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ABSTRACT 

In this paper, exact and numerical solutions are obtained for coupled Schrödinger–Korteweg–de Vries (Sch–KdV) 

equation by the well known Laplace decomposition method. The Adomian decomposition method (ADM) is an analytical method 

to solve linear and nonlinear equations and gives the solution a series form. we combine Laplace transform and ADM and present 

a new approach for solving coupled Schrödinger–Korteweg–de Vries (Sch–KdV) equation which is an imaginary equation, with 

initial condition The method does not need linearization, weak nonlinearity assumptions or perturbation theory.We compare the 

numerical solutions with corresponding analytical solutions. 

Key words: Coupled Schrödinger–KdV equation; Laplace decomposition method; Adomian decomposition method; 

solitary wave solution; Numerical solution. 

 

1. INTRODUCTION: 

Systems of partial differential equations have attracted much attention in a variety of applied sciences. The general ideas and 

the essential features of these systems are of wide applicability. These systems were formally derived to describe wave 

propagation [1−5], to control the shallow water waves [1−5], and to examine the chemical reaction-diffusion model of 

Brusselator [4−6]. The method of characteristics, the Riemann invariants, and Adomian method [6] were the commonly used 

methods. 

In this work, we will use Laplace decomposition method introduced by Khuri [7, 8]. Agadjanov [9] solved Duffing equation with 

the help of this method. This numerical technique basically illustrates how the Laplace transform may be used to approximate the 

solutions of the nonlinear partial differential equations by manipulating the decomposition method. Elgasery [10], applied Laplace 

decomposition method for the solution of Falkner-Skan equation. Here Laplace- Adomian decomposition is implemented to 

systems of partial differential equations [11, 12]. The modification of Laplace decomposition method introduced by Hussain and 

Majid Khan [13] 

 

2. LAPLACE-DECOMPOSITION METHOD : 

In this section, we outline the main steps of our method to solve imaginary equations by using the LDM. We consider the non 

linear partial differential equations written in an operator form 
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Where tL is considered a first-order partial differential operator
t

Lt



 , 1R , 2R and 1N , 2N are linear and nonlinear operators, 

respectively, and 1f  and 2f are source terms. The method consists of first applying the Laplace transform to both sides’ of 

equations in system (1) and then by using initial conditions (2), we have:
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Using the differentiation property of Laplace transform, we get 
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The LADM defines the solutions u(x, t) and v(x, t) by the infinite series 
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The nonlinear terms 1N 2N are usually represented by an infinite series of the so-called Adomian polynomials [14] 
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The Adomian polynomials can be generated for all forms of nonlinearity. They are determined by the following relations: 
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Substituting (5) and (6) into (4), gives
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Applying the linearity of the Laplace transform, we define the following recursively formula 
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In general, for k ≥ 1, the recursive relations are given by 
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Applying the inverse Laplace transform, we can evaluate ku and kv  (k ≥ 0). In some cases the exact solution in the closed form 

may also be obtained.

 

3. APPLICATION: 

At the classical level, a set of coupled nonlinear wave equations describing the interaction between high-frequency Langmuir 

waves and low-frequency ion-acoustic waves were firstly derived by Zakharov [15]. We can consider the Schrödinger–KdV (Sch–

KdV) equation as a model for the interaction of long and short nonlinear waves, which is following. 
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With initial conditions 

    

   kxk
k

x

ekxkxE xi

22
2

22

tanh6
3

8
0,

tanh31220,













  

Where α, k, are arbitrary constant. 

Calculation of exact and numerical solutions of above equation, in particular, travelling wave solutions, play an important role in 

wave-wave interaction and soliton theory [1, 16]. 

Taking Laplace−Adomian decomposition method   Eqs.(16) Then, by using the differentiation property of Laplace transform 

,initial conditions and Applying the inverse Laplace transform,   
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The LADM defines the solutions series  txE ,   tx,  
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is Adomian polynomials that represent nonlinear terms then we get 
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The recursive relation is given below 
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By this recursive relation we can find other components of the solution    
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The other components of the decomposition series can be determined in a similar way, we can obtain the expression of E(x, t) 

which is in a Taylor series, and then the closed form solutions yield as follows 

:
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4. NUMERICAL DESCRIPTION OF THE SOLUTION: 

The Laplace Decomposition Method is used for finding the exact and approximate traveling-waves solutions of the Sch–KdV 

equation. Both the exact and approximate solutions obtained for n = 2 by using LDM are plotted in Fig. 1. It is evident that when 

compute more terms for the decomposition series the numerical results are getting much more closer to the corresponding 

analytical solutions. 
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The behaviour of the two solutions obtained by Laplace Decomposition Method with the exact solutions for different values of 

time are plotted in Figure1  

 

 

(a)                              (b) 

 

(c)         (d) 

Fig.1. The plots of results for solution of Sch-KdV equations with a fixed values of α = 0.05, k = 0.05 and for different values of 

time (a) Analytical solutions for  txE ,  (b) Numerical results for  txE ,2 by means of LDM (c) Analytical solutions for 

 tx,  (d) Numerical results for  tx,2  by means of LDM  

5. CONCLUSIONS: 

The Laplace decomposition method is a powerful method which has provided an efficient potential for the solution of physical 

applications modeled by nonlinear differential equations. The algorithm can be used without any need to complex calculations 

except for simple and elementary operations. 
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