$f\tilde{e}$ -continuous and $f\tilde{e}$ -irresolute Mappings

K. Balasubramaniyan

Department of Mathematics Government Arts and Science College for Women Bargur, Krishnagri, Tamil Nadu-635 104, Mathematics Section, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India.

Abstract

In this paper the concept of \tilde{fe} -continuous, \tilde{fe} -irresolute, \tilde{fe} -open and \tilde{fe} -closed mappings are introduced. Some interesting properties and characterizations of them are investigated. Interrelations among the concepts are introduced are studied.

Keywords and phrases: \tilde{fe} -continuous, \tilde{fe} -irresolute, \tilde{fe} -open, \tilde{fe} -closed and $\tilde{fe}T_{\frac{1}{2}}$ -space.

AMS (2000) subject classification: 54A40, 54A99, 03E72, 03E99.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [11] in his classical paper. Fuzzy sets have applications in many fields such as information [7] and control[9]. In 1985, Sostak [8] established a new form of fuzzy topological structure. The concept of fuzzy e-open set was introduced and studied by Seenivasan [6]. The concept of fuzzy $e - T_{\frac{1}{2}}$ -space was introduced

and studied by[6]. The concept of g-border, g-frontier were studied in[2]. Balasubramaniyan [1] introduced the concepts of r-fuzzy \tilde{e} -border, r-fuzzy \tilde{e} -exterior, r-fuzzy \tilde{e} -frontier in the sense of Sostak [8] and Ramadan [4] are introduced. In this paper the concept of $f\tilde{e}$ -continuous, $f\tilde{e}$ -irresolute, $f\tilde{e}$ -open and $f\tilde{e}$ -closed mappings are introduced. Some interesting properties and characterizations of them are investigated. Interrelations among the concepts are introduced are studied.

Throughout this paper, let X be a non-empty set, I = [0,1] and $I_0 = (0,1]$.

2. Preliminaries

Definition 2.1 [5]A function $T: I^X \to I$ is called a smooth topology on X if it satisfies the following conditions:

- (i) T(0) = T(1) = 1.
- (ii) $T(\mu_1 \wedge \mu_2) \ge T(\mu_1) \wedge T(\mu_2)$ for any $\mu_1, \mu_2 \in I^X$.
- (iii) $T(\bigvee_{i\in\Gamma}\mu_i) \ge \bigwedge_{i\in\Gamma}T(\mu_i)$ for any $\{\mu_i\}_{i\in\Gamma} \in I^X$.

The pair (X,T) is called a smooth topological space

Remark 2.1 Let (X,T) be a smooth topological space. Then, for each $r \in I_0, T_r = \{\mu \in I^X; T(\mu) \ge r\}$ is Chang's fuzzy topology on X.

Proposition 2.1 [5] Let (X,T) be a smooth topological space. For each $\lambda \in I^X$, $r \in I_0$ an operator $C_\tau: I^X \times I_0 \to I^X$ is defined as follows:

 $C_{\tau}(\lambda,r)=\bigwedge\{\mu\colon \mu\geq \lambda, T(\bar{1}-\mu)\geq r\}$. For $\lambda,\mu\in I^X$ and $r,s\in I_0$ it satisfies the following conditions:

- (1) $C_{\tau}(\bar{0},r) = \bar{0}$.
- (2) $\lambda \leq C_{\tau}(\lambda, r)$.
- (3) $C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r) = C_{\tau}(\lambda \vee \mu, r)$.
- (4) $C_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, s)$ if $r \leq s$.
- (5) $C_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(\lambda, r)$.

Proposition 2.2 [4] Let (X,T) be a smooth topological space. For each $\lambda \in I^X$, $r \in I_0$ an operator $I_{\tau}: I^X \times I_0 \to I^X$ is defined as follows:

 $I_{\tau}(\lambda,r)=\bigvee\{\mu\colon\mu\leq\lambda,T(\mu)\geq r\}$. For each $\lambda,\mu\in I^X$ and $r,s\in I_0$ it satisfies the following conditions:

- (1) $I_{\tau}(\bar{1}-\lambda,r) = \bar{1}-C_{\tau}(\lambda,r)$
- (2) $I_{\tau}(\bar{1},r) = \bar{1}$.
- (3) $I_{\tau}(\lambda, r) \leq \lambda$
- (4) $I_{\tau}(\lambda, r) \wedge I_{\tau}(\mu, r) = I_{\tau}(\lambda \wedge \mu, r)$.
- (5) $I_{\tau}(\lambda, r) \ge I_{\tau}(\lambda, s)$ if $r \le s$.
- (6) $I_{\tau}(I_{\tau}(\lambda,r),r) = I_{\tau}(\lambda,r)$.

Definition 2.2 [3] Let (X, τ) be a fuzzy topological space, $\lambda \in I^X$ and $r \in I_0$. Then

- (1) A fuzzy set λ is called r-fuzzy regular open (for short, r-fro) if $\lambda = I_{\tau}(C_{\tau}(\lambda, r), r)$.
- (2) A fuzzy set λ is called r-fuzzy regular closed (for short, r-frc) if $\lambda = C_{\tau}(I_{\tau}(\lambda, r), r)$.

Definition 2.3 [3] Let (X, τ) be a fts. For $\lambda, \mu \in I^X$ and $r \in I_0$.

- (1) The r-fuzzy δ closure of λ , denoted by $\delta C_{\tau}(\lambda, r)$, and is defined by $\delta C_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^{X} \mid \mu \geq \lambda, \mu \text{ is } r \text{-frc } \}$.
- (2) The r-fuzzy δ interior of λ , denoted by $\delta I_{\tau}(\lambda, r)$, and is defined by $\delta I_{\tau}(\lambda, r) = \sqrt{\{\mu \in I^X \mid \mu \leq \lambda, \mu \text{ is } r \text{-feo } \}}$.

Definition 2.4 [10] Let (X, τ) be a fuzzy topological space, $\lambda \in I^X$ and $r \in I_0$. Then

- (1) a fuzzy set λ is called r-fuzzy e open (for short, r-feo) if
- $\lambda \leq I_{\tau}(\delta C_{\tau}(\lambda, r), r) \vee C_{\tau}(\delta I_{\tau}(\lambda, r), r).$
- (2) A fuzzy set $\ \lambda$ is called $\ r$ -fuzzy regular closed (for short, $\ r$ -frc) if $\ \lambda \geq I_{\tau}(\delta C_{\tau}(\lambda,r),r) \wedge C_{\tau}(\delta I_{\tau}(\lambda,r),r)$.

Definition 2.5 [10] Let (X, τ) be a fts. For $\lambda, \mu \in I^X$ and $r \in I_0$.

- (1) The r-fuzzy e closure of λ , denoted by fe- $C_{\tau}(\lambda,r)$, and is defined by fe- $C_{\tau}(\lambda,r) = \bigwedge \{ \mu \in I^{X} \mid \mu \geq \lambda, \mu \text{ is } r\text{-fec } \}$.
 - (2) The r-fuzzy e interior of λ , denoted by fe- $I_{\tau}(\lambda,r)$, and is defined by fe-

 $I_{\tau}(\lambda, r) = \sqrt{\{\mu \in I^X \mid \mu \le \lambda, \mu \text{ is } r \text{-feo } \}}.$

Lemma 2.1 [10] In a fuzzy topological space X,

- 1. Any union of r-fuzzy e-open sets is a r-fuzzy e-open set.
- 2. Any intersection of r-fuzzy e-closed sets is a r-fuzzy e-closed set.

Definition 2.6 [1]Let (X,T) be a smooth topological space. For $\lambda, \mu \in I^X$ and $r \in I_0$.

- (1) λ is called r-fuzzy e-open (briefly r-fe0) if f0 o) if f0. μ 1, whenever $\lambda \geq \mu$ 2 and $\mu \in I^X$ is r-fec.
- (2) λ is called r-fuzzy e-closed (briefly r-fec) if fe- $C_{\tau}(\lambda,r) \leq \mu$, whenever $\lambda \leq \mu$ and $\mu \in I^X$ is r-feo.
- (3) The r-fuzzy \tilde{e} -interior of λ , denoted by \tilde{fe} - $I_r(\lambda,r)$ is defined as \tilde{fe} - $I_{\tau}(\lambda, r) = \sqrt{\{\mu : \mu \leq \lambda, \mu \mid \text{is } r - \text{feo}\}}.$
- (4) The r-fuzzy e-closure of λ , denoted by $fe C_T(\lambda, r)$ is defined as $fe C_T(\lambda, r)$ $C_T(\lambda, r) = \bigwedge \{ \mu : \mu \ge \lambda, \mu \text{ is } r - \tilde{\mathsf{fec}} \}.$

Definition 2.7 [1] Let (X,T) be a smooth topological space. For each $\lambda \in I^X$ and $r \in I_0$, the $r - f\tilde{e}$ -border of λ , denoted by $f\tilde{e} - b_T(\lambda, r)$ is defined as $f\tilde{e} - b_T(\lambda, r) = \lambda - f\tilde{e} - I_T(\lambda, r)$.

Definition 2.8 [1] Let (X,T) be a smooth topological space. For $\lambda \in I^X$ and $r \in I_0$, the r-fuzzy e^{-t} -frontier of λ , denoted by fe^{-t} - $fr_{T}(\lambda,r)$ is defined as fe^{-t} - $fr_{T}(\lambda,r)$ = fe^{-t} - fe^{-t} - fe^{-t} $I_{\tau}(\lambda,r)$.

Definition 2.9 [1] Let (X,T) be a smooth topological space. For $\lambda, \mu \in I^X$ and $r \in I_0$, the r-fuzzy $e^{-\epsilon}$ -exterior of λ , denoted by $fe^{-\epsilon}$ - $Ext_T(\lambda, r)$ is defined as $fe^{-\epsilon}$ - $Ext_T(\lambda, r) = fe^{-\epsilon}$ - $I_T(\bar{1} - \lambda, r)$.

> Properties of fuzzy e-continuous and fuzzy e-irresolute mappings

In this section, the properties of fuzzy e-irresolute and fuzzy e-continuous mappings are established.

Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be any mapping. Then

- (1) f is called fuzzy e-open if $f(\mu)$ is a r-fe o set for each r-fe o set $\mu \in I^X$, $r \in I_0$
- (2) f is called fuzzy e-closed if $f(\mu)$ is a r-fec set for each r-fec set $\mu \in I^X$, $r \in I_0$.
- (3) f is called fuzzy e-continuous if $f^{-1}(\mu)$ is a r-fe c for every r-fe c set $\mu \in I^Y, r \in I_0$.
- (4) f is called fuzzy $e^{-irresolute}$ if $f^{-1}(\mu)$ is a r-fe c for each r-fe c set $\mu \in I^Y$, $r \in I_0$.

Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T)\to (Y,S)$ be a function. Then the following statements are equivalent.

- (1) f is a fuzzy \tilde{e} -irresolute function.
- (2) $f(\tilde{fe} C_r(\lambda, r)) \le \tilde{fe} C_s(f(\lambda), r)$, for every $\lambda \in I^X$, $r \in I_0$.
- (3) $\tilde{fe} C_r(f^{-1}(\mu), r) \le f^{-1}(\tilde{fe} C_s(\mu, r))$, for every $\lambda \in I^Y$, $r \in I_0$.

Proof. (1) \Rightarrow (2): Let f be a fuzzy \tilde{e} -irresolute function and let $\lambda \in I^X$. Then $f\tilde{e}$ - $C_s(f(\lambda),r)$ is a r- \tilde{fe} c set. By (1), $f^{-1}(\tilde{fe}-C_s(f(\lambda),r))$ is a r- \tilde{fe} -closed set. Thus \tilde{fe} - $C_T(f^{-1}(f\tilde{e}-C_S(f(\lambda),r),r))=(f^{-1}(f\tilde{e}-C_S(f(\lambda),r)))$. Now, $\lambda \leq f^{-1}(f(\lambda))$. Therefore, $f\tilde{e}-C_S(f(\lambda),r)$. $C_{\tau}(\lambda, r) \leq \tilde{fe} - C_{\tau}(f^{-1}(f(\lambda)), r) \leq \tilde{fe} - C_{\tau}(f^{-1}(\tilde{fe} - C_{\varsigma}(f(\lambda), r)), r) = f^{-1}(\tilde{fe} - C_{\varsigma}(f(\lambda), r))$. Hence, $f(\tilde{fe} - C_r(\lambda, r)) \leq \tilde{fe} - C_s(f(\lambda), r)$.

- (2) \Rightarrow (3): Let $\mu \in I^Y$, then $f^{-1}(\mu) \in I^X$. By (2), $f(\tilde{fe} C_T(f^{-1}(\mu), r)) \leq \tilde{fe}$ $C_s(f(f^{-1}(\mu)),r) \le \tilde{fe} - C_s(\mu,r)$. Hence $\tilde{fe} - C_r(f^{-1}(\mu),r) \le f^{-1}(\tilde{fe} - C_s(\mu,r))$.
- (3) \Rightarrow (1): Let $\gamma \in I^{\gamma}$, be a $r f\tilde{e}$ -closed set. Then $f\tilde{e} C_{\varsigma}(\gamma, r) = \gamma$. By (3) $f\tilde{e} C_{\varsigma}(\gamma, r) = \gamma$. $C_S(f^{-1}(\gamma),r) \leq f^{-1}(\tilde{fe} - C_S(\gamma,r)) = f^{-1}(\gamma)$. But $f^{-1}(\gamma) \leq \tilde{fe} - C_T(f^{-1}(\gamma),r)$. Therefore, $f^{-1}(\gamma) = \tilde{fe} - C_T(f^{-1}(\gamma), r)$. Hence $f^{-1}(\gamma)$ is a $r - \tilde{fe}$ -closed set. Thus f is fuzzy \tilde{e} -irresolute function.

Propoition 3.2 Let (X,T) and (Y,S) be any two smooth topological spaces. A mapping $f:(X,T)\to (Y,S)$ is a \tilde{fe} -closed iff $\tilde{fe}-C_s(f(\lambda),r)\leq f(\tilde{fe}-C_r(\lambda,r))$ for each $\lambda\in I^X$ and $r \in I_0$.

Proof. Let $\lambda \in I^X$ be a $r - f\tilde{e}$ -closed set. Suppose that $f\tilde{e} - C_s(f(\lambda), r) \leq f(f\tilde{e} - C_r(\lambda, r))$. Now $\tilde{fe} - C_r(\lambda, r) = \lambda$. This implies $\tilde{fe} - C_s(f(\lambda), r) \le f(\tilde{fe} - C_r(\lambda, r)) \le f(\lambda)$. But $f(\lambda) \le \tilde{fe} - C_S(f(\lambda), r)$. Hence, $\tilde{fe} - C_S(f(\lambda), r) = f(\lambda)$. Therefore f is \tilde{fe} -closed. Conversely, let f be an \tilde{fe} -closed function. Let $\lambda \in I^X$. Then $\tilde{fe} - C_T(\lambda, r)$ is $r - \tilde{fe}$ -closed. Therefore, $f(\tilde{fe} - C_T(\lambda, r))$ is $r - \tilde{fe}$ -closed. Now $\lambda \leq \tilde{fe} - C_T(\lambda, r)$. This implies $f(\lambda) \le f(\tilde{fe} - C_r(\lambda, r))$. Hence $\tilde{fe} - C_s(f(\lambda), r) \le \tilde{fe} - C_s(f(\tilde{fe} - C_s(\lambda, r)), r) = f(\tilde{fe} - C_s(\lambda, r))$ $C_T(\lambda, r)$). Therefore, $f e^{-C_S(f(\lambda), r)} \le f(f e^{-C_T(\lambda, r)})$.

Proposition 3.3 Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be a bijective function. Then the following statements are equivalent:

- (1) f and f^{-1} are fuzzy e^{-1} irresolute functions.
- (2) f is \tilde{fe} -continuous and \tilde{fe} -open.
- (3) f is \tilde{fe} -continuous and \tilde{fe} -closed.
- (4) $\tilde{fe} C_s(f(\lambda), r) = f(\tilde{fe} C_r(\lambda, r))$, for each $\lambda \in I^X$, $r \in I_0$.

Proof. (1) \Rightarrow (2): Let $\lambda \in I^{\gamma}$, be a r-fuzzy e-closed set and hence r-fe-closed. Since fis fuzzy e^- -irresolute, $f^{-1}(\lambda)$ is $r - fe^-$ -closed. Hence f^- is fe^- -continuous. Let $\mu \in I^Y$, be a $r - f\tilde{e}$ -open set. Since f^{-1} is fuzzy \tilde{e} -irresolute, $(f^{-1})^{-1}(\mu) = f(\mu)$ is $r - f\tilde{e}$ -open. Hence f is \tilde{fe} -open.

(2) \Rightarrow (3): Let $\mu \in I^X$, be a $r - f\tilde{e}$ -closed set. Then $1 - \mu$ is $r - f\tilde{e}$ -open. Since f is $f\tilde{e}$ -open, $f(\bar{1}-\mu)$ is $r-\tilde{fe}$ -open. But $f(\bar{1}-\mu)=\bar{1}-f(\mu)$. This implies that $f(\mu)$ is $r-\tilde{fe}$ -closed. Hence f is \tilde{fe} -closed.

(3) \Rightarrow (4): Let $\lambda \in I^X$, by Proposition Error! Reference source not found.(2), $f(\tilde{fe} - 1)$ $C_T(\lambda,r) \le \tilde{fe} - C_S(f(\lambda),r)$. By Proposition 3.2, $\tilde{fe} - C_S(f(\lambda,r)) \le f(\tilde{fe} - C_T(\lambda,r))$. Hence $\tilde{fe} - C_s(f(\lambda), r) = f(\tilde{fe} - C_r(\lambda, r))$.

(4) \Rightarrow (1): Let $\lambda \in I^X$, by (4), $\tilde{fe} - C_S(f(\lambda), r) = f(\tilde{fe} - C_T(\lambda, r))$. Then $f(\tilde{fe} - C_T(\lambda, r))$ $C_T(\lambda,r) \le \tilde{fe} - C_S(f(\lambda),r)$, implies f is fuzzy \tilde{e} -irresolute function by Proposition 3.1 Let $\mu \in I^X$ be a $r - \tilde{fe}$ -closed. Then $\tilde{fe} - C_s(\mu, r) = \mu$. Then $f(\tilde{fe} - C_r(\mu, r)) = f(\mu)$. By (4), $\tilde{fe} - C_s(f(\mu), r) = f(\tilde{fe} - C_T(\mu, r)) = f(\mu)$. Hence $f(\mu)$ is $r - \tilde{fe}$ -closed. Therefore f^{-1} is fuzzy $e^{-irresolute}$.

Proposition 3.4 Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T)\to (Y,S)$ be a fuzzy $e^{-irresolute}$ function. Then $fe^{-b}(f^{-1}(\lambda,r))=0$, for a $r-fe^{-b}$ -open set $\lambda \in I^Y$.

Proof. Let $\lambda \in I^Y$ be a $r - \tilde{fe}$ -open set. Since f is fuzzy \tilde{e} -irresolute function, $f^{-1}(\lambda)$ is a $r - f\tilde{e}$ -open set. Then $f\tilde{e} - I_T(f^{-1}(\lambda, r) = f^{-1}(\lambda)$. Now, $f\tilde{e} - b_T(f^{-1}(\lambda), r) = f^{-1}(\lambda) - f\tilde{e}$ $I_{\tau}(f^{-1}(\lambda),r) = f^{-1}(\lambda) - f^{-1}(\lambda) = \overline{0}.$

4. Interrelations

The interrelations among the concepts of r-fuzzy e-border, r-fuzzy e-exterior, r-fuzzy e-frontier are established and studied with necessary examples.

Definition 4.1 A smooth fuzzy topological space (X,T) is called $\tilde{fe} \cdot T_{\underline{1}}$ space if every r- \tilde{fe} -closed set $\lambda \in I^X$ is $r - \tilde{fe}$ closed.

Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T)\to (Y,S)$ be a fe-continuous mapping. Then for any r-fe-closed set $\lambda\in I^Y$, $f\tilde{e} - b_r(f^{-1}(\lambda), r) = f\tilde{e} - Fr_r(f^{-1}(\lambda), r).$

Proof. Let $\lambda \in I^Y$ be a r-fuzzy e-closed set. Since f is a fe-continuous, $f^{-1}(\lambda)$ is r- \tilde{fe} -closed set. Then $\tilde{fe} - C_T(f^{-1}(\lambda), r) = f^{-1}(\lambda)$. Now, $\tilde{fe} - b_T(f^{-1}(\lambda), r) = (f^{-1}(\lambda)) - (\tilde{fe} - \tilde{fe})$ $I_T(f^{-1}(\lambda),r)) = f\tilde{e} - C_T(f^{-1}(\lambda),r) - (f\tilde{e} - I_T(f^{-1}(\lambda),r)) = f\tilde{e} - Fr_T(f^{-1}(\lambda),r)$. Hence, $f\tilde{e} - Fr_T(f^{-1}(\lambda),r) = f\tilde{e} - Fr_T(f^{-1}(\lambda),r) =$ $b_r(f^{-1}(\lambda), r) = \tilde{fe} - Fr_r(f^{-1}(\lambda), r).$

Proposition 4.2 Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be a mapping. Then for $\lambda \in I^Y$

$$\tilde{fe} - Ext_T(f^{-1}(\lambda), r) \le \tilde{fe} - C_T(\bar{1} - f^{-1}(\lambda), r).$$

Proof. Let $\lambda \in I^Y$. Now, $\tilde{fe} - Ext_T(f^{-1}(\lambda), r) = \tilde{fe} - I_T(\bar{1} - f^{-1}(\lambda), r) \le \tilde{fe} - C_T(\bar{1} - f^{-1}(\lambda), r)$.

Proposition 4.3 Let (X,T) be a $f\tilde{e}$ - $T_{\underline{1}}$ space. Let $\lambda \in I^X$ be a r- $f\tilde{e}$ -closed set. Then the following statements hold:

- (1) $f\tilde{e} b_r(\lambda, r) = f\tilde{e} Fr_r(\lambda, r)$.
- (2) $\tilde{fe} Ext_{\tau}(f(\lambda), r) = \bar{1} \lambda$.

Proof. Let $\lambda \in I^X$ be a $r - f\tilde{e}$ -closed set. Since (X,T) is a $f\tilde{e} - T_1$ space, λ is $r - f\tilde{e}$ closed. This implies $\lambda = \tilde{fe} - C_T(\lambda, r)$. Now, $\tilde{fe} - b_T(\lambda, r) = \lambda - \tilde{fe} - I_T(\lambda, r) = \tilde{fe}$ $C_T(\lambda,r) - f\tilde{e} - I_T(\lambda,r) = f\tilde{e} - Fr_T(\lambda,r) \quad . \quad f\tilde{e} - Ext_T(\lambda,r) = f\tilde{e} - I_T(\bar{1}-\lambda,r) = \bar{1} - f\tilde{e} - Fr_T(\lambda,r) = f\tilde{e} - Fr_T(\lambda,r)$ $C_{T}(\lambda,r)=\bar{1}-\lambda$.

Proposition 4.4 Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T)\to (Y,S)$ be a $f\tilde{e}$ -irresolute function and (X,T) is a $f\tilde{e}T_1$ space. Then for a r- \tilde{fe} -closed set $\lambda \in I^{\gamma}$ and $r \in I_0$, the following statements hold:

- (1) $f e^{-b_T}(f^{-1}(\lambda), r) = f e^{-Fr_T}(f^{-1}(\lambda), r)$.
- (2) $\tilde{fe} Ext_T(f^{-1}(\lambda), r) = \bar{1} f^{-1}(\lambda)$.

Proof. Let $\lambda \in I^Y$ be a $r - \tilde{fe}$ -closed set. Since f is a \tilde{fe} -irresolute, $f^{-1}(\lambda)$ is a $r - \tilde{fe}$ -closed. Since (X,T) is a $f \, \tilde{e} \, - \, T_{\underline{1}} \,$, $f^{-1}(\lambda)$ is a r - $f \, \tilde{e}$ -closed. This implies $f \, \tilde{e} \,$ - $C_T(f^{-1}(\lambda),r) = f^{-1}(\lambda)$. Now $\tilde{fe} - b_T(f^{-1}(\lambda),r) = f^{-1}(\lambda) - \tilde{fe} - I_T(f^{-1}(\lambda),r) = \tilde{fe}$ $C_T(f^{-1}(\lambda), r) - \tilde{fe} - I_T(f^{-1}(\lambda), r) = \tilde{fe} - Fr_T(f^{-1}(\lambda), r)$ and $\tilde{fe} - Ext_T(f^{-1}(\lambda), r) = \tilde{fe} - Fr_T(f^{-1}(\lambda), r) = \tilde{fe} - Fr_T(f^{-1}$ $I_{\tau}(\bar{1}-f^{-1}(\lambda),r)=\bar{1}-\tilde{fe}-C_{\tau}(f^{-1}(\lambda),r)=\bar{1}-f^{-1}(\lambda)$.

Proposition 4.5 Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T)\to (Y,S)$ be a $f\tilde{e}$ -closed mapping and (Y,S) be a $f\tilde{e}$ - T_1 space. Then for a r- \tilde{fe} -closed set $\lambda \in I^X$ and $r \in I_0$ the following statements hold:

- (1) $\tilde{fe} b_{c}(f(\lambda), r) = \tilde{fe} Fr_{c}(f(\lambda), r)$.
- (2) $\tilde{fe} Ext_s(f(\lambda), r) = \bar{1} f(\lambda)$.

Proof. Let $\lambda \in I^Y$ be a $r - f\tilde{e}$ -closed set. Since f is $r - f\tilde{e}$ -closed set, $f(\lambda)$ is $r - f\tilde{e}$ -closed. Since (Y,S) is $f\tilde{e}$ - $T_{\underline{1}}$ -space, $f(\lambda)$ is r - $f\tilde{e}$ -closed. This implies $f\tilde{e}$ - $C_T(f(\lambda),r) = f(\lambda)$. Now $\tilde{fe} - b_S(f(\lambda),r) = f(\lambda) - \tilde{fe} - I_S(f(\lambda),r) = \tilde{fe} - C_S(f(\lambda),r) - \tilde{fe} - I_S(f(\lambda),r) = \tilde{fe} - C_S(f(\lambda),r) = \tilde{fe} - C$ $I_S(f(\lambda),r) = \tilde{fe} - Fr_S(f(\lambda),r)$ and $\tilde{fe} - Ext_S(f(\lambda),r) = \tilde{fe} - I_S(\bar{1}-f(\lambda),r) = \bar{1}-\tilde{fe}$ $C_{\rm s}(f(\lambda),r)=1-f(\lambda)$.

Proposition 4.6 Let (X,T), (Y,S) and (Z,R) be any three smooth topological spaces. Let $f:(X,T)\to (Y,S)$ and $g:(Y,S)\to (Z,R)$ be fe-irresolute mappings. If (X,T) is a fe $T_{\frac{1}{2}}$ space, then

- (1) $\tilde{fe} b_T((g \circ f)^{-1}(\lambda), r) = \tilde{fe} Fr_T((g \circ f)^{-1}(\lambda), r)$.
- (2) $\tilde{fe} Ext_T((g \circ f)^{-1}(\lambda), r) = \bar{1} (g \circ f)^{-1}(\lambda)$.

Proof. Let $\lambda \in I^Z$ be a r - $f\tilde{e}$ -closed set. Since g is a $f\tilde{e}$ -irresolute, $g^{-1}(\lambda)$ is r - $f\tilde{e}$ -closed. Since (X,T) is $f\tilde{e}$ - $T_{\frac{1}{2}}$ space, $(g\circ f)(\lambda)=f^{-1}(g^{-1}(\lambda))$ is r - $f\tilde{e}$ closed. This implies $f\tilde{e}$ - $C_T((g\circ f)^{-1}(\lambda),r)=(g\circ f)^{-1}(\lambda)$. Now $f\tilde{e}$ - $D_T((g\circ f)^{-1}(\lambda),r)=((g\circ f)^{-1}(\lambda)-f\tilde{e})$ - $D_T((g\circ f)^{-1}(\lambda),r)=f\tilde{e}$ - $D_T((g\circ f)^{-1}(\lambda),r)=$

References

- [1] K. Balasubramaniyan, Notions via r-fuzzy e-open sets, submitted.
- [2] M. Caldas, S. Jafari and T. Noiri, *Notions via g -open sets*, Kochi J. Math., **2**, (2007), 43-50.
- [3] Y. C. Kim and J. W. Park, *r-fuzzy* δ -closure and r-fuzzy θ -closure sets, J. Korea Fuzzy Logic and Intelligent systems, **10**(6) (2000), 557-563.
- [4] A. A. Ramadan, S.E. Abbas and Yong Chankim, Fuzzy-irresolute mappings in smooth fuzzy topological spaces, The Journal of Fuzzy Mathematics, 9, (2001), 865-877
- [5] S. K. Samanta and K. C. Chattaopadhyay, *Fuzzy topology*, Fuzzy Sets and Systems, **54**, (1993), 207-221
- [6] V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Annals of Fuzzy Mathematics and Informatics 8(1) (2014), 141--148.
- [7] P. Smets, The degree of belief in a fuzzy event, Inform Sci., 25, (1981), 1-19.
- [8] A. P. Sostak, On a fuzzy topological structure, Revid. Cric. Maten Palermo (Ser II), 11, (1985), 89-103.
- [9] M. Sugemo, An introductory survey of fuzzy control, Inform. Sci., 36, (1985), 59-83.
- [10] D. Sobana, V. Chandrasekar and A. vadivel, Fuzzy e-continuity in \hat{S} ostak's fuzzy topological spaces, (submitted).
- [11] L. A. Zadeh, *Fuzzy sets*, Information and Control, **8**, (1965), 338-353.