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1. INTRODUCTION 

 Ternary semirings are one of the generalized structures of semirings. The notion of 

ternary algebraic system was introduced by Lehmer[8]. He investigated certain ternary albebraic 

systems called triplexes which turn out to be commutative ternary groups. Dutta and Kar[1] 

introduced the notion of ternary semiring which is a generalization of the ternary ring introduced 

by Lister[9]. Good and Hughes[3] introduced the notion of bi-ideal and Steinfeld[11], [12] 

introduced the notion of quasi-ideal. In 2005, studied quasi-ideals and bi-ideals of ternary 

semirings. 

Ternary semiring arises naturally, for instance, the ring of integers Z  is a ternary 

semiring. The subset Z   of all positive integers of Z  forms an additive semigroup and which is 

closed under the ring product. Now, if we consider the subset Z   of all negative integers of Z , 

then we see that Z 
 is closed under the binary ring product; however, Z 

 is not closed under the 

binary ring product, i.e., Z 
 forms a ternary semiring. Thus, we see that in the ring of integers 

,Z Z 
 forms a semiring whereas Z 

 forms a ternary semiring. More generally; in an ordered 

ring, we can see that its positive cone forms a semiring whereas its negative cone forms a ternary 

semiring. Thus a ternary semiring may be considered as a counterpart of semiring in an ordered 

ring. 

The theory of fuzzy sets was first inspired by Zadeh[14]. Fuzzy set theory has been 

developed in many directions by many scholars and has evoked great interest among 

mathematicians working in different fields of mathematics. Rosenfeld[13] introduced fuzzy sets in 

the realm of group theory. Fuzzy ideals in rings were introdued by Liu[10] and it has been studied 

by several authors. Jun[4] and Kim and Park[7] have also studied fuzzy ideals in semirings. In 

2007, [6] we have introduced the notions of fuzzy ideals and fuzzy quasi-ideals in ternary 

semirings. 

Our main purpose in this paper is to introduce the notions of fuzzy bi-ideal in ternary 

semirings and study regular ternary semiring in terms of these two subsystems of fuzzy 

subsemirings. We give some characterizations of fuzzy bi-ideals. 
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2. PRELIMINARIES 

 In this section, we review some definitions and some results which will be used in later 

sections. 

 

Definition 2.1. 
 A set R  together with associative binary operations called addition and 

multiplication(denoted by + and . respectively) will be called a semiring provided:   

    • Addition is a commutative operation.  

    • there exists 0 R  such that 0 =a a  and 0 = 0 = 0a a  for each ,a R   

    • multiplication distributes over addition both from the left and the right. i.e., 

( ) =a b c ab ac   and ( ) =a b c ac bc    

  

Definition 2.2. 

 A nonempty set S  together with a binary operation, called addition and a ternary 

multiplication, denoted by juxtaposition, is said to be a ternary semiring if ( , )S   is an additive 

commutative semigroup satisfying the following conditions:   

    • ( ) = ( ) = ( )abc de a bcd e ab cde   

    • ( ) =a b cd acd bcd    

    • ( ) =a b c d abd acd    

    • ( ) = ,ab c d abc abd   for all , , , , .a b c d e S   

  

Definition 2.3. 
    • An additive subsemigroup ( , )Q   of a ternary semiring S  is called a quasi-ideal of 

S  if ( ) .QSS SQS SSQSS SSQ Q      

    • An additive subsemigroup ( , )Q   of a ternary semiring S  is called a bi-ideal of S  

if .QSQSQ Q   

 Now, we review the concept of fuzzy sets ([10], [13], [14]). Let X  be a non-empty set. A 

map : [0,1]X   is called a fuzzy set in X , and the complement of a fuzzy set   in X , 

denoted by  , is the fuzzy set in X  given by ( ) =1 ( )x x   for all .x X  

Let X  and Y  be two non-empty sets and :f X Y  a function, and let   and   be 

any fuzzy sets in X  and Y  respectively. The image of   under f , denoted by ( )f  , is a 

fuzzy set in Y  defined by 

 

 

1

1 ( ) if ( ) = 0,
( )( )( ) =
0 o ,

x f
sup x f y

yf y
therwise











 

for each y Y . The preimage of   under f , denoted by 
1( )f 

, is a fuzzy set in X  defined 

by 
1( ( ))( ) = ( ( ))f x f x 

 for each .x X  
 

 
 
 
 
Definition 2.4.  

 A fuzzy ideal of a semiring R  is a function : [0,1]A R  satisfying the following 

conditions:   

    • A is a fuzzy subsemigroup of ( , );R   i.e.,  ( ) ( ), ( ) ,A x y min A x A y    

    •  ( ) ( ), ( ) ,A xy max A x A y  for all ,x y R   
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Definition 2.5.  

          Let A  and B  be any two subsets of .S  Then , ,A B A B A B    and A B  are 

fuzzy subsets of S  defined by 

 

  ( ) = ( ), ( )A B min A x B x  

 

  ( ) = ( ), ( )A B max A x B x  

 

 
  ( ), ( ) , if = ,

( )( ) =
0 o ,

sup min A y A z x y z
A B x

therwise

 
 



 

 

 
  ( ), ( ) , if = ,

( )( ) =
0 o ,

sup min A y A z x yz
A B x

therwise





 

For any x S  and (0,1]t , define a fuzzy point tx  as  

 

 
, if = ,

( ) =
0 if = ,

t

t y x
x y

y x





 

If tx  is a fuzzy point and A  is any fuzzy subset of S  and ,tx A  then we write tx A . Note 

that tx A  if and only if tx A  where tA  is a level subset of A . If rx  and sy  are fuzzy 

points, than  ,
= ( ) .r s min r s

x y xy   

 

Definition 2.6. 

 The following result is evident. A fuzzy subset A  of a fuzzy subsemigroup of S  is 

called a fuzzy ternary subsemigroup of S  if:   

    •  ( ) ( ), ( ) ,A x y min A x A y   for all ,x y S  

 

    •  ( ) ( ), ( ), ( ) ,A xyz min A x A y A z  for all , , .x y z S   

  

Definition 2.7. 
The following result is evident. A fuzzy subsemigroup A  of a ternary semiring S  called 

a fuzzy ideal of S  if : [0,1]A S   satisfying the following conditions:   

    •  ( ) ( ), ( ) ,A x y min A x A y   for all ,x y S   

    • ( ) ( )A xyz A z   

    • ( ) ( )A xyz A x  and  

    • ( ) ( )A xyz A y , for all , ,x y z S   

A fuzzy subset A  with conditions (i) and (ii) is called a fuzzy left ideal of .S  If A  satisfies (i) 

and (iii), then it is called a fuzzy right ideal of S . Also if A  satisfies (i) and (iv), then it is called 

a fuzzy lateral ideal of S . A fuzzy ideal is a ternary semiring of S , if A  is a fuzzy left, a fuzzy 

right and a fuzzy lateral ideal of S . It is clear that A  is a fuzzy ideal of a ternary semiring S  if 

and only if  ( ) ( ), ( ), ( )A xyz max A x A y A z  for all , ,x y z S , and that every fuzzy left(right, 

lateral) ideal of S  is a fuzzy ternary subsemiring of S . 

 

Example 2.1  

 Consider the set of negative inter with zero = ,oS Z  
0( , ,.)Z   forms a ternary semiring 

S  with zero. Define a fuzzy subset : [0,1],Z   as follows 
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0.6, if 3 ,

( )( ) =
0.7 o ,

x
A x

therwise

 



 

Then   is an ( , )q    fuzzy ideal of the ternary subsemiring of S . 

 

Definition 2.8.  

 The following result is evident. Let A  be a fuzzy subset of ternary semiring S . We 

define 

 

 
  ( ), ( ) , if = ( ) ,

( ) =
0 o ,

sup min A a A b z x a xby y
SAS SSASS z

therwise

 
 



 

for all , , ,x y a b S   

 

 

3. FUZZY BI-IDEAL OF TERNARY SEMIRING 

 

  

Definition 3.1. 
          A fuzzy subsemigroup   of a ternary semiring S  is called a fuzzy quasi-ideal of S

[6] if 

 

 ( 1)FQI SS S S SS       

 

 ( 2)FQI SS SS SS SS       

i.e.,  ( ) ( )( ),( )( ),( )( )x min SS x S S SS SS x SS x      . 

To strengthen the above definition, we present the following example.  

 

 

 
 
Example 3.1 

 Consider the ternary semiring 
5( , ,.)Z  . 

5

0 0 0

= 0 0 :

0 0

Q a a Z

a

 
 

 
 
 

              5

0 0 0

= 0 0 : , ,

0

S x x y z Z

y z

 
 

 
 
 

  Q -quasi-ideal 

 

 

Definition 3.2. 
       A fuzzy ternary subsemiring Q  of S  is called a fuzzy bi-ideal of S  if QSQSQ Q   

i.e.,  1 2( ) ( ), ( ), ( )Q xs ys z min Q x Q y Q z       , , , ,x y z w v S    

 

Example 3.2 

 Let =Z S  be the set of all negative integers. Then Z 
 is a ternary semiring under usual 

addition and ternary multiplication. Let = 2B S  Thus 

= 2 2 2 = 6( ) = 6( ) = 6 2 = .BSBSB SS SS S SSS SS SSS S S B  Hence B  is a bi-ideal of .Z   

Define : [0,1]S   by 
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0.6, if = 2 ,

( ) =
0.7, o .

x B S
x

therwise






 

For any  [0,1], = 2 ,tt S  since  2S  is a bi-ideal in ,Z   t  is the bi-ideal in Z   for all .t  

Hence   is a fuzzy bi-ideal of .Z    

 

Lemma 3.1.   

          Let   be a fuzzy subset of S . If   is a fuzzy left ideal, fuzzy right ideal and lateral 

ideal of ternary semiring of S , then   is a fuzzy quasi-ideal of .S     

Proof.  

       Let   be a fuzzy left ideal, fuzzy right ideal and fuzzy lateral ideal of S . Let 

1 2 1 1 1 2 2 1 2= = ( ) =x as s s b s cs s s s d  where 1 2, , , , , .a b c d s s S  Consider  

 

      
  

= = =1 2 1 1 2 2 1 2

1 1 2 2= 1 1 2 2

( ( ) )( ) = ( )( ),( )( ), ( )( )

= ( ) , ( ), ( ) , ( )
( )

1, ( ( ) ) ,1
( )

x as x s x s

x s

SS S S SS SS SS x min SS x S S SS SS x SS x

min sup a sup b c sup ds b s cs s s d

min sup s b s cs s
b s cs s

       

   



   



 


 

(as   is a fuzzy left, fuzzy right and fuzzy lateral ideal,  

 
   1 1 2 2( ) ( ), ( )

= ( )  ( ) < ( ), (= ( )  ( ) > ( ))).

s b s cs s min b c

b if b c c if b c

  

     

 
 

we get  
 ( ( ) ( ) ( )SS S S ss SS SS x x         

We remark that if x  is not expressed as 1 2 1 1 1 2 2 1 2= = ( ) = ,x as s s b s cs s s s d  then  

 ( ( ) )( ) = 0 ( ).SS S S SS SS SS x x         

Thus,  
 ( ( ) )( ) ( ).SS S S SS SS SS x x         

Hence   is a fuzzy quasi-ideal of S .  

 

Lemma 3.2.           

For any non-empty subsets ,A B  and C  of S ,   

    • =A B C ABCf f f f   

    • =A B C A B Cf f f f      

    • =A B A Bf f f    

Proof.  

       Proof is straight forward. 

 

Lemma 3.3.            

  Let Q  be an additive subsemigroup of S .   

    • Q  is a quasi-ideal of S  if and only if Qf  is a fuzzy quasi-ideal of S .  

    • Q  is a bi-ideal of S  if and only if Qf  is a fuzzy bi-ideal of S .  

Proof. 

      Proof of (1) can seen in [8]. Proof of (2) Assume that Q  is a bi-ideal of S . Then Qf  is a 

fuzzy ternary subsemiring of .S   

 Q S Q S Q QSQSQ Qf f f f f f f   

This means that Qf  is a fuzzy bi-ideal of .S  Conversely, let us assume that Qf  is a fuzzy 

bi-ideal of .S  Let x  be any element of .QSQSQ  Then, we have  
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 ( ) ( ) = ( ) =1Q Q S Q S Q QSQSQf x f f f f f x f x  

Thus x Q  and .QSQSQ Q  Hence Q  is a bi-ideal of S .   

 

Lemma 3.4.          

         Any fuzzy quasi-ideal of S  is a fuzzy bi-ideal of S .    

Proof. 

      Let   be any fuzzy quasi-ideal of S . Then, we have  

 

 ( ) ,S S SSS S SS       

 

 ( ) ,S S S SSS SS       

S S SS SS     and taking  0 S S  

so,  
 S S S S SS SS       

 

we have,  

 ( )S S SS S S SS SS SS             

 

Hence,   is a fuzzy bi-ideal of .S   

 

Remark 3.1.           

       The converse of Lemma 3.4. does not hold, in general, that is, a fuzzy bi-ideal of a ternary 

semiring S  may not be a fuzzy quasi-ideal of .S   

 

Theorem 3.1. 

 Let   be a fuzzy subset of .S  If   is a fuzzy left, fuzzy right and lateral ideal of 

ternary semiring of S , then   is a fuzzy bi-ideal of .S     

Proof.  

      As   is fuzzy left, right, lateral ideal of S  and Lemma 3.1 ,   is a fuzzy quasi-ideal of 

S . Hence by Lemma 3.4,   is a fuzzy bi-ideal of .S   

 

Theorem 3.2.           

 The following result is evident. Let   be a fuzzy subset of .S  Then   is a fuzzy 

quasi-ideal of ,S  if and only if t  is a quasi-ideal of ,S  for all ( ).t Im    

 

Theorem 3.3. 

 Let   be a fuzzy subset of .S  Then   is a fuzzy bi-ideal of S , if and only if t  is a 

bi-ideal of ,S  for all ( ).t Im      

Proof.  

      Let   be a fuzzy bi-ideal of S . Let ( )t Im  . Suppose , ,x y z S  such that , , .tx y z   

Then  

 ( ) , ( ) , ( )x t y t z t      

and  

  ( ), ( ), ( ) .min x y z t     

As   is a fuzzy bi-ideal, ( )x y t    and thus .tx y    Let .u S  Suppose .t t tu S S    

Then there exist , , tx y z   and 1 2,s s S  such that 1 2= .u xs ys z  Then,  
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    
1 2( )( ) = ( )

( ), ( ), ( ) , , = .

S S u xs ys z

min x y z min t t t t

   

     

Therefore, ( )( ) .S S u t     As   is a bi-ideal of S , ( )u t   implies .tu   Hence t  is a 

bi-ideal of S . Conversely, let us assume that A  is a bi-ideal of ,S  ( ).t Im   Let .p S  

Consider  

   = 1 2
( )( ) = ( ), ( ), ( )p xsS S p sup min x y zys z       

Let 1 2 3( ) = < ( ) = < ( ) = .x t y t z t    Then, 
1 2 3

.t t t     Thus 
1

, , tx y z   and 

1 21 1 1 1 1
= .t t t t tp x s ys z S S      This implies 1( )p t   and hence .S S     Therefore,   

is a fuzzy bi-ideal of .S             

 

 

Definition 3.3.  

         Let S  and T  be two ternary semirings. Let f  be a mapping which maps from S  into 

T . Then f  is called a homomorphism of S  into T  if   

    • ( ) = ( ) ( )f a b f a f b   and  

    • ( ) = ( ) ( ) ( )f abc f a f b f c  for all , ,a b c S   

  

Theorem 3.4.  

         If   is a fuzzy bi-ideal of a ternary semiring S  and   is a fuzzy ternary subsemiring 

of ,S  then ( )   is a fuzzy bi-ideal of S .    

Proof. 

     Let   be a fuzzy bi-ideal and   be a fuzzy ternary subsemiring of .S  Clearly ( )   is 

a fuzzy ternary subsemiring of .S  Next we prove that ( )   is a fuzzy bi-ideal of ternary 

semiring S . Let t S  and 1 2, , , ,s s x y z S  such that 1 2= .t xs ys z  Consider  

 

  

  
1 2= 1 2

= 1 2

(( ) ( ) ( ))( ) = ( )( ), ( ), ( )( ), ( ), ( )( )

= ( )( ),( )( ),( )( )

t xs

t xs

S S t sup min x S s y S s zys z

sup min x y zys z

           

     

     

  

 

Let  ( )( ),( )( ),( )( ) =min x y z t        . This implies that ( )( ) ,( )( )x t y t        

and ( )( ) .z t    Then , , ( ).t tx y z     As   is the fuzzy bi-ideal and   is the fuzzy 

ternary subsemiring, ( )t t   is a bi-ideal of .S  Hence, 1 2 ( ).t txs ys z     This implies  

 
 

1 2( )( )

= ( )( ), ( )( ), ( )( ) .

xs ys z t

min x y z

 

     

 

  
 

Thus,  

   1 2( )( ),( )( ),( )( ) ( )( )min x y z xs ys z             

This shows that  

   1 2= 1 2
( )( ),( )( ),( )( ) ( )( )t xssup min x y z xs ys zys z              

Thus, we have  

 (( ) ( ) ( )( ) ( )( )S S t t             

Hence,  
 (( ) ( ) ( ) ( )S S             

and ( )   is a fuzzy ideal of .S             
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4. REGULAR TERNARY SEMIRING 

 A ternary semiring S  is called regular if for every ,a S  there exists an x  in S  such 

that = .axa a  A ternary semiring S  is regular if and only if  

 * * =        

for every fuzzy right ideal  , fuzzy left ideal   and fuzzy lateral ideal   of S . 

Proof. Proof is Straight forward.            

 

Theorem 4.1. 
 For a ternary semiring S , the following conditions are equivalent:   

    • S  is regular  

    • = * * * *S S    , for every fuzzy bi-ideal   of S .  

    • = * * * * ,S S     for every fuzzy quasi-ideal   of .S   

Proof.  

     (1) (2)  First assume that (1)  holds. Let   be any fuzzy bi-ideal of S , and a  any 

element of .S  Then since S  is regular, there exists an element x  in S  such that 

= (= ).a axa axaxa  Then we have  

 

 

 

 

  

=

=

( * * * * )( ) = ( ),( * * )( ),( )( )

( ), ( * * )( ),( )( )

= ( ), [ ( ), ( ), ( ) ], ( )

( ), ( ), ( ), ( ) , ( )

= ( ), 1,

i i i
a i i i

finite

i i i
xax

i i i

finite

S S a sup min x S S y z
x y z

min a S S xax a

min a sup min S p q S r a
pqr

min a min S x a S x a

min a min

     

  

  

  





 
 
 
 
 







  ( ),1 , ( ) = ( ),a a a  

 

and so * * * * .S S     Since   is a fuzzy bi-ideal of ,S  the converse inclusion holds. 

Thus we have * * * * = .S S     (2) (3)  Since any fuzzy quasi-ideal of S  is a fuzzy 

bi-ideal of S  by Lemma 3.4. (3) (1)  Assume (3) holds. Let Q  be any quasi-ideal of S , and 

a  any element of Q . Then it follows from Lemma 3.4. that the characteristic function 
Qf  is a 

quasi-ideal of .S  Then we have  

 ( ) = ( * * * * )( ) = ( ) =1QSQSQ Q S Q S Q Qf a f f f f f a f a  

and so, .a QSQSQ  Thus .Q QSQSQ  On the other hand, Q  is a quasi-ideal of S . 

 
 ( )QSQSQ QSS SQS SSQ    

 
 ( )QSQSQ QSS SSQSS SSQ    

then,  
 ( ( ) )QSQSQ QSS SQS SSQSS SSQ Q      

and so we have =QSQSQ Q  and hence, S  is a regular ternary semiring. 

    

5. CONCLUSION: 

In this article intuitionistic fuzzy bi-ideals in ternary semirings are studied and some 

properties of these ideals are analyzed. 
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