A Survey of Various Face Detection Methods

¹Deepali G. Ganakwar, ²Dr.Vipulsangram K. Kadam

¹Research Student, ²Professor ¹Department of Engineering and technology ¹Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India

Abstract—Automatic face detection is one of the most active research area in computer vision literature because of challenging nature of face as an object with countless applications. The goal of this paper is to present a critical survey of existing literatures on human face detection systems. Face detection is a difficult task in image analysis which has each day more and more applications. We can define the face detection problem as a computer vision task which consists in detecting one or several human faces in an image. It is one of the first and the most important steps of Face analysis. In this paper we presented three methods of face detection, which are commonly used. As the number of proposed techniques increases, survey and evaluation becomes important.

Key words— Face detection, integral image, adaboost algorithm, deformal template

I. INTRODUCTION

Face detection is becoming an active research area spanning several disciplines Such as image processing, pattern recognition, computer vision, neural networks, Cognitive science, neuroscience, psychology and physiology. It is a dedicated process, not merely an application of the general object recognition process. It is also the representation of the most splendid capacities of human vision.

Automatic face detection is the cornerstone of all applications revolving around automatic facial image analysis including face recognition and verification, face tracking for surveillance, facial behavior analysis, facial attribute recognition, gender/age recognition [1] etc.

The goal of face detection is to determine whether or not there are any faces in the image and if the image is present then it return the image location and extent of each face. While this appears as a trivial task for human beings, it is an extremely tough task for computers, and has been one of the top studied research topics in the past few decades.

II. FACE DETECTION

It is basically an image segmentation problem as the image is to be segmented into two parts: one containing faces and the other representing non-face regions. Face detection takes images/video sequences as input and locates face areas within these images. This is done by separating face areas from non-face background regions. Facial feature extraction locates important feature (eyes, mouth, nose and eyebrows) positions within a detected face.

In General face detection system input image is passed to the system for pre-processing. Image may vary in format, size and resolution and can include frames of video. In the next step pre-processing is done, which normalized the image and also remove noise. The classifier decides face and non-face class based on information learned from during training. Finally, the output locates face region.

INPUT: An image is passed PRE-PROCESS: The image **CLASSIFIER**: The classifier **OUTPUT:** The output to the system for is pre-processed to decides whether the indicates whether the classification. Images vary remove unwanted noisw mage belong to the face from lighting and the or non face based on throught to contain a face esolution and can include normalised the image during training

Fig.1. General face detection system

III. METHODS OF FACE DETECTION

A) Skin color based Face detection Method:

Detection of skin color in color images is a very popular and useful technique for face detection. Color is an important feature of human faces. Using skin-color as a feature for tracking a face has several advantages [2]. Color processing is much faster than processing other facial features. In the skin color detection process, each pixel was classified as skin or non-skin based on its color components.

Fig.2. RGB to HSV conversion

In situations where color description plays an integral role, the HSV color model [3] is often preferred over the RGB model [4]. The first step of face detection is to segment the color image into skin and non-skin region. Different color space has different ranges of pixels which represents skin region and non-skin region [4][5].

After segmentation procedure, morphological operators are implemented with a structuring element. After application of morphological operators [6], the standard deviation of the area is calculated and rectangles are drawn in the skin regions. If any unwanted rectangles are created, it is then removed.

- 1. Advantages:
 - This method is able to correctly locate all faces in the images with almost at right scale
 - More robust to noise and shape variations.
 - Accuracy 80-82% [4]
- 2. Disadvantages:
 - Moderate false detection rate
 - Sometimes non face skin color region is also detected.
 - Many objects in the real world have skin-tone colors, such as some kinds of leather, sand, wood, fur, etc., which might be mistakenly detected.

Fig.3.Face detection output

B) Shape based Face detection Method:

In this method, a special template containing directional information of edges [4] is used along with previously used shape based face detection method [3][5][7]. Extensive experiments show this is very efficient when processing images with a simple background regardless of variations on size, head pose (moderate head rotation) and lighting condition

The basic flowchart of proposed system is given in Figure2

Fig.4.Basic flowchart of the algorithm [4]

1. Image enhancement: In this system histogram equalization is used to improve the contrast of the original image because input images may be of very poor contrast because of the limitation of lighting conditions.

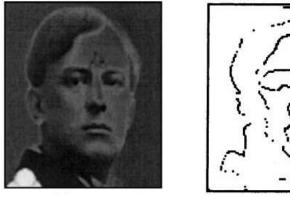


Fig.5.Effectiveness of histogram equalization

- **2.** Median filtering: median filter is used to remove noise.
- 3. Edge detection: Considering computational cost and performance, zero-crossing detector is used [7].
- **4.** Edge linking: In this step edges linking is carried out to improve the information of the face contour. Noise is also reduced.
- 5. Template matching: The various methods have not sufficiently used the global information of face images in which edge direction is a crucial part, so Jianguo Wang, Tieniu Tan present a deformable template based on the edge information to match the face contour [4].

Fig.6.Deformable template

Advantages:

- The algorithm is able to correctly detect all faces in the images with Simple and complex backgrounds
- More robust to noise and shape variations.

Disadvantages:

- For multiple face detection the number of faces should be known before.
- The detection faces do not overlap each other in images
- Templates used in this method does not include enough information to distinguish faces in very complex backgrounds this is why the false rate is high in test set with complex backgrounds.
- It cannot accurately locate faces with large rotation angles

Fig.7.Face detection output of images with complex background [2]

C) Viola Jones Face Detection system

The Viola–Jones object detection framework [8] is an object detection framework which provide robust and competitive object detection rates in real-time proposed in 2001 by Paul Viola and Michael Jones. Even though it can be trained to detect a variety of object classes, it was motivated mainly by the task of face detection. This face detection framework is capable of processing images extremely rapidly and achieving high detection rates. There are three main stages of face detection framework.

1.Integral Image: It is a new representation of an image [8], which allows the features used by detector to be computed very rapidly. Once integral image is computed, Harr-like features can be computed at any scale or location in constant time. The integral image at location (x,y) is the sum of the pixels above and to the left of (x,y), inclusive [9].

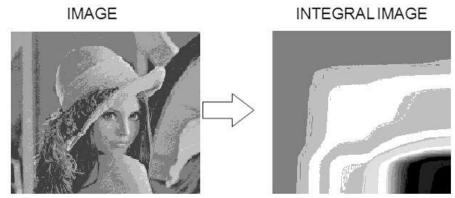


Fig.6.conversion of image into an integral image

- 2. Adaboost Algorithm: In this stage classifiers are constructed by selecting a small number of important features (rectangle features) using Adaboost algorithm. From vast number of features computed in stage 1 we are interested in only selected few features that would enable us to detect face with great accuracy. For this, we use Adaboost Algorithm [10] to select principal features and to train classifiers that would be using them. Aim of this algorithm is to create strong classifier from linear combination of weak classifier. AdaBoost provides an effective learning algorithm
- 3. Cascading: The third major stage of this method is a combining successively more complex classifiers in a cascade structure [11] which dramatically increases the speed of the detector by focusing attention on promising face like regions of the image. This cascade structure consists of classifiers. It works in a manner that initial classifiers are simpler and they are used to reject majority of sub-windows and at end complex classifiers are used to achieve low false positive rates.

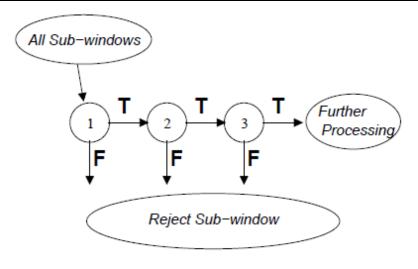


Fig.9.Cascading

1 Advantages:

- Rapid image processing with high detection rates.
- High accuracy
- Very low false positive rate
- This method also can be used to detect other objects.

Disadvantages:

- Less effective on non-frontal face
- Very long training time

Fig. 10. Output of Viola Jones face detector system [8]

IV. CONCLUSION

On referring various methods we come to understand the challenges faced in Face Detection. From this Literature Survey we have conclude that, it is very important to remove background information. Removing irrelevant information, such as noise, non-face part and background would make face detection less complicated.

We also conclude that following things make face detection more complicated.

- 1. Different Facial poses
- Complex background
- 3. Varied facial expression
- Overlapping Faces

Face detection system based on skin color gives the effectiveness of used algorithm in the images with simple or complex background. The algorithm is able to correctly detect all faces in the images.

Shape based Face detection system gives the effectiveness of used algorithm in the images with simple or complex background. The algorithm is able to correctly detect all faces in the images with simple backgrounds. Compared with other similar algorithms, this algorithm appears to be more robust to noise and shape variations.

Viola jones presented an approach for face detection which minimizes computation time while achieving high detection accuracy. The Haar like features used in this method are very simple and effective for frontal face detection, but they are less ideal for faces at random poses.

REFERENCES

- [1] M.H. Yang, D. J. Kriegman, N. Ahuja, "Detecting faces in images: A survey", IEEE Transaction on Pattern Analysis and Machine Vol.24 (1), p.p.34-58,2002
- [2] H.A. Rowley, S. Baluja, and T. Kanade, "Neural Networks Based Face Detection", IEEE Trans. Pattern Analysis an Machine Intelligence, vol. 20, no. 1, pp. 22-38, 1998.
- [3] S. Chitra, G. Balakrishnan, "Comparative Study for Two Color Spaces HSCbCr and YCbCr in Skin Color Detection", Applied Mathematical Sciences, Vol.6, no.85, pp.4229 - 4238, 2012.

- [4] Vandana S. Bhat and Jagadeesh D. Pujari, "Face detection system using HSV color model and morphing operations ",International Journal of Current Engineering and Technology, Proceedings of National Conference on 'Women in Science & Engineering, Special issue.1,
- [5] Devendra Singh Raghuvanshi, Dheeraj Agrawal, "Human Face Detection by using Skin Color Segmentation, Face Features and Regions Properties", International Journal of Computer Applications, Vol. 38, No.9,pp.14-17,2012.
- [6] Smita Tripathi ,Varsha Sharma and Sanjeev Sharma, "Face Detection using Combined Skin Color Detector and Template Matching Method", International Journal of Computer Applications, Vol.26, No.7, pp. 5-8, 2011
- [7] Govindaraju, V., "Locating human faces in photographs", International journal in Computer Vision Vol.19 (2), pp.129-146, 1996
- [8] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features", Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, Vol.1, pp.I-511 - I-518, 2001.
- [9] Binesh T.R and P. Simon, "Fast Pedestrian Detection using smart ROI separation and Integral image based Feature Extraction", International Journal on Computer Science and Engineering (IJCSE), Vol.4, No.11,pp.1771-1779, 2012.
- [10] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, "Boosting the margin: a new explanation for the effectiveness of voting methods", Annals of Statistics, Vol. 26, No.5, pp.1651-1686, 1998.
- [11] Y. Amit, D. Geman, and K. Wilder, "Joint induction of shape features and tree classifiers", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, Issue 11,pp.1300-1305,1997.

