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Abstract 

 

The spatiotemporal trade-off associated with satellite-derived datasets necessitates the downscaling of Land Surface 

Temperature (LST) to understand temperature dynamics and related phenomena at a finer level. This study employs a 

Support Vector Regression (SVR) model to enhance the spatial resolution of Moderate Resolution Imaging 

Spectroradiometer (MODIS) LST from a coarse resolution of 1 kilometer to a finer scale of 90 meters over an 

approximately 2,500 km2 area in Haryana, India. The model was trained on datasets from three distinct dates 

representing three different months (March, April, and May) to refine the MODIS LST and assess its predictive 

capability. The results demonstrated the model’s strong downscaling efficacy with high Coefficient of Determination 

(R2) and low Root Mean Square Error (RMSE) values, indicating the feasibility of learning cross-scale relationships. 
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1. Introduction 

 

High-resolution LST is frequently required to analyze temperature dynamics across different land surface types. 

However, trade-offs between spatial and temporal resolutions across different satellite sensors present inadequacy for 

comprehensive mapping of LST over large areas. For instance, the Landsat 8 Thermal Infrared Sensor (TIRS) provides 

a spatial resolution of 100 m (resampled to 30 m) but has a 16-day revisit interval (temporal resolution), while the 

MODIS provides images daily but at a coarser spatial resolution of 1 km. This presents challenges in understanding 

LST dynamics at greater spatial detail and frequency. Thus, integrating multi-source remote sensing data to address and 

resolve this trade-off has become an important area of research in fine-resolution LST retrieval and its applications. 

 

Traditionally, researchers have employed statistical downscaling, or “thermal sharpening,” techniques to enhance the 

spatial resolution of LST data. These approaches exploit the relationships between LST and a single contributing factor. 

A foundational method, DisTrad, established an inverse linear relationship between LST and the Normalized Difference 

Vegetation Index (NDVI) to downscale thermal data (Kustas et al., 2003). Based on this principle, the Thermal 

Sharpening (TsHARP) algorithm was developed that used Fractional Vegetation Cover (FVC) as the basis for 

regression, physically augmenting the thermal representativeness of the land surface (Agam et al., 2007). Further studies 

were conducted to refine LST by drawing correlations between LST and various land use/land cover (LULC) types in 

heterogeneous environments (Essa et al., 2012). More advanced algorithms like the Spatio-Temporal Adaptive Data 

Fusion Algorithm for Temperature Mapping (SADFAT) were later proposed, that considered temporal changes in LST 

and land surface variability (Weng, Fu & Gao, 2014). Incorporating multiple ancillary variables generally yields better 

downscaling efficiency than the models relying on a single variable. Accordingly, this study uses an extensive set of 

ten important LST-influencing variables to downscale MODIS LST to 90 meters using an SVR model. 

 

While a single variable such as NDVI is a powerful predictor, it often fails to fully explain LST variations in areas with 

diverse physical and environmental characteristics. This advanced the domain of traditional statistical methods towards 

multi-variable models to improve downscaling accuracy. Several studies demonstrated that combining NDVI with a 

Digital Elevation Model (DEM) significantly improved results by accounting for the topography-driven cooling effect 
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(Hutengs & Vohland, 2016). For urban settings, studies successfully utilized relevant built-up indices alongside the 

popular vegetation indices to better account for the surface’s unique spatial characteristics that exhibit distinct thermal 

properties (Deng & Wu, 2013). Inclusion of ancillary data led to the development of more comprehensive models that 

utilized a wide array of physical variables. For example, studies have successfully implemented algorithms using a 

subset of predictors including NDVI, Enhanced Vegetation Index (EVI), DEM, albedo, surface emissivity, slope, and 

sky-view factor to achieve downscaling robustness (Zakšek & Oštir, 2012). 

 

The consensus in the literature indicates that incorporating multiple, physically relevant downscaling variables generally 

yields more accurate results than single-variable approaches. Hence, this study is built on the work done previously by 

using a comprehensive set of LST-influencing factors, including spectral bands, various vegetation indices, and 

topographic data from a Digital Elevation Model (DEM). The objective of this study is to downscale MODIS LST from 

its native 1 km resolution to 90 m using SVR, an effective non-linear machine learning approach in an agriculture-

dominated region of Northwestern India across three acquisitions representing three months. 

 

2. Study Area 

 

The study area (Fig. 1) covers an almost square patch of approximately 2,500 km2 in Haryana, India with a geographical 

extent of 75°49′ to 76°18′ East and 28°53′ to 29°19′ North. The area is a mixed agricultural mosaic, primarily 

constituting irrigated cropland, fallow fields, and interspersed water bodies. The elevation above mean sea level of the 

region ranges from 189–382 m with a mean elevation of 217 m. Characterized by an arid to semi-arid climate, the region 

receives its predominant rainfall between July and September. Based on the Indian Meteorological Department (IMD) 

data, the summer air temperatures typically vary from a minimum of 25–28 °C to a maximum of 37–45 °C, sporadically 

soaring up to 50 °C. This study focuses on the March to May period, which spans the crucial transition from the late-

Rabi (winter crop) season to the pre-monsoon phase. This temporal span was intentionally chosen as it exhibits dynamic 

climatic conditions with steeply rising temperatures, heterogeneous irrigation patterns, and vegetation senescence that 

produce strong and measurable spatial gradients in LST. 

 

 
Figure 1 Location of the study area in Haryana, India. 

 

3. Data and Methodology 

 

The study employed a multi-source data integration to enhance spatial resolution of MODIS LST data retrieved over 

three different dates (Table 1) representing three different months (March, April, and May).  The independent factors 

in this study that included surface reflectance, vegetation indices, and DEM were derived from multiple satellite sensors. 

Surface reflectance bands (Red, Green, Blue, Near Infrared (NIR), Shortwave Infrared 1 (SWIR1), and  Shortwave 

Infrared 2 (SWIR2)) at 500-meter spatial resolution were retrieved from the MODIS sensor (product MOD09GA) 

onboard NASA’s Terra satellite. The vegetation indices NDVI, Normalized Difference Water Index (NDWI), and 

Normalized Difference Built-up Index (NDBI) (Equations 3.1–3.3) were derived from the respective surface 
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reflectance bands. The DEM data at 30 m was retrieved from the collection NASA/NASADEM_HGT/001 and 

eventually clipped to the area of interest. Landsat 8 LST data at 90 m was processed using the Mono Window algorithm 

to account for the target variable. All the independent variables were resampled to 90 m using bilinear interpolation for 

spatial compatibility with the target variable. MODIS and Landsat 8 data were selected from the exact dates across the 

three months for validation of the downscaling from the trained model. 

 

𝑁𝐷𝑉𝐼 =
NIR − Red

NIR + Red
(3.1) 

 

𝑁𝐷𝑊𝐼 =
Green − NIR

Green + NIR
(3.2) 

 

𝑁𝐷𝐵𝐼 =
SWIR1 − NIR

SWIR1 + NIR
(3.3) 

 

 

Table 1 Acquisition dates and product IDs. 

Month 
Landsat 8 TIRS MODIS 

Date Landsat Scene ID Date MOD09GA ID 

March 2015.03.23 LANDSAT/LC08/C02/T1_L2/LC08_147040_20150323 2015.03.23 MODIS/061/MOD09GA/2015_03_23 

April 2015.04.24 LANDSAT/LC08/C02/T1_L2/LC08_147040_20150424 2015.04.24 MODIS/061/MOD09GA/2015_04_24 

May 2015.05.26 LANDSAT/LC08/C02/T1_L2/LC08_147040_20150526 2015.05.26 MODIS/061/MOD09GA/2015_05_26 

 

The downscaling methodology (Fig. 2) used SVR with a Radial Basis Function (RBF) kernel to derive fine-resolution 

LST. SVR is a powerful machine learning technique derived from the foundational concepts of Support Vector 

Machines (SVM) developed by Vladimir Vapnik and his colleagues (Cortes & Vapnik, 1995). While SVMs are used 

for classification, SVR is adapted for regression tasks, making it ideal for predicting continuous values like temperature. 

The model was trained on 70% of the data and tested on the remaining 30% to assess the model performance on new 

unseen data for assessing the downscaling efficacy of the trained model. The following metrics (Equations 3.4–3.6) 

were used to evaluate the downscaling performance of the trained model on the 30% of the test data. The trained model 

was eventually applied to the complete region of interest to generate the downscaled spatial LST maps (Fig. 5). A 

summary of the datasets used in this study has been presented in Table 2. 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝐿𝑆𝑇𝑎,𝑖 − 𝐿𝑆𝑇𝑝,𝑖|

𝑛

𝑖=1

(3.4) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐿𝑆𝑇𝑎,𝑖 − 𝐿𝑆𝑇𝑝,𝑖)

2
𝑛

𝑖=1

(3.5) 

Here, 𝐿𝑆𝑇𝑎,𝑖 and 𝐿𝑆𝑇𝑝,𝑖 are actual and predicted LST values for 𝑖-th pixel, respectively, and 𝑛 is the number of pixels. 

𝑅2 = 1 −
∑ (𝐿𝑆𝑇𝑎,𝑖 − 𝐿𝑆𝑇𝑝,𝑖)

2𝑛
𝑖=1

∑ (𝐿𝑆𝑇𝑎,𝑖 − 𝐿𝑆𝑇𝑎̅̅ ̅̅ ̅̅ )
2𝑛

𝑖=1

(3.6) 

Here, 𝐿𝑆𝑇𝑎̅̅ ̅̅ ̅̅  is the mean around the actual LST values, and 𝑛 is the number of pixels. 

 

http://www.jetir.org/


© 2017 JETIR November 2017, Volume 4, Issue 11                                                    www.jetir.org (ISSN-2349-5162) 

JETIR1711254 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 163 
 

 
Figure 2 Proposed LST downscaling methodology. 

 

Table 2 Summary of the datasets used in this study. 

Dataset Source Spatial Resolution Temporal Resolution Swath 

Land Surface Temperature 
MODIS (Terra) 1 km Daily 2,330 km 

TIRS (Landsat 8) 100 m (resampled to 30 m) 16 days 185 km 

Surface Reflectance MODIS (Terra) 500 m Daily 2,330 km 

Elevation NASADEM HGT (SRTM-derived DEM) 1 arc-second (~30 m) N/A N/A 

 

 

4. Results and Discussion 

 

The downscaling statistics and performance metrics for the actual and predicted LST on three acquisitions in 2015: 

March 23, April 24, and May 26, respectively are presented in Table 3. In March, the actual LST ranged from 25.70 °C 

to 40.49 °C with a standard deviation of 4.83, while the predicted LST ranged from 25.93 °C to 40.12 °C with a lower 

standard deviation of 3.67. The model achieved a Mean Absolute Error (MAE) of 0.76, an RMSE of 1.08, and a 

Coefficient of Determination (R2) of 0.76, indicating strong accuracy by explaining 76% of the variance. In April, the 

actual LST varied from 28.76 °C to 50.07 °C with a standard deviation of 3.88, compared to predicted values ranging 

from 30.21 to 48.22, and a standard deviation of 2.63. An R2 of 0.74 was observed in this month indicating slight 

inefficiency in prediction. The model’s performance declined in May with an MAE of 1.15 and RMSE of 1.54 with a 

71% variability in prediction. Additionally, the model slightly underpredicts maximum LST across all the months and 

exhibits lower standard deviations in predictions, indicating the model’s weak extrapolation of the actual temperature 

variances. Overall, the model demonstrated fair predictive accuracy across all dates. 

 

Table 3 Downscaling statistics and performance metrics on the test data. 

 Min (°C) Max (°C) Standard Deviation (°C) MAE (°C) RMSE (°C) R2 

March 

(2015.03.23) 

Actual LST 25.70 40.49 4.83 
0.76 1.08 0.76 

Predicted LST 25.93 40.12 3.67 

April 

(2015.04.24) 

Actual LST 28.76 50.07 3.88 
0.85 1.20 0.74 

Predicted LST 30.21 48.22 2.63 

May 

(2015.05.26) 

Actual LST 32.78 51.30 8.91 
1.15 1.54 0.71 

Predicted LST 34.49 50.83 6.87 

 

The test scatterplots (Fig. 3) across all the months largely indicate clusters around the 1:1 ideal line, indicating a strong 

positive correlation and showing that the model successfully captures the overall temperature trends. The spread of the 

predictions indicates the presence of errors, with the magnitude of these errors varying across the different dates. 
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Figure 3 Scatterplots of the predicted refined LST and actual LST on the test data across all acquisitions. 

 

Across all the months, the residuals are symmetrically distributed around the zero mean (Fig. 4). The classic bell-shaped 

distributions indicate that the model has no significant systematic bias. However, the standard deviation of the errors 

increases progressively from 1.08 in March to 1.53 in May, showing that the model’s predictions became less precise 

and the magnitude of errors grew larger as the season advanced. 

 

 
Figure 4 Residual plots of the predicted refined LST on the test data across all acquisitions. 
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Figure 5 Spatial downscaled LST maps of the entire region of interest across all acquisitions.  

 

5. Conclusion 

 

The study highlights the efficacy of SVR in downscaling MODIS coarse LST and underscores the importance of 

multiple variables and non-linear regression techniques in enhancing predictive accuracy. 

 

The approach demonstrated here can be extended to other regions with varying surface characteristics to validate and 

refine the model. Additionally, integrating other downscaling variables and advanced machine learning techniques 

could further improve the accuracy and reliability of LST predictions, making this model a valuable tool for applications 

in climate monitoring, urban planning, and environmental management. 
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