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Abstract :  The study presents a comparative analysis of three prediction models, Logistic Regression (LR), Random Forest (RF), 

and Multi-Layer Perceptron Neural Networks (MLPNN). It employs a trial and error method for optimizing hyperparameters in 

slope stability prediction. The study utilizes a dataset comprising 108 slope cases with various influencing factors, including unit 

weight (Ƴ), cohesion (c), angle of internal friction (ɸ), slope angle (β), height (H), pore water pressure coefficient (ru), and factor 

of safety (FS) as inputs, while slope status (S) serves as the output variable. Based on the confusion matrix and ROC curves, the 

RF model demonstrated superior performance over the other models. The utilization of RF enhances the capacity and efficiency of 

slope deformation prediction models, establishing it as the most accurate tool for forecasting slope stability.  

 

 

IndexTerms - Machine Learning, Slope Stability, Limit Equilibrium, Logistic Regression, Neural Networks, Artificial Intelligence.  

I. INTRODUCTION 

 

Slopes represent one of the predominant geological features in both natural landscapes and human-engineered environments. 

However, the inherent instability of slopes, often triggered by a combination of natural and man-made factors, including 

collapses, landslides, and mudslides, has resulted in substantial loss of life, property, and economic resources. Accurately 

assessing slope stability is pivotal in the success of slope engineering endeavors. Given the complex and nonlinear nature of 

slope dynamics, which involve myriad random and intricate elements, the relationships between slope stability and its influencing 

factors are highly nonlinear [1]. 
 

Conventional methods for analyzing slope stability, such as the limit equilibrium method and numerical analysis techniques like 

the numerical manifold method (NMM), discontinuous deformation analysis (DDA), and phase-field model (PFM), have 

encountered significant limitations. These methodologies often grapple with "unclear mechanisms" and "inaccurate models," 

impeding their ability to accurately forecast the stability of complex slopes [2]–[5]. Moreover, the computational demands 

associated with these traditional methods pose challenges, especially in scenarios where rapid stability assessments are 

imperative, such as in large-scale engineering projects like hydroelectric endeavors. 

 

The advancements in science and technology have facilitated the application of machine learning techniques in slope stability 

analyses. These approaches involve scrutinizing available slope data to understand and predict the interplay between slope 

stability and its influencing factors. Yaser et.al (2023) [6] carried out comparative analysis utilizing a range of machine learning 

techniques, including multilayer perceptron (MLP), decision tree (DT), support vector machines (SVM), and random forest (RF) 

algorithms. The objective revolves around predicting the Factor of Safety (F.S) for earth slopes, aiming to enhance stability 

analysis and facilitate the adoption of suitable stabilization measures. To achieve this, a dataset comprising 100 earth slopes 

sourced from diverse locations across Iran is employed, subsequently partitioned into distinct training and testing sets. The 

overarching aim is to furnish precise and dependable calculations of the Factor of Safety, thereby fortifying the accuracy of 

stability assessments and enabling the effective implementation of appropriate measures to bolster earth slope stability.  

Bui et.al (2019) [7] used machine learning to predict slope failure safety factors, comparing regression methods like multi-layer 

perceptron (MLP), Gaussian process regression (GPR), multiple linear regression (MLR), simple linear regression (SLR), and 

support vector regression (SVR). It replaces traditional slope analysis with more advanced machine learning-based design tools. 

The aim is to optimize these models using a dataset of 630 analyses split into training (504) and testing (126) sets. Statist ical 

indices reveal MLP as the top performer among the machine learning models. Mahmoodzadeh et.al (2022) [8] performed a 

comparison between six machine learning techniques, Gaussian process regression (GPR), support vector regression, decision 

trees, long-short term memory, deep neural networks, and K-nearest neighbors were performed. The study concluded most of 

the features in this study have significant contributions to slope stability.  
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Choobbasti et.al (2009) [9] utilized ANN systems consisting of multilayer perceptron networks are developed to predict slope 

stability in a specified location, based on the available site investigation data from Noabad, Mazandaran, Iran. The results were 

compared with limit equilibrium and found to be better perfroming model for slope stability prediciton. Das et.al (2011) [10] 
developed different ANN models to classify slope and to predict foctor of safety. On comparing the model with support vector 

machine and genetic programming, ANN outperformed.  

 

In recent years, the integration of intelligent computational techniques has significantly impacted various aspects of geotechnical 

applications. These applications span a wide spectrum, including critical areas such as landslide susceptibility assessment [11]–
[14], settlement prediction for shallow foundations [15], [16], estimation of bearing capacity for pile foundations [17]–[19], 
determination of physical properties of soil [20], assessment of soil quality [21], and evaluation of liquefaction potential [22]. 
Moreover, as the accessibility and availability of slope-related parameters have increased, supervised learning methods have 

emerged as a robust approach for predicting slope stability. The utilization of these methods has yielded noteworthy and 

promising results in the realm of slope stability prediction. This trend marks a significant advancement in geotechnical 

engineering, offering enhanced tools and methodologies to foresee and manage slope stability concerns through the application 

of computational intelligence. 

. 

II. DATA VISUALIZATION METHODOLOGY  

The study uses the dataset from [23], that consists the magnitude of unit weight (Ƴ), cohesion (c), angle of internal friction (ɸ), 

slope angle (β), height (H), pore water pressure coefficient (ru),factor of safety (FS) as input and status of slope (S) as output i.e. 

stable (1) or unstable (0). The FS serves as a comprehensive tool for assessing the stability of a slope. Before commencing the 

analysis, the dataset was normalized using Eq.(1) to enhance the performance of the model. Normalizing the data to a 

standardized range is instrumental in enhancing the model's capacity to generalize and make precise predictions when presented 

with new, unseen data. This normalization procedure plays a pivotal role in ensuring a more robust and reliable model 

performance. 

𝑦𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛= 
𝑥− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
    (1) 

where, y is a normalized input parameter, x is the original input parameter, and xmax and xmin are the maximum and minimum 

parameters, respectively. 

 

The basic descriptive statistical analysis for the dataset is shown in Table 1. The correlation between input variables and the 

slope's status is vividly depicted through the correlation Table 2 and pairplots found in Figure 2. These visual representations 

offer comprehensive insights into the correlation coefficients and the marginal frequency distributions of each parameter. They 

effectively showcase the intricate pairwise relationships existing among these parameters. The diagonal histograms within the 

pairplots vividly illustrate the distribution of numerical values associated with each feature. Table 2 specifically highlights 

intriguing correlations, notably demonstrating a positive relationship between the Status feature and cohesion, while showcasing 

a negative correlation with the slope's height. These revelations hint at the varying impacts different variables exert on the Status 

feature, contributing to a deeper understanding of the dynamics at play. 

 

Furthermore, the dataset's characteristics are visually presented through Violin plots, showcased in Figure 1. These plots serve 

to explain the distribution and density of data across distinct categories or groups. Notably, the width of the violin graphically 

represents data density at different points, with thicker sections indicating higher density and thinner parts suggesting regions of 

lower density. The horizontal line within the violin signifies the median value of the dataset, offering a pivotal reference point to 

gauge the central tendency of the data. 

 

Additionally, the methodology's workflow and process are briefly outlined in the form of a flow chart, depicted in Figure 3. This 

visual aid offers a structured representation of the steps involved in the study's approach, providing a clear roadmap of the 

methodology's progression and stages. These visual aids collectively enrich the understanding of the dataset's characteristics, 

interrelationships between variables, and the procedural pathway followed in the study's methodology. 

 

 

 

Table 1 : Description of Dataset  
 

index ḃ (kN/m3) C (kPa) ∑ (0) ʲ ό0) H (m) ru FS 

Standard 
deviation 

3.68 22.40 11.25 9.67 47.37 0.17 0.40 

min 12.00 0.00 0.00 16.00 3.60 0.00 0.63 

mean 20.01 14.58 26.25 33.44 44.28 0.19 1.29 

max 28.44 150.05 45.00 53.00 214.00 0.50 2.31 

Average 19.96 10.48 26.63 33.26 40.73 0.21 1.28 

Variance 12.53 116.73 116.57 90.23 1845.94 0.03 0.16 

count 108.00 108.00 108.00 108.00 108.00 108.00 108.00 
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Table 2 : Correlation Matrix of dataset 

 

index Ƴ C ɸ β H ru FS Status 

Ƴ 1 0.327 0.378 0.186 0.472 -0.030 0.252 0.326 

C  1.000 0.238 0.311 0.397 -0.233 0.136 0.234 

ɸ   1.000 0.564 0.244 0.048 0.304 0.429 

β    1.000 0.188 -0.120 -0.202 0.101 

H     1.000 -0.207 -0.180 -0.042 

ru      1.000 -0.221 -0.121 

FS       1.000 0.780 

Status               1.000 

 

 
Figure 1 : Violin Plots showing distribution of slope cases 
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Figure 2 : Pairplots of variables 

 

 

 
 

Figure 3 : Methodology of the Study 

 

III. Results and Discussion 
The study implements the use of Logistic Regression (LR), Random Forest (RF) and Multi-Layer Perceptron Neural Networks 

(MLPNN) for the prediction of slope stability. The dataset consists of 108 data sample that consists the magnitude of unit weight 
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(Ƴ), cohesion (c), angle of internal friction (ɸ), slope angle (β), height (H), pore water pressure coefficient (ru), factor of safety 

(FS) as input and status of slope (S) as output i.e. stable (1) or unstable (0). The dataset is divided into 70:30 (70% training and 

30% testing).  The hyperparameters taken in the analysis are shown in Table 3. The performance of the model is evaluated using 

AUC and ROC curve. The optimal hypermeters of different algorithms for best AUC score were obtained by trial and error, is 

shown in Table 4. The Confusion Matrix of each model is shown in Figure 4. The confusion matrix evaluates the performance 

of classification model by providing summary of predicted and classified output by the model. Various metrics such as accuracy, 

precision, recall, specificity and f1 score are used to evaluate the model performance and understand its strengths and weaknesses 

in classifying instances. The confusion matrix provides a detailed breakdown of the model's predictions, making it a useful tool 

in machine learning evaluation and model selection. The optimal hyper-parameters for each algorithm obtained are displayed in 

Table 4. 

 

 

Table 3 : Hyperparameters taken for analysis 

 

Algorithm Hyperparameters 

LR C = [50,100,150,200,250,300], max_iter = 500 

RF n_estimators = [100,200,300,400,500,600], criterion = 'entropy' 

MLPNN max_iter = [100,200,300,400,500,600], learning_rate_init=0.001 

 

 

Table 4 : Optimal Hyperparameters for best AUC score 

 

Algorithm Optimal Hyperparameters AUC 

LR C=50 0.879 

RF n_estimators = 200 1 

MLPNN max_iter = 400 0.969 

 

 

Based on Figure 4, it can be observed that LR has the highest number of misclassifications, with a maximum of 2. Following 

MLPNN have 1 misclassification while RF has no misclassifications out of the total 33 instances in the testing dataset. Thus, lesser 

the misclassification more the accuracy of model. Therefore, from Table 4 , the model with highest value of  AUC is RF = 1 and 

lowest value of AUC of LR  = 0.879. Among the three models, RF outperformed other models but the performance of LR and  

MLPNN is slightly similar however comparatively lower than RF. The performance comparison of different algorithms used in this 

study is illustrated in Fig (5) through ROC curves. The results presented in Fig (5) indicate that Random Forest (RF) exhibited 

exceptional performance with a perfect Area Under the Curve (AUC) score of 1, indicating its remarkable ability to discriminate 

between classes. Logistic Regression (LR) demonstrated strong predictive power with an AUC of 0.879, emphasizing its 

effectiveness in capturing essential patterns within the data. Furthermore, both MLPNN displayed impressive AUC scores of 0.969, 

highlighting their robustness and reliability in handling complex relationships within the dataset.  
 

 
Figure 4 : Confusion Matrix of models for best AUC score 

 

These results highlight the significance of choosing machine learning algorithms that align with the unique characteristics of the 

problem at hand. The exceptional performance of Random Forest (RF) emphasizes its suitability for tasks where precision and 

accuracy take precedence. Despite a slight lag, MLPNN remains a valuable option for scenarios where achieving a balance between 

interpretability and predictive strength is key. Furthermore, the similar performances of RF and MLPNN demonstrate the 

adaptability of these algorithms, positioning them as strong contenders for a wide array of predictive modeling endeavors.  
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Figure 5 : ROC Curve of Models 

 

 

IV. Conclusion 

In conclusion, this research explored slope stability prediction using LR, RF, and MLPNN algorithms, constructing models based 

on geological conditions and failure mechanisms. The study utilized a dataset of 108 slope cases with key influencing factors. 

Hyperparameters were fine-tuned through trial and error, and evaluation metrics like the confusion matrix, AUC score, and ROC 

curve were employed. 

 

Among the models, RF demonstrated superior performance in predicting slope stability compared to others, as evidenced by the 

confusion matrix and ROC curves. This suggests RF's potential as a reliable tool for such predictions. The research not only 

offers comparative insights into predictive models but also emphasizes the importance of robust evaluation methods. These 

findings can pave the way for further studies and practical applications in slope stability analysis, aiding in informed decision-

making and risk reduction for unstable slopes. 
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