Complexation of Amino Acids with CrO₃ with reference to L-Phenylalanin.

Anil Kumar Pandey Department of Chemistry, J.N College, Dhurwa Ranchi, Jharkhand

Abstract:

L-phenylalanin is an Amino acid. When it was treated with CrO₃ then complexation reaction was observed. By using TG&DTA and IR analysis expected structure of complex was analysed and thermal degradation provides information about loss of groups from complex.

(Key Words: L-phenylalanin, Amino acids, Oxidation, Complexation.)

Introduction:

Amino acids are one of the essential constituent of naturally occurring proteins. Oxidizing agents attack amino acids at free amino groups. Initially either an α -imino acid(I) is formed which subsequently will be hydrolysed to a α -keto acid (II) and ammonia or the oxidation is accompanied by decarboxylation giving rise to final production of next lower aldehyde(III) and ammonia

Chemicals Used:

L-phenylalanine, Chromium Trioxide, Acetone, etc. (The chemicals used were of A.R.grade) Experimental procedure

Oxidation of L-phenylalanin with CrO₃ was carried out in substrate: oxidant 1:1 and 1:2 molar

The desired strength of the oxidant was achieved by taking 0.01 mole of the substrate and 1g and 2g of CrO₃ respectively.

The substrate was mixed with minimum volume of distilled water (E-Merk). Solid CrO₃ was added with constant and vigorous stirring. Precaution was taken to avoid reaction being violent at the time of mixing the reagent. The solution of the substrate and the oxidant where mixed with constant and vigorous stirring for about 1.5 hour at 75°C (No reaction was initiated at room temperature). The mixture wat left overnight for complete reaction. The product where collected as sample AC1 and AC2.

(in substrate: oxidant 1:1 and 1:2 molar ratio respectively.)

The solid obtained was then powdered in mortar and pestle. Successive washings with distilled water. Ethanol, dioxin and finally with acetone removed soluble impurities. The light brown complex obtained was insoluble in water and acetone. The product was dried and collected in an air tight bottle.

FTIR Analysis of Products:

The FTIR curves of AC1 and AC2 contain almost all the peak which are expected for their formulation. The FTIR band assigned for various groups are listed below.

AC1	AC2	Band Assignment	References
1133.10	1137.20	(NH ₂)	3a
1080.72	1081.08	(NH ₂)	3a
551.75	524.05	V(Cr – N)	3b

490	490	V(Cr – N)	3b
419.5	418.7	V(Cr – O)	3e
290	280.3	V(Cr – O)	3e

Thermal Analysis of AC1:

The complex having empirical formula CrC₉H₁₃NO₆ (AC1) shows exothermic loss up to temperature 176.05°C with mass loss 21% (theoretically 20.63%) . The TG curve showed mass loss 63.999%

(theoretical 63.615%) in the temperature range 176.05°C-600°C attributed to the loss of benzoate. Escape of molecules like NH₃, H₂O and O₂ are expected which is indicated by mass loss of 81.999% (theoretical 81.639%) giving Cr.

Code	Temperature(°C)	% mass left in	Weight I	left Empirical	Formula	Loss in Formula	Cumulative % Loss	Group loss
		experiment	Experimental	Predicted		wt. Experimenta	lin Formula wt.	(Theoretical)
			(Theoretical)			(Theoretical)	Experimental	
							(Theoretical)	
							(**************************************	
AC1	R.T.		283.199	CrC ₉ H ₁₃ NO ₆				
	Upto 176.05°C							
	'	1	223.727	CrC7H10NO4				
		79	(224.155)			59.471	21%	CH₃COO
						(59.044)	(20.630%)	
	Upto 600ºC					(33.044)	(20.03070)	
			101.951	CrH ₅ NO ₂				
		36	(103.040)			121.776	63.999%	C ₆ H ₅ COO
	>1000°C					(121.115)	(63.615%)	
							,	
		18	50.975	Cr		50.976	81.999%	H ₂ O, NH ₃ ,
			(51.996)			(51.044)	(81.639%)	½O ₂

Table : Thermal Analysis of AC1

Proposed Empirical formulation of AC1 is [CrO(C₆H₅COO)(CH₃COO)(NH₃)(H₂O)] and the sequence of thermal degradation may be interpreted as follows

$$[CrO(C_6H_5COO)(NH_3)(H_2O)] \longrightarrow [CrO(NH_3)(H_2O)] \longrightarrow [CrO(NH_3)(H_2O)]$$

$$2Cr \longrightarrow$$

Thermal Analysis of AC2:

The complex having empirical formula Cr₂C₉H₁₅NO₉ (AC2) shows exothermic loss up to temperature 500°C with mass loss 50% (theoretically 51.445%). The TG curve showed mass loss 61.999% (theoretical 64.173%) in the temperature range 500°C-869.87°C attributed to the loss of ammonia and oxygen. Escape of molecules like H_2O and O_2 are expected above 1000°C which is indicated by mass loss of 71% (theoretical 73.0031%) giving Cr.

Code	Temperature(°C)	% mass left ii	nWeight lef	tEmpirical Formula	Loss in Formula	Cumulative %	Group loss
		experiment	Experimental	Predicted		Loss in Formula	(Theoretical)
			(Theoretical)		·	wt.	
						Experimental	
						(Theoretical)	
AC2	R.T.		385.208	Cr ₂ C ₉ H ₁₅ NO ₉			
	Upto 500ºC						
		50	192.604	Cr ₂ H ₅ NO ₄	192.604	50% (51.445%)	CH₃COO,
			(187.034)	2.13.104	(198.174)	(======================================	C ₆ H ₅ COO,H ₂ O
	Upto 869.87°C						
	υριο 809.87 C						NH ₃ ,O ₂
		38	146.379	CrH ₂ O ₂	46.224	61.999%	
	>1000°C		(86.01)		(49.028)	(64.173%)	
			111.710	2Cr	34.577		H₂O,
		29	(103.992)	ZCI	(34.014)	71%	1120, 1⁄202
			(103.332)			(73.003%)	7202
						ľ ,	

Table: Thermal Analysis of AC2

Proposed Empirical formulation of AC2 is [Cr₂O₃(C₆H₅COO)(CH₃COO)(NH₃)(H₂O)₂] and the sequence of thermal degradation may be interpreted as follows

 \rightarrow [Cr₂O(H₂O)] $[Cr_2O_3(C_6H_5COO)(CH_3COO)(NH_3)(H_2O)_2]$ ► [Cr₂O₃(NH₃)(H₂O)]

2Cr

REFRENCES

- 1. C.B. Powar, G.R Chatwal, Himalaya Publishing House, 5th Ed.,171(2006).
- 2. A.K.Laha, A.B.Kulkarni, J.Sc Ind. Res, 34, 605(1985).
- 3. G.Mishra, M.Alam, R.Thakur, N.N.Mishra, J. Inst.Chem(Ind),63,166(1991).
- 4. G.Mishra, M.Alam, N.Dwiwedi, N.N.Mishra, J. Inst.Chem(Ind),63,169(1991).
- 5. G.Mishra, R.K.Singh, B.M.P.Pingua, J.Chemtracks, 1,158 & 172 (1999).
- 6. G.Mishra, V.K.Ojha, R.K.Singh, S.P.Mishra, J.Chemtracks, 4,25 (2002).