own data set.

GENERAL OVERVIEW RANDOM FOREST

Random Forests Random forests is a idea of the general technique of random decision forests that are an ensemble

learning technique for classification, regression and other tasks, that control by constructing a multitude of

decision trees at training time and outputting the class that is the mode of the classes (classification) or mean

prediction (regression) of the individual trees. Random decision forests accurate for decision trees' habit of over

fitting to their training set and the first algorithm for random decision forests was created by Tin Kam Ho using the

random subspace method which, in Ho's formulation, is a way to implement the "stochastic discrimination"

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 263

approach to classification proposed by Eugene Kleinberg. An extension of the algorithm was developed by Leo

Breiman and Adele Cutler, and "Random Forests" is their trademark (Landwehr et al,2015) .The extension

combines Breiman's bagging" idea and random selection of features, introduced first by Ho and later

independently by Amit and Geman in order to construct a collection of decision trees with controlled variance

(Breiman, 2001). Random Tree is a supervised Classifier; it is an ensemble learning algorithm that generates lots

of individual learners. It employs a bagging idea to construct a random set of data for constructing a decision tree.

In standard tree every node is split using the best split among all variables. In a random forest, every node is split

using the best among the subset of predicators randomly chosen at that node. Random trees have been introduced

by Leo Breiman and Adele Cutler (Liaw, 2013). The algorithm can deal with both classification and regression

problems.

RANDOM TREES

A random tree is a group (ensemble) of tree predictors that is called forest. The classification mechanisms as

follows: the random trees classifier gets the input feature vector, classifies it with every tree in the forest, and

outputs the class label that received the majority of “votes”. In case of a regression, the classifier reply is the

average of the responses over all the trees in the forest. Random Trees are essentially the combination of two

existing algorithms in Machine Learning: single model trees are merged with Random Forest ideas (Liaw, 2013).

Model trees are decision trees where every single leaf holds a linear model which is optimized for the local

subspace explained by this leaf. Random Forests have shown to improve the performance of single decision trees

considerably (Landwehr, 2015).

First the training data is sampled with replacement for each single tree like in Bagging and secondly, when

growing a tree, instead of always computing the best possible split for each node only a random subset of all

attributes is considered at every node, and the best split for that subset is computed. Such trees have been for

classification Random model trees for the first time combine model trees and random forests. Random trees uses

this produce for split selection and thus induce reasonably balanced trees where one global setting for the ridge

value works across all leaves, thus simplifying the optimization procedure (Liaw, 2013).

1.3 Entropy and information Gain

There are several methods for identifying the most informative feature for a decision stump. One popular

alternative called information gain, measures how much more organized the input values become when we divide

them up using a given feature. How disorganized the original set of input values are, we calculate entropy of their

labels, which will be high if the input values have highly varied labels, and how if many input values all have the

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 264

same label. In particular, entropy is defined as the sum of the probability of each label times the log probability of

that same label:

 H = Ƹl ϵ labels P (l) * log2P (l). ……………………………………. (3)

For example, Figure above shows how the entropy of labels in the weather prediction task depends on the ratio of

sunny to outcast to raining attributes names. Note that if

 Most input values have the same label (e.g., if P(sunny) is near 0 or near 1), then entropy is low. In particular,

labels that have low frequency do not contribute much to the entropy (since P(l) is small), and labels with high

frequency also do not contribute much to the entropy (since log2P(l) is small). On the other hand, if the input

values have a wide variety of labels, then there are many labels with a “medium” frequency, where neither P(l) nor

log2P(l) is small, so the entropy is high.

Once we have calculated the entropy of the label of the original set of input values, we can determine how much

more organized the labels become once we apply the decision stump. To do so, we calculate the entropy for each

of the decision stump’s leaves, and take the average of those leaf entropy values (weighed by the number of

samples in each leaf). The information gain is then equal to the original entropy minus this new reduced entropy.

The higher the information gain, the better job the decision stump does of dividing the input values into coherent

groups, so we can build decision trees by selecting the decision stumps with the highest information gain.

Another consideration for decision tree is efficiency. The simple algorithm for selecting decision stumps described

earlier must construct a weather decision stump for every possible feature, and this process must be repeated for

every node in the constructed decision tree. A number of algorithms have been developed to cut down on the

training time by storing and reusing information about previously evaluated examples.

However, decision trees also has a few disadvantages. One problem is that, since each branch in the decision tree

splits the training data, the amount of training data available to train nodes lower in the tree can become quite

small. As a result, these lower decision nodes may overfit the training set, learning patterns that reflect

idiosyncrasies of the training set rather than linguistically significant patterns in the underlying problem. One

solution to this problem is to stop diving nodes once the amount of training data becomes too small. Another

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 265

solution is to grow a full decision tree, but then to prune decision nodes that do not improve performance on a

dev-test.

A second problem with decision trees is that they force features to be checked in a specific order, even when

features may act relatively independently of one another. For example, when classifying documents into topics

(such as a sports, automotive, or murder mystery), features such as has word (football) are highly indicating of a

specific label, regardless of what the other feature value are. Since there is limited space near the top of the

decision tree, most of these features will need to be repeated on many different branches in the tree. And since the

number of branches increases exponentially as we go down the tree, the amount of repetition can be very large.

A related problem is the decision trees are not good at making use of features that re weak predictors of the correct

label. Since these features make relatively small incremental improvements, they tend to occur very low in the

decision tree. But by the time the decision tree learner has descended far enough to use these features, there is not

enough training data left to reliable determine what effect they should have. If we could instead look at the effect

of these features across the entire training set, then we might be able to make some conclusions about how they

should affect the choice of label.

The face that decision trees require that features be checked in a specific order limits their ability to exploit

features that are relatively independent of one another.

3 Model Design Phase

 Hyperparameters are different from the internal model parameters, such as the neural network’s weights,

which can be learned from the data during the model training phase. Before the training phase, a set of

hyperparameter values is entered which archive the best performance on the data in a reasonable amount of time.

This process is called hyperparameter optimization or tuning. It plays a vital role in the prediction accuracy of

machine learning algorithms. There are mainly two kinds of hyperparameter optimization methods, i.e., manual

search and automatic search methods. Manual search tries out hyperparameter sets by hand. It depends on the

fundamental intuition and experience of expert users who can identify the important parameters that have a greater

impact on the results and then determine the relationship between certain parameters and final results through the

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 266

visualization tools (Aarshay, 2018). Manual search requires users to have more professional background

knowledge and practical experience. And it is hard to be applied by non-expert users. The process of tuning

hyperparameters is not easily reproducible. Besides, as the number of hyperparameters and the range of values

increase, it becomes quite difficult to manage since humans are not good at handling high dimensional data and

easily misinterpret or miss trends and relationships in hyperparameters. To overcome the drawbacks of manual

search, automatic search algorithms have been proposed, such as grid search, randomized search (Bergstra, 2012)

or Cartesian hyperparameter search．The principle of grid search is exhaustive searching. Grid search trains a

machine learning model with each combination of possible values of hyperparameters on the training set and

evaluates the performance according to a predefined metric on a cross validation set. Although this method

achieves automatic tuning and can theoretically obtain the global optimal value of the optimization objective

function, it suffers from the curse of dimensionality, i.e., the efficiency of the algorithm decreases rapidly as the

number of hyperparameters being tuned and the range of values of hyperparameters increase. To solve the problem

of expensive cost in grid search, the random search algorithm (Bergstra, 2012) has been proposed, which found

that for most data sets, only a few of the hyperparameters really matter. The overall efficiency can be improved by

reducing the search to hyperparameters that do not matter, and finally the approximate solution of the optimization

function is obtained.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 267

Fig 3.3 dataset in csv(comer separated values) format file

7 Evaluation Metrics

The evaluation metrics generated from this research work is given below;

Parameter distribution of random forest used for the randomized search

Number of trees to use for building the random forest

n_estimators = [int(x) for x in np.linspace(start = 10, stop = 80, num = 10)]

Number of features to consider at every split

max_features = ['auto', 'sqrt']

Maximum number of levels in tree

max_depth = [2,4]

Minimum number of samples required to split a node

min_samples_split = [2, 5]

Minimum number of samples required at each leaf node

min_samples_leaf = [1, 2]

criterion =['gini', 'entropy']

Method of selecting samples for training each tree

bootstrap = [True, False]

Parameter distribution code

Create the param grid

param_grid = {'n_estimators': n_estimators,

 'max_features': max_features,

 'max_depth': max_depth,

 'min_samples_split': min_samples_split,

 'min_samples_leaf': min_samples_leaf,

 'criterion' :criterion,

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 268

 'bootstrap': bootstrap}

print(param_grid)x

OPTIMISED HYPERPARAMETER TUNNING OF RANDOM FOREST CLASSIFIER RESULT

Cross Validation at 10 fold

fitting 10 folds for each of 10 candidates, totalling 100 fits

RandomizedSearchCV(cv=10, estimator=RandomForestClassifier(), n_jobs=4,

 param_distributions={'bootstrap': [True, False],

 'criterion': ['gini', 'entropy'],

 'max_depth': [2, 4],

 'max_features': ['auto', 'sqrt'],

 'min_samples_leaf': [1, 2],

 'min_samples_split': [2, 5],

 'n_estimators': [10, 17, 25, 33, 41, 48,

 56, 64, 72, 80]},

 verbose=2)

Best Parameter Result Generated From the Parameter Range Provided

rf_RandomGrid.best_params_

{'n_estimators': 72,

 'min_samples_split': 5,

 'min_samples_leaf': 2,

 'max_features': 'sqrt',

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 269

 'max_depth': 4,

 'criterion': 'entropy',

 'bootstrap': True}

Optimized Hyperparameter Tuning Of Random Forest Classifier Result

Train Accuracy - : 97.833%

COMPARATIVE ANALYSIS RESULT WITH OTHER RELATED MACHINE LEARNING ALGORITH

M

The optimized value (accuracy) obtained from this research work is later compared with other algorithm. The resul

ts is shown below

Naive Bayes Algorithm Result

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=9) #Split the dataset

from sklearn.naive_bayes import GaussianNB

nv = GaussianNB() # create a classifier

nv.fit(X_train,y_train) # fitting the data

from sklearn.metrics import accuracy_score

y_pred = nv.predict(X_test) # store the prediction data

#accuracy_score(y_test,y_pred) # calculate the accuracy

print("Accuracy of Naive Bayes Algorithm is : {}".format(accuracy_score(y_test,y_pred)*100))

Accuracy of Naive Bayes Algorithm is : 52.92716808890653

Logistic Regression

import matplotlib.pyplot as plt

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 270

import numpy as np

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report, confusion_matrix

model = LogisticRegression(solver='liblinear', random_state=0)

model.fit(X, y)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

 intercept_scaling=1, l1_ratio=None, max_iter=100,

 multi_class='warn', n_jobs=None, penalty='l2',

 random_state=0, solver='liblinear', tol=0.0001, verbose=0,

 warm_start=False)

model = LogisticRegression(solver='liblinear', random_state=0).fit(X, y)

model.predict(X)

model.score(X, y)*100

Accuracy: 88.57215435053544

RANDOM FOREST CLASSIFIER

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=50,min_samples_leaf=0.2,random_state=42)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print("Accuracy of Random Forest model is : {}".format(accuracy_score(y_test,pred)*100))

Accuracy of Random Forest model is : 91.82

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 271

SUPPORT VECTOR MACHINE

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)

from sklearn.svm import SVC

svclassifier = SVC(kernel='rbf', degree=8)

svclassifier.fit(X_train, y_train)

y_pred = svclassifier.predict(X_test)

from sklearn.metrics import classification_report, confusion_matrix

from sklearn.metrics import accuracy_score

print("Accuracy of the Support Vector Machine model is : {}".format(accuracy_score(y_test,y_pred)*100))

Accuracy of the Support Vector Machine model is : 53.70

K-Nearest Neighbor Algorithm

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 100)

KNeighborsClassifier(

 n_neighbors=5, # The number of neighbours to consider

 weights='uniform', # How to weight distances

 algorithm='auto', # Algorithm to compute the neighbours

 leaf_size=30, # The leaf size to speed up searches

 p=2, # The power parameter for the Minkowski metric

 metric='minkowski', # The type of distance to use

 metric_params=None, # Keyword arguments for the metric function

 n_jobs=None # How many parallel jobs to run

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 272

)

clf = KNeighborsClassifier(p=1)

clf.fit(X_train, y_train)

predictions = clf.predict(X_test)

print(accuracy_score(y_test, predictions))

0.89

 AMAKU’S MODEL ANALYSIS

Research title: OPTIMIZATION OF BEHAVIORAL BASED RANDOM FOREST ALGORITHM AS A

MACHINE LEARNING TOOL IN INTRUSION DETECTION SYSTEM

Importing necessary libraries

import pandas as pd

import numpy as np

import sys

DATASET IMPORTATION USING PANDAS

#from google.colab import files

#uploaded = files.upload()

#import io

#df = pd.read_csv(io.BytesIO(uploaded['KDDTrain+.csv']))

df=pd.read_csv('KDDTrain+.csv')

df.head()

STATISTICAL SUMMARY

df.describe()

DATA PREPROCESSING

adding column labels

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 273

columns = (['duration'

,'protocol_type'

,'service'

,'flag'

,'src_bytes'

,'dst_bytes'

,'land'

,'wrong_fragment'

,'urgent'

,'hot'

,'num_failed_logins'

,'logged_in'

,'num_compromised'

,'root_shell'

,'su_attempted'

,'num_root'

,'num_file_creations'

,'num_shells'

,'num_access_files'

,'num_outbound_cmds'

,'is_host_login'

,'is_guest_login'

,'count'

,'srv_count'

,'serror_rate'

,'srv_serror_rate'

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 274

,'rerror_rate'

,'srv_rerror_rate'

,'same_srv_rate'

,'diff_srv_rate'

,'srv_diff_host_rate'

,'dst_host_count'

,'dst_host_srv_count'

,'dst_host_same_srv_rate'

,'dst_host_diff_srv_rate'

,'dst_host_same_src_port_rate'

,'dst_host_asrv_diff_host_rate'

,'dst_host_serror_rate'

,'dst_host_srv_serror_rate'

,'dst_host_rerror_rate'

,'dst_host_srv_rerror_rate'

,'class'])

df.columns = columns

#test_df.columns = columns

sanity check

df.head()

X = df.drop(columns=['protocol_type', 'service', 'flag', 'class'])

y = df['class'] # the last column in the dataset is used as y value

y.head()

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 275

X.head()

Cross Validation: Accuracy, Precision, Recall, F-measure RANDOM FOREST CLASSIFIER

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.6, random_state=42)

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrixs

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=50,min_samples_leaf=0.2,random_state=42)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

 #'random_forest': {

 # 'model': RandomForestClassifier(),

 # 'params' : {

 # 'n_estimators': [1,5,10]

 # }

 #}

 # 'params': {

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 276

 # 'C': [1,5,10]

 #}

 #}

#}

#scores = []

#for model_name, mp in model_params.items():

 # clf = GridSearchCV(mp['model'], mp['params'], cv=5, return_train_score=False)

 # clf.fit(X, y)

 # scores.append({

 # 'model': model_name,

 # 'best_score': clf.best_score_,

 # 'best_params': clf.best_params_

 #})

#df = pd.DataFrame(scores,columns=['model','best_score','best_params'])

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=5,min_samples_leaf=2,random_state=3)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 277

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

CONFUSION MATRIX

[[38541 166]

 [99 44337]]

CLASSIFICATION REPORT

 precision recall f1-score support

 anomaly 1.00 1.00 1.00 38707

 normal 1.00 1.00 1.00 44436

 accuracy 1.00 83143

 macro avg 1.00 1.00 1.00 83143

weighted avg 1.00 1.00 1.00 83143

Accuracy of the given model is : 99.6812720253058

Fig: 4.2..1 Experiment 1 on selected hyperparameter tuning

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=100,min_samples_leaf=80,random_state=50)

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 278

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

CONFUSION MATRIX

[[37851 856]

 [139 44297]]

CLASSIFICATION REPORT

 precision recall f1-score support

 anomaly 1.00 0.98 0.99 38707

 normal 0.98 1.00 0.99 44436

 accuracy 0.99 83143

 macro avg 0.99 0.99 0.99 83143

weighted avg 0.99 0.99 0.99 83143

Accuracy of the given model is : 98.80326666105384

Fig: 4.2..2 Experiment 2 on selected hyperparameter tuning

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 279

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=200,min_samples_leaf=150,random_state=100)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

CONFUSION MATRIX

[[37644 1063]

 [141 44295]]

CLASSIFICATION REPORT

 precision recall f1-score support

 anomaly 1.00 0.97 0.98 38707

 normal 0.98 1.00 0.99 44436

 accuracy 0.99 83143

 macro avg 0.99 0.98 0.99 83143

weighted avg 0.99 0.99 0.99 83143

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 280

Accuracy of the given model is : 98.55189252252143

Fig: 4.2.3 Experiment 3 on selected hyperparameter tuning

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=200,min_samples_leaf=250,random_state=150)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

CONFUSION MATRIX

[[37492 1215]

 [177 44259]]

CLASSIFICATION REPORT

 precision recall f1-score support

 anomaly 1.00 0.97 0.98 38707

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 281

 normal 0.97 1.00 0.98 44436

 accuracy 0.98 83143

 macro avg 0.98 0.98 0.98 83143

weighted avg 0.98 0.98 0.98 83143

Accuracy of the given model is : 98.32577607254971

Fig: 4.2.4 Experiment 4 on selected hyperparameter tuning

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=500,min_samples_leaf=250,random_state=200)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

CONFUSION MATRIX

[[37491 1216]

 [175 44261]]

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 282

CLASSIFICATION REPORT

 precision recall f1-score support

 anomaly 1.00 0.97 0.98 38707

 normal 0.97 1.00 0.98 44436

 accuracy 0.98 83143

 macro avg 0.98 0.98 0.98 83143

weighted avg 0.98 0.98 0.98 83143

Accuracy of the given model is : 98.32697881962402

Fig: 4.2.5 Experiment 5 on selected hyperparameter tuning

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=500,min_samples_leaf=300,random_state=250)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 283

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

CONFUSION MATRIX

[[36958 1749]

 [190 44246]]

CLASSIFICATION REPORT

 precision recall f1-score support

 anomaly 0.99 0.95 0.97 38707

 normal 0.96 1.00 0.98 44436

 accuracy 0.98 83143

 macro avg 0.98 0.98 0.98 83143

weighted avg 0.98 0.98 0.98 83143

Accuracy of the given model is : 97.6678734228979

Fig: 4.2.6 Experiment 6 on selected hyperparameter tuning

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=50,min_samples_leaf=30,random_state=32)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 284

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

CONFUSION MATRIX

[[38289 418]

 [107 44329]]

CLASSIFICATION REPORT

 precision recall f1-score support

 anomaly 1.00 0.99 0.99 38707

 normal 0.99 1.00 0.99 44436

 accuracy 0.99 83143

 macro avg 0.99 0.99 0.99 83143

weighted avg 0.99 0.99 0.99 83143

Accuracy of the given model is : 99.36855778598319

Fig: 4.2.7 Experiment 7 on selected hyperparameter tuning

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 285

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=50,min_samples_leaf=45,random_state=42)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

CONFUSION MATRIX

[[38203 504]

 [125 44311]]

CLASSIFICATION REPORT

 precision recall f1-score support

 anomaly 1.00 0.99 0.99 38707

 normal 0.99 1.00 0.99 44436

 accuracy 0.99 83143

 macro avg 0.99 0.99 0.99 83143

weighted avg 0.99 0.99 0.99 83143

Accuracy of the given model is : 99.2434720902541

Fig: 4.2.8 Experiment 8 on selected hyperparameter tuning

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 286

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=50,min_samples_leaf=45,random_state=42)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

CONFUSION MATRIX

[[38298 409]

 [108 44328]]

CLASSIFICATION REPORT

 precision recall f1-score support

 anomaly 1.00 0.99 0.99 38707

 normal 0.99 1.00 0.99 44436

 accuracy 0.99 83143

 macro avg 0.99 0.99 0.99 83143

weighted avg 0.99 0.99 0.99 83143

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 287

Accuracy of the given model is : 99.37817976257773

Fig: 4.2.9 Experiment 9 on selected hyperparameter tuning

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=30,min_samples_leaf=18,random_state=21)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

CONFUSION MATRIX

[[38382 325]

 [109 44327]]

CLASSIFICATION REPORT

 precision recall f1-score support

 anomaly 1.00 0.99 0.99 38707

 normal 0.99 1.00 1.00 44436

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 288

 accuracy 0.99 83143

 macro avg 0.99 0.99 0.99 83143

weighted avg 0.99 0.99 0.99 83143

Accuracy of the given model is : 99.4780077697461

Fig: 4.2.10 Experiment 10 on selected hyperparameter tuning

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=20,min_samples_leaf=13,random_state=25)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

CONFUSION MATRIX

[[38384 323]

 [88 44348]]

CLASSIFICATION REPORT

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 289

 precision recall f1-score support

 anomaly 1.00 0.99 0.99 38707

 normal 0.99 1.00 1.00 44436

 accuracy 1.00 83143

 macro avg 1.00 0.99 1.00 83143

weighted avg 1.00 1.00 1.00 83143

Accuracy of the given model is : 99.5056709524554

Fig: 4.2.11 Experiment 11 on selected hyperparameter tuning

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=10,min_samples_leaf=8,random_state=15)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

print ('CONFUSION MATRIX')

print(confusion_matrix(y_test, pred))

print ('')

print ('CLASSIFICATION REPORT')

print(classification_report(y_test,pred))

print("Accuracy of the given model is : {}".format(accuracy_score(y_test,pred)*100))

CONFUSION MATRIX

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 290

[[38446 261]

 [94 44342]]

CLASSIFICATION REPORT

 precision recall f1-score support

 anomaly 1.00 0.99 1.00 38707

 normal 0.99 1.00 1.00 44436

 accuracy 1.00 83143

 macro avg 1.00 1.00 1.00 83143

weighted avg 1.00 1.00 1.00 83143

Accuracy of the given model is : 99.5730247886172

Fig: 4.2.12 Experiment 12 on selected hyperparameter tuning

INPUT/TUNE VALUES OF INTEREST HERE(PARAMETER GRID)

Number of trees in random forest

n_estimators = [int(x) for x in np.linspace(start = 10, stop = 300, num = 10)]

Number of features to consider at every split

max_features = ['auto', 'sqrt']

Maximum number of levels in tree

max_depth = [2,4]

Minimum number of samples required to split a node

min_samples_split = [2, 5]

Minimum number of samples required at each leaf node

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 291

min_samples_leaf = [1, 2]

criterion =['gini', 'entropy']

Method of selecting samples for training each tree

bootstrap = [True, False]

Create the param grid

param_grid = {'n_estimators': n_estimators,

 'max_features': max_features,

 'max_depth': max_depth,

 'min_samples_split': min_samples_split,

 'min_samples_leaf': min_samples_leaf,

 'criterion' :criterion,

 'bootstrap': bootstrap}

print(param_grid)

rf_Model = RandomForestClassifier()

 CV can be changed below

from sklearn.model_selection import RandomizedSearchCV

rf_RandomGrid = RandomizedSearchCV(estimator = rf_Model, param_distributions = param_grid, cv = 10,

verbose=2, n_jobs = 4)

rf_RandomGrid.fit(X_train, y_train)

BEST PARAMETER RESULT

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 292

rf_RandomGrid.best_params_

OPTIMISED HYPERPARAMETER TUNNING OF RANDOM FOREST CLASSIFIER RESULT

 print (f'Train Accuracy - : {rf_RandomGrid.score(X_train,y_train)*100:.3f}')

from sklearn.metrics import RocCurveDisplay

import matplotlib.pyplot as plt

ROC CURVE

rfc = RandomForestClassifier(n_estimators=10, random_state=42)

rfc.fit(X_train, y_train)

ax = plt.gca()

rfc_disp = RocCurveDisplay.from_estimator(rfc, X_test, y_test, ax=ax, alpha=0.2)

plt.show()

COMPARING OTHER ALGORITHM (Naive Bayes Algorithm and Decision Tree)

Naive Bayes Algorithm Result

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=9) #Split the dataset

from sklearn.naive_bayes import GaussianNB

nv = GaussianNB() # create a classifier

nv.fit(X_train,y_train) # fitting the data

from sklearn.metrics import accuracy_score

y_pred = nv.predict(X_test) # store the prediction data

#accuracy_score(y_test,y_pred) # calculate the accuracy

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 293

print("Accuracy of Naive Bayes Algorithm is : {}".format(accuracy_score(y_test,y_pred)*100))

Logistic Regression

import matplotlib.pyplot as plt

import numpy as np

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report, confusion_matrix

model = LogisticRegression(solver='liblinear', random_state=0)

model.fit(X, y)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

 intercept_scaling=1, l1_ratio=None, max_iter=100,

 multi_class='warn', n_jobs=None, penalty='l2',

 random_state=0, solver='liblinear', tol=0.0001, verbose=0,

 warm_start=False)

model = LogisticRegression(solver='liblinear', random_state=0).fit(X, y)

model.predict(X)

model.score(X, y)*100

RANDOM FOREST CLASSIFIER

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

rf=RandomForestClassifier(n_estimators=50,min_samples_leaf=0.2,random_state=42)

rf.fit(X_train,y_train)

pred=rf.predict(X_test)

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 294

print("Accuracy of Random Forest model is : {}".format(accuracy_score(y_test,pred)*100))

RidgeClassifier

from sklearn.linear_model import RidgeClassifier

from sklearn.datasets import load_iris

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_val_score

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

X, y = make_classification(n_samples=5000, n_features=10,

 n_classes=3,

 n_clusters_per_class=1)

xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.15)

rc = RidgeClassifier()

print(rc)

RidgeClassifier(alpha=1.0, class_weight=None, copy_X=True, fit_intercept=True,

 max_iter=None, normalize=True, random_state=None, solver='auto',

 tol=0.001)

rc.fit(xtrain, ytrain)

score = rc.score(xtrain, ytrain)

print("Accuracy Score of RidgeClassifier is ", (score)*100)

Perception Model

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 295

from sklearn.linear_model import Perceptron

clf = Perceptron(tol=1e-3, random_state=0)

clf.fit(X, y)

Perceptron()

clf.score(X, y)

Perceptron()

print("Accuracy Score of Perceptron model is: ", (score)*100)

Fig: 4.2.15 INPUT/TUNE VALUES OF INTEREST ON PARAMETER GRID

Fig: 4.2.16 RANDOM FOREST HYPERPARAMETER GRID DISPLAYED

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 296

Fig: 4.2.17 RANDOM FOREST BEST HYPERPARAMETER VALUES

Fig: 4.2.18 OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM FOREST CLASSIFIER RESULT

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 297

Fig: 4.2.19 EXPERIMENT 15 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

Fig: 4.2.20 EXPERIMENT 16 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 298

Fig: 4.2.21 EXPERIMENT 17 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

Fig: 3.21 EXPERIMENT 17 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 299

Fig: 4.2.22 EXPERIMENT 18 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

Fig: 4.2.23 EXPERIMENT 19 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 300

Fig: 4.2.24 EXPERIMENT 20 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

Fig: 4.2.25 EXPERIMENT 21 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 301

Fig: 4.2.26 EXPERIMENT 22 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

Fig: 4.2.27 EXPERIMENT 23 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 302

Fig: 4.2.28 EXPERIMENT 24 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

Fig: 4.2.29 EXPERIMENT 25 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 303

Fig: 4.2.30 EXPERIMENT 26 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

Fig: 4.2.31 EXPERIMENT 27 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 304

Fig: 4.2.32 EXPERIMENT 28 ON FULL OPTIMIZED HYPERPARAMETER TUNNING OF RANDOM

FOREST CLASSIFIER RESULT

Fig 4.2.33 COMPARISON WITH LOGISTIC REGRESSION ALGORITHM

Fig 4.2.34 COMPARISON WITH NAÏVE BAYES ALGORITHM

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 305

Fig 4.2.35 COMPARISON PERCEPTION MODEL ALGORITHM

Fig 4.2.36 COMPARISON WITH RANDOM FOREST ALGORITHM

Fig 4.2.37 COMPARISON WITH RIDGE-CLASSIFIER ALGORITHM

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 306

Fig 4.2.38 ROC (Receiver Operating Characteristic.) curve

S/N NUMBER OF

ESTIMATORS

MIN.

SAMPLES_

SPLIT

MIN

SAMPLE_

LEAF

MAX

FEATURES

MAX.

DEPTH

CRITE_

RION

BOOT-

STRAP

ACCURACY

(%)

1 100 5 2 Auto 4 Gini False 98.15

2 50 2 2 Sqrt 4 Gini True 97.88

3 30 5 1 Sqrt 4 Entropy False 97.91

4 20 5 1 Sqrt 4 Entropy True 97.62

5 70 5 1 Sqrt 4 Entropy False 97.70

6 26 5 2 Sqrt 4 Gini True 97.61

7 23 2 2 Sqrt 4 Entropy False 96.93

8 42 5 1 Sqrt 4 Entropy False 97.69

9 14 5 1 Auto 4 Entropy True 97.97

10 80 5 2 Sqrt 4 Entropy False 98.26

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 307

11 64 2 2 Auto 4 Gini True 97.62

12 72 5 2 Sqrt 4 Entropy True 98.16

13 41 2 2 Sqrt 4 Entropy True 97.41

14 203 5 1 Auto 4 Entropy True 98.22

Table 4.2. Experimental summary on RandomizedCV full hyperparameter tuning.

Discussion on Table 4.2

This section of experiment was carried out with full hyperparameter tuning which included the numbers of

estimators, minimum sample leaf, min sample split, max features, max depth, criterion and bootstrap, results of the

experiments clearly stated below the table. Experiments on using the RandomizedCV showed that when we had

estimators values at 100, 80, 72, 203, the accuracies were 98.15%, 98.62%, 98.16% and 98.22% respectively. it

was observed the performance in outcome with respect to accuracy was randomized, also on this experiment, it

was observed that on some occasions, the greater the numbers of trees on the nodes, the more predictive the

accuracy of the outcome. It was also observed from the randomizedSearchCV hyperparameter tuning that when

the estimators value = 80, Min. Sample leaf = 2, min sample split = 5, max features =sqrt, max depth = 4, criterion

= entropy, bootstrap = false , the efficiency on the outcome was 98.26% showing great adaptability of the model

with respect to an increase numbers of trees on the nodes..

This is just a complete testing of my model to check for correctness on predictive purpose, and its performance

was super.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 308

Fig 4.2.39 Graph depicting accuracy level of the RandomizedCV hyperparameter tuning.

ESTIMATORS ACCURACY

(%)

Estimator 72 98.16

Estimator 80 98.26

Estimator 100 98.15

Estimator 203 98.22

S/N COMPARISON OF ALGORITHIMS ACCURACY (%)

1. NAÏVE BAYES 52.93

2. RANDOM FOREST CLASSIFIER 91.82

3. RIDGE CLASSIFIER 89.53

4. PERCEPTION MODEL 89.52

5. LOGISTICS REGRESSION 89.22

6 OPTIMIZED RANDOM FOREST

CLASIFIER

98.26

98.08

98.1

98.12

98.14

98.16

98.18

98.2

98.22

98.24

Estimator 72 Estimator 80 Estimator 100 Estimator 203

ACCURACY (%)

ACCURACY (%)

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 309

Table 4.3 Experimental summary on Algorithms Comparison.

Fig 4..2.40 Graph depicting accuracy level of the comparison algorithm

Fig ROC (Receiver Operating Characteristic.)

0
10
20
30
40
50
60
70
80
90

100

ACCURACY (%)

ACCURACY (%)

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 310

ROC (Receiver Operating Characteristic.) curve ROC curve is an evaluation metric that measures the performance

of a machine learning model by visualizing accuracy is measured by the area under the ROC curve. An area of 1

represents a perfect test; an area of.5 represents a worthless test. From our ROC the area under (AU) the ROC is 1

which definitely represent a perfect test.

SUMMARY

Below are the experimental inferences of this research work, to this end,various observational and

computational analysis has contributed immensely to the successful completion of this work.

1). The X variables are the feature variables while the Y variable is the target variable.

X is also refers to as independent variables while Y is known as the dependent variable.

2). X_train - This includes all the independent variables that will be used to train the model, also as we

have specified the test_size = 0.2, this means 80% of observations from the complete data will be used to

train/fit the model and rest 20% will be used to test the model.

3). X_test – The remaining 20% portion of the independent variables from the data which is not not to be

used in the training phase but rather,it will be used to make predictions to test the accuracy of the model.

4). Y_train - This is the dependent variable which needs to be predicted by this model, this includes

category labels against the independent variables, we need to specify our dependent variable while

training/fitting the model.

5). Y_test - This data has category labels for your test data, these labels will be used to test the accuracy

between actual and predicted categories.

All the above mentioned variables are specified accordingly in our project code

 6). Comparison analysis with other algorithm (added to the optimized model)

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 311

FINDINGS OF STUDY

The model consist of the properties of decision trees, this combination gives Random forest algorithm

a better performance. After the execution of the program, the best Optimized Random Forest

behavioural hyper-parameters tuning result yielded has 98.26%, approximately 100% while Naïve

Bayes has 52.93% and Ridge Classifier had 89.53% while our default Random Forest classifier has

91.82 %.\

 CONCLUSIONS

 This proves that the Optimized Random Forest hyperparameter tuning is more efficient and better in

terms of practical usage than that of the default Random forest algorithms and some other machine

learning algorithms, its reliability also encourages future predictions to be forecasted which goes a long

way to solving machine learning problems.

References

(1) Barreiros M, Lundqvist P (2011). QoS-Enabled Networks: Tools and Foundations. West Sussex,

UK: John Wiley & Sons.

(2) Bhoyar, R., Ghonge, M., Gupta, S., 2013. Comparative study on IEEE standard of wireless

LAN/Wi-Fi 802.11 a/b/g/n. Int. J. Adv. Res. Electron. Commun. Eng. (IJARECE) 2 (7).

(3) Chiu DM, Sudama R (1992). Network monitoring explained: design and application. Ellis Horwood

Series in Computer Communications and Networking.

(4) Cisco (2008). Performance Management Best Practices for Broadband Service Providers. USA: Cisco

Systems Inc.

(5) Feng, P. 2012. Wireless LAN security issues and solutions. In: Robotics and Applications (ISRA), 2012

IEEE Symposium on (pp. 921–924). IEEE.

(6) Gokhale AA (2005). Introduction to Telecommunications (2 ed.). New York, United States of America:

Thomson Delmer Learning.

(7) Haykin S (2001). Communication Systems (4 ed.). New York, USA: John Wiley & Sons, Inc.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 312

(8) Hong J, Li VOK (2009). Impact of Information on Network Performance – An Information- Theoretic

Perspective. IEEE Glob. Telecomm. Conf. Publ. pp.1-6.

(9) Keiser G (2002). Local Area Networks. New York, United States of America: McGraw-Hill

Companies.

(10) Koendjbiharie S, Koppius O, Vervest P, van Heck E (2010). Network transparency and the

performance of dynamic business networks. 2010 4th IEEE International Conference on Digital

Ecosystems and Technologies (DEST). pp.197-202.

(11) Kouvastos DD (2011). Network Performance Engineering: A Handbook on Convergent Multi-service

Networks and Next Genereation Internet. German: Springer-Verlag Berlin Heidelberg.

(12) Lathi, B. (1998). Modern Digital and Analog Communication Systems. New York: Oxford University

Press Inc.

(13) Lawniczak AT, Tang X (2006). Packet Switching Network Performance Indicators as Function of

Network Topology and Routing Algorithms. IEEE Conference (CCECE '06) Publication. pp.1008-1011.

 (14) Milliken WC (2005). Patent No. 6978223. USA.

(15) Nassar DJ (2000). Network Performance Baselining (1 ed.). USA: MTP.

(16) Park KI (2005). QoS in Packet Networks. USA: Springer.

(17) Prasad,\ RS, Murray M, Dovrolis C, Claffy K (2003). Bandwidth estimation: metrics, measurement

and tools. Networking Journal, IEEE.

(18) Seshan S, Stemm M, Katz RH (1997). SPAND: Shared Passive Network Performance Discovery.

USENIX Symposium on Internet Technologies and Systems. California: USENIX.

(19) Sheldon, F.T., Weber, J.M., Yoo, S.M., Pan, W.D., 2012. Theinsecurity of wireless networks. Secur.

Privacy IEEE 10 (4), 54–61

(20) Soldani D, Li M, Cuny R (2006). QoS and QoE Management in UMTS Cellular Systems. West Sussex,

UK: John Wiley & Sons.

(21) Spohn DL (2000). Data Network Design. New York, United States of America: McGraw-Hill

Companies Inc.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 313

(22) Stallings W (1996July9). Knowing wiring basics can boost local net performance. Network World , P.

29.

(23) Stanford Linear Accelerator Center (SLAC). (n.d.). Network Monitoring Tools. Retrieved August 29,

2013, from http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html.

(24) Walrand J, Varaiya P (2000). High-Performance Communication Networks. USA: Academic Press.

 (25) Ogunrinde, S. I., 2004. Network Programming and Design, Heinemann Educational Press, pp. 1-12

(26) Menkiti, A. I., 2005. Logic Circuits, Devices and Applications, EFTIMO Nig Press, Calabar, pp 82-90

(27) Yucalar, F. & Erdogan, S. Z., July 2009. A Questionnaire Based Method for CMMI Level 2 Maturity

Assessment. Journal of aeronautics and Space Technologies, pp. 39-46

(28) Vincent A. Akpan, Reginald O. A. Osakwe and Amaku Amaku, Efficient Networking Of Tini For

Real-Time Weather Data Logging & Deployment Over Ethernet And Serialcommunication Links.

International Journal of Communications, Network and System Sciences (IJCNS), September 2013, P. O.

BOX 54821, Irvine CA 92619-4821, USA. (PUBLISHED)

(29) Amaku Amaku, Raphael E.Watti, John Joshua, Optic Fiber As A Reliable Medium For Metropolitan

Area Networking (Man) Connectivity, International Journal of Engineering and Technology (IJET)

Volume 4 No. 7, July, 2014, ISSN: 2049-3444 © 2014 –IJET Publications UK.

(30) Amaku Amaku, Rapheal Watti, Igbinosa G., Bandwidth As A Determinant Factor For Effective

Internet Connectivity In Educational Research Purpose In Higher Institution Of Learning. International

Journal of Engineering and Technology (IJET) Volume 6 No. 4, April , 2016, ISSN: 2049-3444 © 2016 –

IJET Publications UK.

[31] M.I. Jordan, T.M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science 349

(2015) 255260. https://doi.org/10.1126/science.aaa8415.

[32] M.-A. Zller and M. F. Huber, Benchmark and Survey of Automated Machine Learning Frameworks,

arXiv preprint arXiv:1904.12054, (2019). https://arxiv.org/abs/1904.12054.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIRTHE2081 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 314

[33] R. E. Shawi, M. Maher, S. Sakr, Automated machine learning: State-of-the-art and open challenges,

arXiv preprint arXiv:1906.02287, (2019). http://arxiv.org/abs/1906.02287.

[34] M. Kuhn and K. Johnson, Applied Predictive Modeling, Springer (2013) ISBN: 9781461468493.

[35] G.I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, H. Samulowitz, An effective algorithm for

hyperparameter optimization of neural networks, IBM J. Res. Dev. 61 (2017) 120.

https://doi.org/10.1147/JRD.2017.2709578.

[36] F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., Automatic Machine Learning: Methods, Systems,

Challenges, Springer (2019) ISBN 9783030053185.

[37] N. Decastro-Garca, . L. Muoz Castaeda, D. Escudero Garca, and M. V. Carriegos, Effect of the

Sampling of a Dataset in the Hyperparameter Optimization Phase over the Efficiency of a Machine

Learning Algorithm, Complexity 2019 (2019). https://doi.org/10.1155/2019/6278908.

[38] S. Abreu, Automated Architecture Design for Deep Neural Networks, arXiv preprint

arXiv:1908.10714, (2019). http://arxiv.org/abs/1908.10714.

[39] O. S. Steinholtz, A Comparative Study of Black-box Optimization Algorithms for Tuning of Hyper-

parameters in Deep Neural Networks, M.S. thesis, Dept. Elect. Eng., Lule Univ. Technol., (2018).

[40] G. Luo, A review of automatic selection methods for machine learning algorithms and hyper-

parameter values, Netw. Model. Anal. Heal, Informatics Bioinforma. 5 (2016) 116.

https://doi.org/10.1007/s13721-016-0125-6.

[41] D. Maclaurin, D. Duvenaud, R.P. Adams, Gradient-based Hyper-parameter Optimization through

Reversible Learning, arXiv preprint arXiv:1502.03492, (2015). http://arxiv.org/abs/1502.03492.

[42] J. B314

http://www.jetir.org/
http://arxiv.org/abs/1502.03492

