
© 2016 JETIR September 2016, Volume 3, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1701A52 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 390

An Analytical Study of Various Sorting Algorithms

Vimal A.Vaiwala

Assistant Professor

SDJ International College

 Surat, Gujarat

ABSTRACT

An algorithm is accurately specified by a sequence of instructions to be carried out in order to solve a given

problem. Sorting is considered by computer science as an intermediate step in many operations. Sorting is the

process of putting a list of components in a specific order. According to their primary values, the elements are

ordered in ascending or descending order. This study offers various data structure sorting algorithms, such as

Bubble Sort, Selection Sort, Insertion Sort, Merge Sort and Quick Sort and also analyses how well they

perform in terms of time complexity. These algorithms are crucial and have been a focus for a while, but the

issue is remain the same of "which algorithm is use to when?" which is the important aspect for this study.

This research paper gives an in-depth analysis of these algorithms workings and draws comparisons between

them based on a number of different characteristics to reach solution.

Keywords— Algorithm, Sorting, Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort,

Complexity

Introduction

In computer science, a sorting algorithm is an efficient algorithm which performs an important task that puts

elements of a list in a certain order or arranges a collection of items into a particular order. Sorting data has

been developed to arrange the array values in various ways for a database. Sorting will order an array of

numbers from lowest to highest or from highest to lowest, or arrange an array of strings into alphabetical

order. It sorts an array into increasing or decreasing order[1]. Most simple sorting algorithms involve two

steps which are compare two items and swap two items or copy one item. It continues executing over and

over until the data is sorted. Sorting is nothing but storing data in the sort order; it may be in ascending or

descending order. Sort phrase highlighted with the keyword. There are so many things in our real life; we

have to look for a specific entry in the database for songs ride in the merit list, a particular phone number, a

page in a book, etc. Sort organizes the data in a sequence that makes searching easier. Each entry will be when

you have a key. Sorting is the process of arranging the elements in some logical order. Sorting is classified

into following categories:

External sorting: It deals with sorting of the data stored in data files. This method is used when the volume

of data is very large and cannot be held in computer main memory.

Internal sorting: It deals with sorting the data held in memory of the computer.

System complexity: In the context of computation. On the basis of performance, this algorithm can be

divided into worst case, average case, and best case scenarios.

Computational complexity: Based on the number of swaps. Each sorting algorithm uses a different number

of swaps to complete the operation.

http://www.jetir.org/

© 2016 JETIR September 2016, Volume 3, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1701A52 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 391

WORKING OF ALGORITHMS

Bubble Sort[2]

In bubble sort, two elements are compared and if they are out of order then they will be interchanged. This

method will cause records with small keys to move or “bubble up”. Assume there are R1, R2, R3, R4……Rn

elements to sort in a table [2]. During the first pass R1 and R2 will be compared and if they are out of order,

they will be interchanged. This process is repeated for R2 and R3 and R4 and so on. This sorting technique is

not efficient for large tables, for small tables it works fine.

For Example, Consider we want to sort the following data:

40, 30, 50, 20, 10

40 30 30 30 30 30 30 30 30 30

30 40 40 40 40 40 40 20 20 20

50 50 50 20 20 20 20 40 10 10

20 20 20 50 10 10 10 10 40 40

10 10 10 10 50 50 50 50 50 50

PASS-1 PASS-2

30 20 20 20 20 20 10 10 10 10

20 30 10 10 10 10 20 20 20 20

10 10 30 30 30 30 30 30 30 30

40 40 40 40 40 40 40 40 40 40

50 50 50 50 50 50 50 50 50 50

PASS-3 PASS-4

Working on Bubble Sort

Advantage: Simplicity and ease-of-implementation.

Disadvantage: Code inefficient.

Algorithm

In this algorithm, n is the size of the table, arr is the array of n elements that we want to sort.

Step 1: [Initialization] i=0.

Step 2: Repeat through step 4 while i<n.

Step 3:Repeat through for j = 0 to n – i

Step 4 :if arr[j]>arr[j+1] then

 Temp=a[j]

 a[j]=a[j+1]

 a[j+1]=Temp

End if

End of Step 3

End of Step 2

Step 5: Exit

Selection Sort[2]

It is one of the easiest ways to sort a table. Beginning with the first record in the table, a search is performed

to locate the element which has the smallest key. When this element is found, it interchanged with the first

record table [2]. This interchange places the record with smallest key in the first position of the table. Then the

second smallest element will be searched by examining the keys from second position onwards. This process

is continued until all records have been sorted in ascending order.

http://www.jetir.org/

© 2016 JETIR September 2016, Volume 3, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1701A52 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 392

Assume we have to sort data in ascending order:

For Example 40,30,50,20,10

40 10 10 10 10

30 30 20 20 20

50 50 50 30 30

20 20 30 50 40

10 40 40 40 50

No of

Passes

(1) (2) (3) (4)

Working on Selection Sort

Advantage: Simple and easy to implement

Disadvantage: Inefficient for large lists, so similar to the more efficient insertion sort, the insertion sort

should be used in its place.

Algorithm

In this algorithm, n size of the table, arr is the array of n elements that we want to sort.

Step 1: [Initialization] i=0.

Step 2: Repeat through step 7 while i < n.

Step 3: j=i+1

Step 4: Repeat through Step 6 while j < n

Step 5: if arr[i] > arr[j] then

 Temp=arr[i]

 arr[i]=arr[j]

 arr[j]=Temp

 End if

Step 6: j=j+1

Step 7: i=i+1

Step 8:Exit

Insertion Sort[2]

Insertion sort arranges the data in order at the time of insertion. It scans the list from 0 to n – 1 , inserting

each element into proper position in the previously sorted list. Among simple sort algorithms, insertion sort is

one of the best[2]. It uses the less number of comparisons then bubble sort and selection sort. It is quite

efficient for small sized table. For large tables, it is extremely slow.

For Example 35,42,23,47,55,30,50,37,57,53

35 23 23 23 23 23 23 23 23

42 35 35 35 30 30 30 30 30

23 42 42 42 35 35 35 35 35

47 47 47 47 42 42 37 37 37

55 55 55 55 47 47 42 42 42

30 30 30 30 55 50 47 47 47

50 50 50 50 50 55 50 50 50

37 37 37 37 37 37 55 55 53

57 57 57 57 57 57 57 57 55

53 53 53 53 53 53 53 53 57

Working on Insertion Sort

http://www.jetir.org/

© 2016 JETIR September 2016, Volume 3, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1701A52 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 393

Advantage: Relative simple and easy to implement. Twice faster than bubble sort.

Disadvantage: Inefficient for large lists.

Algorithm

In this algorithm, n is the size of the table, arr is the array of n elements that we want to sort and no is the

number that we want to enter into array.

Step 1: [Initialization] count = 1, j=0

Step 2: Repeat through step 3 to 5 while count <= n.

Step 3: Enter number and store it into no.

 count = count+1

 i = j – 1

Step 4: Repeat step 4 until no < arr[i] and i >=0

 arr[i+1] = arr[i]

 i = i – 1

 End of step 4

Step 5: arr [i + 1] = no

 j = j + 1

 End of step 2

Step 6 : Exit

Quick Sort[2]

The Quick Sort is an in-place divide and conquer, massively recursive sort. It is also known as Partition-

Exchange sorting technique [2]. It performs very well on large tables.

It has two phases:

1. The partition phase

2. The sort phase.

Quick Sort treats an array as a list of elements when sort begins it select the list middle element as the list

pivot. It divides the list into two sub lists.

1. With elements that are less than the list pivot

2. List with the elements greater than or equal to the list pivot.

It recursively invokes itself with both list. Each time when the sort is invoked, it further divides the elements

into smaller sub lists.

For example :- 44, 75, 23, 43, 55, 12, 64, 77, 33

http://www.jetir.org/

© 2016 JETIR September 2016, Volume 3, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1701A52 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 394

Working on Quick Sort

Advantage: Fast and efficient

Disadvantage: Show horrible result if list is already sorted.

Algorithm

Q_sort (list, first, last)

list Represents the list of elements.

firstRepresents the position of the first element in the list (only the starting point, it’s value changes during

the execution of the function).

lastRepresents the position of the last element in the list (Only at starting point the value of it changes

during the execution of the function).

Step 1: [Initially]

low = first

high=last

pivot=list[(low + high)/2] [Middle element of the element of the list]

Step 2: Repeat through Step 7 while (low < = high)

Step 3: Repeat through Step 4 while (list [low] < pivot)

Step 4: low = low + 1

Step 5: Repeat through Step 6 while (list [high] > pivot)

Step 6: high = high – 1

Step 7: if (low < = high)

I. Temp=list[low]

II. List[low]=list[high]

III. List[high]=temp

IV. low = low+1

V. high = high – 1

Step 8: if (first < high) Q_Sort (list, first, high)

Step 9: if (low <last) Q_Sort (list, low, last)

Step 10: exit

http://www.jetir.org/

© 2016 JETIR September 2016, Volume 3, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1701A52 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 395

Merge Sort[2]

Using merge sort, we can merge sort two sorted tables into single sorted table[2]. In merge sort, it is

compulsory that the tables that we want to merge, should be in sorted order.

For Example to sort following tables:

 Table 1: 12, 19, 21, 24, 24, 39, 44

 Table 2: 13, 16, 27, 29, 43

First we have to compare 1st two elements of two tables. Whichever is less, is taken into a third table. Now the

pointer of that table (which has lesser element) and the third table is incremented by 1. Again two elements of

two tables are compared. The lesser is taken into third table, pointer of that table (which has lesser element)

and the third table is incremented by one. This process is repeated until all the elements of two tables are

sorted and merged in to third table. This process is shown in Fig.

Table-1 12 19 21 24 39 44

Table-2 13 16 27 29 42

Table-3 12 13 16 19 21 27 24 29 39 43 44

Working on Merge Sort

 Advantage: Well suited for large data set.

 Disadvantage: At least twice the memory requirements than other sorts

Algorithm

Merge_Sort(a1, n1, a2, n2)

n1 and n2 are the sizes of two sorted tables a1 and a2 respectively. a1 and a2 are two sorted tables, which

contains n1 and n2 elements respectively. a3 is the array of n1 + n2 elements. i, j and k are the pointer for the

arrays a1, a2 and a3 respectively.

Step 1: [Initialization] i = j = k = 0

Step 2: Repeat step 3 to 4 while k < (n1 + n2)

Step 3: if a1[i] < a2[j] then

 a3[p]=a1[i]

 p=p+1

 i=i+1

 else if a1[i] > a2[j] then

 a3[p]=a2[j]

 p=p+1

 i=i+1

 else (both are equal)

a3[p]=a1[i]

 p=p+1

 i=i+1

 j=j+1

 end if

Step 4: if (i=n1) or (j=n2) then

 Break

Step 5: Repeat while i ! = n1

 a3[p] = a1[i]

 p=p+1

 i=i+1

Step 6: Repeat while j ! = n2

http://www.jetir.org/

© 2016 JETIR September 2016, Volume 3, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1701A52 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 396

 a3[p] = a1[j]

 p=p+1

 j=j+1

Step 7 Return

COMPARISON BETWEEN DIFFERENT SORTING TECHNIQUES

Sort Best Case Average

case

Worst

Case

Memory Comments

Bubble n–1

comparison

n(n-1)/2

comparison

n(n-1)/2

comparison

Constants A very simple

algorithm, to code

and one to explain,

but very slow. It is

very well for short

table array.

Selection n2

comparison

n2

comparison

n2

comparison

Constants Even a perfectly

sorted input

requires scanning

the entire array.

Insertion n–1

comparison

n(n-1)/2

comparison

n(n-1)/2

comparison

Constants In the best case

(already sorted),

every insert

requires constant

time. Inefficient for

large lists.

Quick n2

comparison

n log n

comparison

n log n

comparison

Constants It is fast and

efficient algorithm

but Show horrible

result if list is

already sorted.

Merge n *log n

comparison

n *log n

comparison

n *log n

comparison

Depends At least twice the

memory

requirements than

other sorts. It is

used divide and

conquer method.

http://www.jetir.org/

© 2016 JETIR September 2016, Volume 3, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1701A52 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 397

COMPARISON BY USING CODE WRITTEN IN C SHARP LANGUAGE

I will determine the effectiveness of the various sorting algorithms according to the time by using randomized

trials. The build setting will be built using the C# language in Asp.Net Framework. I will discuss and

implement several sorting algorithms such as bubble sort, selection sort, and insertion sort and will also

include complexity sort such as quick sort and merge sort. I will represent these algorithms as a way to sort an

array or integers and run random trails of length.

To examine, I create a namespace called “ConsoleApplication1” which contains one class

―“SortComparison”. This class contains various Functions for Selection Sort, Insertion Sort, Quick Sort,

Bubble Sort and Merge Sort. In Main () function I will be using Random Number Generator for generating the

number of elements. I will be using the StopWatch Class[11] of the System.Diagnostics Namespace which will

help me to find the running time of the algorithm in microseconds.

int[] arr_selection = new int[10000]; //Number of elements are 10000 int[] arr_insertion = new int[10000];

int[] arr_bubble = new int[10000];

 int[] arr_merge = new int[10000];

Random rn = new Random();

for (int i = 0; i < arr_selection.Length; i++)

{

 arr_selection[i] = rn.Next(1, 10000)

 // Random Number for generating 10000 elements

}

 Similarly we can generate random numbers for different sorting algorithms System.Diagnostics.Stopwatch

sw = new System.Diagnostics.Stopwatch();

sw.Start();

 // Sorting Function to be called

sw.Stop();

long timeselection = sw.ElapsedTicks/(System.Diagnostics.Stopwatch.Frequency/(1000L * 1000L));

Time election is the time in the microseconds. I will be calling each sorting function to find the running time

of that sorting algorithm so that I can compare the running time of the algorithms. For this I passed different

number of elements (N=10, 100, 1000, 10000) to the sorting Functions. I ran the program three times for each

value of N (i.e. 10 or 100 or 1000 or 10000) and tried to find the running time of each sorting algorithm).

Table shows the running time of each algorithm for first, second, and third run. I have also calculated the

average running time (In Microseconds) based upon the running time.

http://www.jetir.org/

© 2016 JETIR September 2016, Volume 3, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1701A52 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 398

First Run(Time in Microseconds)

N Selection
Sort

Insertion
Sort

Bubble Sort Merge Sort Quick Sort

10 267 223 208 535 318

100 298 250 290 598 337

1000 3686 3286 8393 3416 605

10000 348511 263315 809311 91848 3316

Second Run(Time in Microseconds)

10 307 219 206 543 320

100 563 442 519 1073 609

1000 3924 2805 8308 4410 617

10000 343363 264876 809943 103267 3366

Third Run(Time in Microseconds)

10 265 318 223 601 337

100 337 245 291 598 335

1000 3728 2939 8402 4005 609

10000 336569 294503 802286 142748 3335

Average

10 279.66 253.33 212.33 559.66 325.00

100 399.33 312.33 366.66 756.33 427.00

1000 3779.33 3010.00 8367.66 3943.66 610.33

10000 342814.33 274231.33 807180.00 112621.00 3339.00

CONCLUSION

In this study I have studied about various sorting algorithms and their comparison. There is advantage and

disadvantage in every sorting algorithm. To find the running time of each sorting algorithm I used one

program for comparing the running time (in Microseconds). After running the same program on three

different runs (for each different value of N=10, 100, 1000, 10000), I calculated the average running time for

each algorithm. From the time I can conclude that Quick Sort is the most efficient algorithm.

REFERENCES

[1] Sareen Pankaj(March 2013), Comparison of Sorting Algorithms (On the Basis of Average Case),

International Journal of Advanced Research in Computer Science and Software Engineering, Volume 3, Issue

3.

[2]Morena R. , Tailor P., Dindoliwala V. , (2011) Data Structure , Nirav Prakashan ISBN No.:978-93-81060-

44-5, First edition.

[3] Sedgewick, Algorithms in C++, pp.96-98, 102, ISBN 0-201- 51059-6,Addison-Wesley , 1992

[4] http://www.dotnetperls.com/stopwatch

http://www.jetir.org/

