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ABSTRACT – 

 The purpose of this paper is to study the effect of exponential decreasing suction on the 

MHD 3-dimensional laminar flow of an electrically conducting, viscous and incompressible 

fluid through a porous medium. The porous medium is bounded by an infinite flat plate and the 

flow becomes 3-dimensional due to the variation of suction velocity in transverse direction at the 

plate. A magnetic field is applied perpendicular to the free stream velocity with neglecting 

induced magnetic field, hall effects, electrical and polarization effects. Analytical expressions for 

velocity are obtained. The important characteristics of the problem, the skin friction and the 

components of velocity field are discussed in detail with the help of tables and graphs. 

Key-words: MHD, Porous Medium, Laminar Flow, Skin Friction, Viscous Fluid. 

 

1. INTRODUCTION 

 

Laminar flows with suction are of principal interest because these are quite prevalent in 

nature. Such flows have many scientific and engineering applications particularly in the fields of 

agricultural engineering to study the underground water resources, seepage of water in river 

beds; in aeronautical engineering to reduce drag coefficients and hence to enhance the vehicle 

power by a substantial amount; in chemical engineering for filtration and purification processes; 

in petroleum technology to study the movement of natural gas, oil and water through the oil 
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reservoirs. The interest in these types of problem stems from the possibility of reducing the 

power required to pump oil in a pipe line by suitable addition of water. 

 The boundary layer suction is one of the most considerable subject and the developments 

on this subject since world war II, have been reported by Lachmann (1961).  

 The interaction of the magnetic field on the laminar three dimensional flow of an 

electrically conducting viscous fluid is of more recent origin and has received considerable 

interest due to the increasing technical applications of MHD effects. Efforts in this direction have 

been made by many researchers. Kishore, Tejpal and Katiyar (1981) considered unsteady 

MHD flow through two parallel porous flat plates. Singh (1991) analyzed the three dimensional 

flow and heat transfer along a porous plate in the presence of viscous dissipative heat. Shiam 

and Yaghoobinejad (1993) discussed suction flow along a circular surface. Gupta & Johari 

(2001) analyzed MHD three dimensional flow past a porous plate. Saxena & Johari (2008) 

considered unsteady MHD flow through porous medium and heat transfer past a porous vertical 

moving plate with heat source. Sahu & Rajput (2013) studied thermal diffusion and chemical 

reaction effects on free convection MHD flow through a porous medium bounded by a vertical 

surface with constant heat flux.  

 The object of this paper is to study hydromagnetic effects on the 3-dimensional laminar 

flow of an electrically conducting viscous incompressible fluid past a porous plate with 

transverse exponential decreasing suction. The uniform flow is subjected to a transversely 

applied magnetic field. The mathematical analysis is presented for the hydromagnetic boundary 

layer flow neglecting the induced magnetic field. 

 

2. MATHEMATICAL ANALYSIS 

The basic assumptions of the problem are: 

1. The flow is three-dimensional, steady and laminar. 

2. The fluid is viscous, incompressible and electrically conducting. 

3. Hall effects, polarization and electrical effects are neglected. 

4. The induced magnetic field is also neglected. 

5. The magnetic field is applied perpendicular to the free stream velocity. 

Under these assumptions the equations which govern the problem are: 
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CONTINUITY EQUATION 

  ∇ �̅� = 𝑂 

MOMENTUM EQUATION 

 (∇.  �̅�) �̅� =  −
1

𝜌
 ∇𝜌 + 𝑣 ∇2 �̅� + 

1

𝜌
 (𝐽 ̅  ×  �̅�) 

The last term on the right hand side of above equation is due to electromagnetic field.  

Where 𝐽 ̅ ×  �̅� is called Lorentz force and is defined as  

𝐽 ̅ ×  �̅� =  𝜕(�̅�  × �̅�)  × �̅� 

Consider the steady laminar three-dimensional flow of a viscous incompressible fluid 

through a porous medium. A transverse decreasing suction is applied in the direction of the flow. 

A co-ordinate system is introduced with porous plate lying horizontally on x* - z* plane. The x* 

-axis is taken along the plate i.e. the direction of the flow and y* -axis is taken normal to it 

directed into the fluid flowing laminarly with free stream velocity U. Since the plate is 

considered infinite in x*-direction, so all physical quantities will be independent of x*, however, 

the flow remains three-dimensional due to the variation of the suction velocity distribution of the 

form: 

  𝑣∗ =  −𝑣𝑜 {1 +  𝜀 𝑒−(𝜆𝑈𝑧∗/𝑣)}     (1) 

Where 𝑉𝑜 > 𝑂, is the mean suction velocity and 𝜀 (𝜀 < < 1) is a very small quantity. The 

negative sign indicates that the suction is towards the plate.   

A magnetic field of uniform strength BO is applied along y*-axis and is perpendicular to 

the free stream. Suppose u*, v* & w* be the velocity components in the directions x*, y* & z* 

respectively. 

Therefore governing equations are 

    
𝜕𝑣∗

𝜕𝑦∗
+ 

𝜕𝑤∗

𝜕𝑧∗
= 𝑂     (2) 

 𝑣∗  
𝜕𝑢∗

𝜕𝑦∗
+ 𝑤∗  

𝜕𝑢∗

𝜕𝑧∗
= 𝑣 {

𝜕2𝑢∗

𝜕𝑦∗2
+ 

𝜕2𝑢∗

𝜕𝑧∗2 } − 
𝜎𝐵𝑂

2 𝑢∗

𝜌
   (3) 

 𝑣∗  
𝜕𝑣∗

𝜕𝑦∗
+ 𝑤∗  

𝜕𝑣∗

𝜕𝑧∗
= −

1

𝜌
 

𝜕𝑝∗

𝜕𝑦∗
+  𝑣 {

𝜕2𝑣∗

𝜕𝑦∗2
+ 

𝜕2𝑣∗

𝜕𝑧∗2}    (4) 
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𝑣∗  
𝜕𝑤∗

𝜕𝑦∗
+ 𝑤∗  

𝜕𝑤∗

𝜕𝑧∗
= −

1

𝜌
 
𝜕𝑝∗

𝜕𝑧∗
+  𝑣 [

𝜕2𝑤∗

𝜕𝑦∗2
+ 

𝜕2𝑤∗

𝜕𝑧∗2
] −

𝜎𝐵𝑂
2𝑤∗

𝜌
   (5) 

The boundary conditions are 

𝑦∗ = 𝑜          ∶  𝑢∗ = 𝑜,     𝑣∗ = −𝑣0   [1 +  𝜀 𝑒−(𝜆𝑈𝑧∗/𝑣)],       𝑤∗ = 𝑜 

𝑦∗−> ∞    ∶  𝑢∗ = 𝑈, 𝑣∗ = −𝑣0            𝑤∗ = 𝑜,                𝜌∗ = 𝜌∞
∗

 (6) 

 

Equations (2) to (5) reduce to the non-dimensional form: 

    
𝜕𝑣

𝜕𝑦
+ 

𝜕𝑤

𝜕𝑧
= 𝑜     (7) 

  𝑣 
𝜕𝑢

𝜕𝑦
+  𝑤 

𝜕𝑢

𝜕𝑧
=  [

𝜕2𝑢

𝜕𝑦2
+ 

𝜕2𝑢

𝜕𝑧2
] −  𝑀𝑢    (8) 

  𝑣 
𝜕𝑣

𝜕𝑦
+  𝑤 

𝜕𝑣

𝜕𝑧
=  −

𝜕𝜌

𝜕𝑦
+ [

𝜕2𝑣

𝜕𝑦2
+ 

𝜕2𝑣

𝜕𝑧2
]    (9) 

  𝑣 
𝜕𝑤

𝜕𝑦
+  𝑤 

𝜕𝑤

𝜕𝑧
=  −

𝜕𝜌

𝜕𝑧
+ [

𝜕2𝑤

𝜕𝑦2
+ 

𝜕2𝑤

𝜕𝑧2
] −  𝑀𝑤  (10) 

And the boundary conditions (6) to  

𝑦 = 𝑜          ∶  𝑢 = 𝑜,     𝑣 = −𝜆   (1 +  𝜀 𝑒−(𝜆𝑧)),       𝑤 = 𝑜 

𝑦−> ∞      ∶  𝑢 = 1,      𝑣 = −𝜆           𝑤 = 𝑜,             𝜌 = 𝜌∞

  (11) 

Where the non-dimensional quantities are defined as 

  𝑢 =  
𝑢∗

𝑈
 ,   𝑣 =  

𝑣∗

𝑈
  ,  𝑤 =  

𝑤∗

𝑈
 , 

  𝑦 =  
𝑈𝑦∗

𝑣
 ,   𝑧 =  

𝑈𝑧∗

𝑣
  ,  𝑝 =  

𝑝∗

𝜌𝑈2
 

 SUCTION PARAMETER (𝝀): 

     𝜆 =  
𝑉𝑜

𝑈
 

HARTMANN NUMBER (M): 

    𝑀 =  
𝜎𝐵𝑜

2𝑣2

𝜇𝑈2
      (12)  

 In order to solve differential equations (7) to (10), we assume the solutions s of the 

following form because the amplitude 𝜖 ≪ 1 is very small: 
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  𝑢 (𝑦, 𝑧) =  𝑢𝑜(𝑦) +  𝜖 𝑢1 (𝑦, 𝑧) + … … … … … … … … .. 

  𝑣 (𝑦, 𝑧) =  𝑣𝑜(𝑦) +  𝜖 𝑣1 (𝑦, 𝑧) + … … … … … … … … .. 

  𝑤 (𝑦, 𝑧) =  𝑤𝑜(𝑦) +  𝜖 𝑤1 (𝑦, 𝑧) + … … … … … … … … ..  (13) 

  𝑝 (𝑦, 𝑧) =  𝑝𝑜(𝑦) +  𝜖 𝑝1 (𝑦, 𝑧) + … … … … … … … … .. 

When 𝜖 = 0, the problem reduces to the two-dimensional flow with constant suction at the 

plate. In this case equations (7) to (10) reduce to 

   𝑣0
′ = 0        (14) 

  𝑢0
′′ +  𝜆 𝑢0

′ − 𝑀𝑢0 = 0      (15) 

Where primes denote the differentiation with respect to y. 

The corresponding boundary conditions are: 

𝑦 = 𝑜                ∶            𝑢0 = 𝑜,         𝑣0 =  −𝜆 
𝑦−> ∞              ∶            𝑢0 = 1, 𝑣0 =  −𝜆 

    (16) 

The solutions of equations (14) & (15) under the boundary conditions (16) are 

   𝑢0 = 1−𝑒−𝑟1 𝑦      (17) 

with    𝑣0 =  −𝜆 

   𝑤0 =  0       (18) 

   𝑝0 =  𝑝∞     

Where 

   𝑟1 =  
1

2
 [ 𝜆 + √𝜆2 +  4𝑀 ]  

When 𝜖 ≠ 0, substituting (13) in equations (7) to (10) and comparing the coefficients of 

identical power of 𝜖, neglecting the higher powers of 𝜖, we get the following equations as the 

coefficients of 𝜖 with the help of equation (18) : 

  
𝜕𝑣1

𝜕𝑦
+ 

𝜕𝑤1

𝜕𝑧
= 0       (19) 

  𝑣1  
𝜕𝑢0

𝜕𝑦
−  𝜆 

𝜕𝑢1

𝜕𝑦
=  [ 

𝜕2𝑢1

𝜕𝑦2
+ 

𝜕2𝑢1

𝜕𝑧2
 ] − 𝑀𝑢1   (20) 
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  − 𝜆 
𝜕𝑣1

𝜕𝑦
=  − 

𝜕𝑝1

𝜕𝑦
+ [ 

𝜕2𝑣1

𝜕𝑦2
+ 

𝜕2𝑣1

𝜕𝑧2
 ]    (21) 

  − 𝜆 
𝜕𝑤1

𝜕𝑦
=  − 

𝜕𝑝1

𝜕𝑧
+ [ 

𝜕2𝑤1

𝜕𝑦2
+ 

𝜕2𝑤1

𝜕𝑧2
 ] − 𝑀𝑤1   (22) 

These are the linear partial differential equations which describe the three-dimensional 

flow. 

The corresponding boundary conditions become: 

𝑦 = 0    ∶      𝑢1 = 0,     𝑣1 =  −𝜆 𝑒−𝜆𝑧,     𝑤1 = 0 

 𝑦−> ∞    ∶      𝑢1 = 0,     𝑣1 =  0,     𝑤1 = 0     𝑝1 = 0   (23) 

In order to solve these equations we will first consider the equations (19), (21) & (22), 

being independent of the main flow component 𝑢1. We assume 𝑣1, 𝑤1 & 𝑝1 of the form: 

  𝑣1(𝑦 , 𝑧) =  𝑣11(𝑦)𝑒−𝜆𝑧      (24) 

  𝑤1(𝑦 , 𝑧) =  
1

𝜆
𝑣11

′ (𝑦) 𝑒−𝜆𝑧      (25) 

  𝑝1(𝑦 , 𝑧) =  𝑝11(𝑦) 𝑒−𝜆𝑧       (26) 

Where prime denote the differentiation w, r to y. Equations (24) & 25) have been chosen 

so that the continuity equation (19) is satisfied. Substituting these equations into equations (21) 

& (22) and applying the corresponding transformed boundary conditions, we get the solutions of 

v1, w1, & p1, as: 

𝑣1  =  
𝜆

(𝑟2 −𝑟22 )
{𝑟22 𝑒       

−𝑟2     𝑦 − 𝑟2 𝑒      
−𝑟22      𝑦}  𝑒−𝜆𝑧    (27) 

 𝑤1  =  
𝑟2 𝑟22

(𝑟2 −𝑟22 )
{ 𝑒       

−𝑟2     𝑦 −  𝑒      
−𝑟22      𝑦}  𝑒−𝜆𝑧    (28) 

𝑝1 =  
𝑟2  𝑟22

𝜆(𝑟2−𝑟22)
[{𝑟22(𝑟11 − 𝜆) − 𝑀 } 𝑒−𝑟22 𝑦 −  {𝑟2(𝑟1 − 𝜆) − 𝑀 } 𝑒−𝑟2 𝑦] 𝑒−𝜆𝑧 (29) 

Where 

  𝑟2 =  
1

2
 {𝑟1 + √𝑟1

2 +  4 𝜆2} 

𝑟11 =  
1

2
 {𝜆 − √𝜆2 +  4𝑀} 
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 𝑟22 =  
1

2
 {𝑟11 + √𝑟11

2 +  4 𝜆2} 

In order to solve the differential equation (20) for u1, we assume 

  𝑢1 (𝑦, 𝑧) =  𝑢11 (𝑦) 𝑒−𝜆𝑧      (30) 

Substituting this equation in (20) and solving under the boundary conditions (23), we get – 

𝑢1 =  
𝜆

(𝑟2−𝑟22)
{𝐶1 𝑒−𝑛𝑦 + 𝐶2 𝑒−(𝑟1+ 𝑟22)𝑦  +  𝐶3  𝑒−(𝑟1+ 𝑟2)𝑦 } 𝑒−𝜆𝑧 (31) 

Where  𝑛 =  
1

2
 {𝜆 +  √𝜆2 +  4(𝜆2 +  𝑀)} 

  𝐶1 =  𝐶2 − 𝐶3,  𝐶2 =  
𝑟2

𝑟22
,   𝐶3 =  

𝑟1𝑟22

𝑟2
    (3𝑟1− 𝜆) 

 

 

 

 

 

3. RESULT & DISCUSSION 

We now discuss the important flow characteristics of the problem. Knowing the velocity 

field we can obtain the expressions for the shear stress components in the x* & z*-directions in 

the non-dimensional form as: 

 𝜏𝑥 =  
𝜏𝑥

∗

𝜌𝑈2
=  [

𝜕𝑢

𝜕𝑦
]

𝑦=0
 

   =  𝑢0
′  (𝑜) +  𝜀 𝑢1

′  (𝑜) 

=  𝑟1 + 
𝜀𝜆

(𝑟2− 𝑟22)
 {𝐶2(𝑟1 + 𝑟22 − 𝑛) − 𝐶3(𝑟1 + 𝑟2 − 𝑛)} 𝑒−𝜆𝑧  (32) 

𝜏𝑧 =  
𝜏𝑧

∗

𝜌𝑈2
=  [

𝜕𝑤

𝜕𝑦
]

𝑦=0
  

  =  𝑤0
′ (𝑜) +  𝜀 𝑤1

′  (𝑜) 

   =  𝜀 𝑟2 𝑟22 𝑒−𝜆𝑧      (33) 
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The effect of the hartmann number (M) and Suction parameter (𝜆) with 𝜀 = 0 .2, z = 0 on 

the main flow velocity profiles u are shown in Fig.1. From this Figure it may be seen that 

velocity increases when the Hartmann number and Suction parameter increase and the 

differences of the velocity decrease with the increase of M & 𝜆. 

Figs. 2(a) & 2(b) give the variations of the transverse velocity component w1 for different 

values of Hartmann number (M) and Suction parameter (𝜆) at z = -0.5 & z = 0.5 respectively. A 

study of these Figures show that the transverse velocity component w1 increases with the 

increase of Hartmann number (M) & Suction parameter (𝜆) both. It can also seen from these 

Figures that the transverse velocity component w1 increases with the decreases of M at a constant 

value of 𝜆 but w1 decreases with the decreases of 𝜆 at a constant Hartmann number. 

The numerical values of skin-frictions have been listed in Table 1(a) & 1(b) for various 

values of M and 𝜆 at 𝜀 = 0.2, z=0. A study of Table 1 (a) shows that main flow skin-friction (𝜏𝑥) 

increases when the Hartmann number (M) and Suction parameter (𝜆) increase. And Table 1(b) 

shows that skin-friction in the direction perpendicular to the main flow (𝜏𝑧) decreases with the 

increases of Hartmann number at a constant 𝜆 but it is increases with the increases of Suction 

parameter at a constant M. 

 

Table 1(a) : Main flow skin-friction (𝝉𝒙) at 𝜺 = 𝟎. 𝟐, z=0 

𝜆 M 

0 2 4 

0.5 0.5500 1.6407 2.3203 

1.0 1.1000 2.1130 2.6746 

 

 

Table 1(b) : Skin-friction in the direction perpendicular to the main flow (𝝉𝒛) at 𝜺 = 𝟎. 𝟐, 

z=0 
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𝜆 M 

0 2 4 

0

.

5 

0.0

809 

0.0

667 

0.0

625 

1

.

0 

0.3

236 

0.2

984 

0.2

835 
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NOMENCLATURE 

 

�̅�  Magnetic field 

𝐵0  Magnetic field component along 𝑦∗ - axis 

M  Hartmann number 

𝑝∗  Pressure 

P  Dimensionless pressure 

𝑃∞
∗   Pressure at 𝑦∗ = ∞ 

 𝐽 ̅  Current density vector 

 𝑢,
∗ 𝑣,

∗ 𝑤∗ Velocity Components in the directions x*, y* & z* respectively 

 u, v, w Dimensionless velocity components in the directions x, y & z  

respectively 

 U  Free stream velocity 

 �̅�  Velocity vector 

 V0  Mean suction velocity 

 𝑥,
∗ 𝑦,

∗ 𝑧∗ Co-ordinate system 

x, y, z  Dimensionless co-ordinate system 

𝜌  Density 

𝜎  Electrical conductivity 

𝑣  Kinematic viscosity 

𝜇  Coefficient of viscosity 

𝜆  Suction parameter 

𝜏𝑥  Main flow skin-friction 

𝜏𝑧  Skin-friction in the direction perpendicular to the main flow 
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