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1. INTRODUCTION: 
 
The Notion of a topological space was generalized to a 𝜎-space( or Alexandroff space or simply space) by A. D. Alexandroff[1] 

weakening the union requirements. A field of study remains vivid and investigative till new contributions to the theory of the field are 

remain to add constantly. General topology is an example of such a field and its theory are enriching day by day by adding new 

contributions from various directions. According to such trends Nakaoka and Oda [7] introduced and studied the concept of minimal 

open sets in a topological space. By dualizing the concept of minimal open sets, Nakaoka and Oda [8] introduced and studied the idea 

of maximal open sets. Some authors  also made investigation about the minimal open set and maximal closed sets in different 

directions.The notion of pre-open set in topological space was introduced by Mashhour et al. [5]. Banerjee and Saha[2] introduced the 

concept of preopen sets in 𝜎-space or Alexandroff space in two different ways. In this paper we wish to study the idea of minimal 

open sets and maximal  open sets in more general structureof a Alexandroffspace or 𝜎-space. We have also investigated here how far 

several results as valid intopological space are acted in a 𝜎-space. In this paper we study fundamental properties of minimal open sets 

and apply them to obtain some results on pre-open sets. 

 

2. PRELIMINARIES: 

Definition 2.1[1]: A set 𝑋 is called an Alexandroff space or simply a space if in it is chosen a system 𝐹 of subsets satisfying 

the following axioms: 

1) The intersection of a countable number of sets from 𝐹 is a set in 𝐹. 

2) The union of a finite number of sets from 𝐹 is a set in 𝐹.  

3) The void set 𝜑 is a set in 𝐹. 

4) The whole set 𝑋 is a set in 𝐹.     

Sets of 𝐹 are called closed sets. Their complementary sets are called open. It is clear that instead of closed sets in the 

definition of the space one may put open sets with subject to the conditions of countable summability, finite intersectibility 

and the condition that 𝑋 and void set 𝜑  should be open. The collection of all such open sets will sometimes be denoted by 𝜏 

and the space by (𝑋,𝜏). Note that a topological space is a space but in general 𝜏  is not a topology as can be easily seen by 

taking 𝑋 = 𝑅 and 𝜏 as the collection of all 𝐹𝜎 sets in 𝑅. 

Definition 2.2[1]: To every set 𝑀 of a space (𝑋,𝜏) we correlate its closure 𝑀̅, the intersection of all closed sets containing 𝑀. 

The closure of a set 𝑀 will be denoted by 𝜏𝑐𝑙(𝑀) or simply 𝑐𝑙𝑀  when there is no confusion about 𝜏. 

Generally, the closure of a set in a space may not be a closed set. The definition of limit point of a set is parallel as in the case 

of a topological space. 

From the axioms, it easily follows that  

1) 𝑀 ∪ 𝑁̅̅ ̅̅ ̅̅ ̅̅ = 𝑀̅ ∪ 𝑁;̅̅ ̅ 

2) 𝑀 ⊂ 𝑀̅; 

3) 𝑀̅ = 𝑀̿; 

4) 𝜑̅ = 𝜑.   

5) 𝐴̅ = 𝐴 ∪ 𝐴′ 
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where 𝐴′ denotes the set of all limit point of 𝐴. 

Definition 2.3[4]: The interior of a set M in a space (𝑋, 𝜏) is defined as the union of all open sets contained in M and is 

denoted by 𝜏-int(M) or int(M) when there is no confusion about 𝜏. 

Definition 2.4 [5]: Let (𝑋, 𝜏) be a topological space. A subset 𝐴 of 𝑋 is said to be preopen if 

𝐴 ⊂ 𝑖𝑛𝑡(𝑐𝑙(𝐴)). 

3. Minimal Open sets: 

Let (𝑋, 𝜏) be a  𝜎-space. 

Definition 3.1: A nonempty open set 𝑈 of 𝜎-space 𝑋is said to be minimal open set if and only if any open set which is 

contained in 𝑈 is ∅ or 𝑈. 

Lemma 3.2: (1) Let 𝑈 be a minimal open set and 𝑊an open set. Then𝑈 ∩ 𝑊 = ∅or𝑈 ⊂ 𝑊. 

(2)  Let 𝑈 and 𝑉 are two minimal open sets. Then either𝑈 ∩ 𝑉 = ∅ or𝑈 = 𝑉. 

Proof:(1) Let 𝑊 be an open set such that 𝑈 ∩ 𝑊 ≠ ∅. Then we have to see that since 𝑈 is a minimal open set and 𝑈 ∩ 𝑊 ⊂

𝑈, so the only opportunity is that 𝑈 ∩ 𝑊 = 𝑈. Therefore, 𝑈 ⊂ 𝑊. 

(2) Consider that 𝑈 ∩ 𝑉 ≠ ∅, then by above (1) and as 𝑈 and  𝑉 are two minimal open sets we get, 𝑈 ⊂ 𝑉 and 𝑉 ⊂ 𝑈. 

Therefore, 𝑈 = 𝑉. 

Proposition 3.3: Let 𝑥 is an element of a minimal open set 𝑈 of 𝜎-space 𝑋. Then for any open neighborhood 𝑊 of 𝑥, 𝑈 ⊂

𝑊. 

Proof: Let 𝑊 be an open neighborhood of 𝑥 such that 𝑈 ⊄ 𝑊. Then 𝑈 ∩ 𝑊 is an open set such that 𝑈 ∩ 𝑊 ⊊ 𝑈 and 𝑈 ∩

𝑊 ≠ ∅. Since 𝑈 is a minimal open set we arise a contradiction. Therefore, the only possibility is that 𝑈 ⊂ 𝑊. 

Proposition 3.4: Let 𝑈 be a minimal open set of 𝜎-space 𝑋. Then𝑈 =∩ {𝑊|𝑊 is an open neighborhood of 𝑥} 

for any element of 𝑥 of 𝑈. 

Proof: By the above proposition and as 𝑈 is an open neighborhood of 𝑥, we can write𝑈 ⊂ ∩ {𝑊|𝑊 is an open neighborhood 

of 𝑥}  ⊂ 𝑈. 

Therefore, the result is obtained. 

Theorem 3.5: Let 𝑈 be a nonempty open set of 𝜎-space 𝑋. Then the following three conditions are equivalent: 

(1) 𝑈 is a minimal open set. 

(2) 𝑈 ⊂ 𝐶𝑙(𝑆) for any nonempty subset 𝑆 of 𝑈. 

(3) 𝐶𝑙(𝑈) = 𝐶𝑙(𝑆) for any nonempty subset 𝑆 of 𝑈. 

Proof: (1) ⇒ (2) Let 𝑆 be any nonempty subset of 𝑈. By proposition 3.3, for any 𝑥 ∈ 𝑈 and any open neighborhood 𝑊 of 𝑥, 

we have 𝑆 = 𝑈 ∩ 𝑆 ⊂ 𝑊 ∩ 𝑆. This implies that 𝑊 ∩ 𝑆 ≠ ∅ and hence 𝑥 is an element of 𝐶𝑙(𝑆). It follows that 𝑈 ⊂ 𝐶𝑙(𝑆). 

(2) ⇒ (3). Let 𝑆 be any nonempty subset of 𝑈, then obviously 𝐶𝑙(𝑆) ⊂ 𝐶𝑙(𝑈). Again, since 𝑈 ⊂ 𝐶𝑙(𝑆) (by (2) ) we get 

𝐶𝑙(𝑈) ⊂ 𝐶𝑙(𝐶𝑙(𝑆)) = 𝐶𝑙(𝑆). Therefore, we conclude that 𝐶𝑙(𝑈) = 𝐶𝑙(𝑆) for any nonempty subset 𝑆 of 𝑈. 

(3) ⇒ (1). Now we prove this by contradiction. Assuming that 𝑈 is not a minimal open set. Then by the property of minimal 

open set there exists a nonempty open set 𝑉 such that 𝑉 ⊊ 𝑈. Then there must exists an element 𝑎 ∈ 𝑈 such that 𝑎 ∉ 𝑉. Thus 

the closure of {𝑎} contains in the complement of 𝑉 i.e., 𝐶𝑙({𝑎}) ⊂ 𝑉𝑐,  where 𝑉𝑐 is the complement of  𝑉. It follows that 

𝐶𝑙({𝑎}) ≠ 𝐶𝑙(𝑈), which contradicts (3). Hence the result. 

Theorem 3.6: Let 𝑈 be a minimal open set and 𝑥 an element of 𝑋 − 𝑈. Then 𝑊 ∩ 𝑈 = ∅ or𝑈 ⊂ 𝑊 for any open 

neighborhood 𝑊 of 𝑥. 

Proof: Since 𝑊 is an open set, we have the result by Lemma 3.2. 

Corollary3.7: Let 𝑈 be a minimal open set and 𝑥 an element of 𝑋 − 𝑈. Define 𝑈𝑥 =∩

{𝑊: 𝑊 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑥}. Then 𝑈𝑥 ∩ 𝑈 = ∅ or 𝑈 ⊂ 𝑈𝑥 . 

Proof: If 𝑈 ⊂ 𝑊 for any open neighborhood 𝑊  of 𝑥, then 𝑈 ⊂∩ {𝑊: 𝑊 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑥}. Therefore𝑈 ⊂

𝑈𝑥. In the other hand there exists an open neighborhood 𝑊 of 𝑥 such that 𝑊 ∩ 𝑈 = ∅. Then we have 𝑈𝑥 ∩ 𝑈 = ∅. 
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4. Preopen sets 

In a topological space the following conditions (I) and (II) are equivalent. 

Condition (I): 𝐴 ⊂ 𝑖𝑛𝑡(𝑐𝑙(𝐴)) and 

Condition (II): there exists an open set 𝑈 such that 𝐴 ⊂ 𝑈 ⊂ 𝑐𝑙(𝐴). 

But in a 𝜎-space (Alexandroff space) these two condition are not equivalent. In fact, condition (I) is weaker than the 

condition (II) as shown in the example 4.2. In view of above observation, we take condition (II) to define preopen sets in a 

space. 

Definition 4.1[2]: Let  (𝑋, 𝜏) be a space. A subset 𝐴 of 𝑋 is said to be preopen if there exists an open set 𝑈 such that 𝐴 ⊂

𝑈 ⊂ 𝑐𝑙(𝐴) and 𝐴 is said to be weakly preopen if  

𝐴 ⊂ 𝑖𝑛𝑡(𝑐𝑙(𝐴)). 

Note that if 𝐴 is open then 𝑖𝑛𝑡(𝐴) = 𝐴. So 𝐴 = 𝑖𝑛𝑡(𝐴) ⊂ 𝑖𝑛𝑡(𝑐𝑙(𝐴))  and hence  𝐴 is weakly preopen. Also, if 𝐴 is open 

then the condition (II) holds if we take 𝑈 = 𝐴. So, every open set is preopen also. But converse may not be true as shown in 

the following example:  

Example 4.2: Let 𝑋 = [1,2] and 𝜏 = {𝑋, 𝜑, 𝐹𝑖} where 𝐹𝑖’s are the countable subsets of irrational in [1,2]. Let 𝐴 = [1,2] − 𝑄. 

Then 𝑐𝑙(𝐴) = 𝑋. So 𝐴 is weakly preopen, since condition (I) holds. Also, condition (II) holds if we take 𝑈 = 𝑋. Hence 𝐴 is 

preopen also. But 𝐴 is not open. Next, let  𝐵 = ([1,2] − 𝑄) − {√2}. Then 𝑐𝑙(𝐵) = 𝑋 − {√2} and 𝑖𝑛𝑡(𝑐𝑙(𝐵)) = 𝐵. Therefore, 

𝐵 ⊂ 𝑖𝑛𝑡(𝑐𝑙(𝐵)). Again, there does not exists any 𝜏-open set 𝑈 such that 𝐵 ⊂ 𝑈 ⊂ 𝑐𝑙(𝐵).  So 𝐵 is weakly preopen but not 

preopen. 

Theorem 4.3: Let 𝑈 be a minimal open set. Then any nonempty subset 𝑆 of 𝑈 is apreopen set. 

Proof:By using theorem3.5(2), we have 𝐼𝑛𝑡(𝑈) ⊂ 𝐼𝑛𝑡(𝐶𝑙(𝑆)). Since 𝑈 is an open set, we have 𝑆 ⊂ 𝑈 = 𝐼𝑛𝑡(𝑈) ⊂

𝐼𝑛𝑡(𝐶𝑙(𝑆)). 

Theorem 4.4: Let 𝑈 be a minimal open set and 𝑀 a nonempty subset of 𝜎-space 𝑋. If there exists an open neighborhood 

𝑊of 𝑀 such that 𝑊 ⊂ 𝐶𝑙(𝑀 ∪ 𝑈), then 𝑀 ∪ 𝑆 is a preopen set for any nonempty subset 𝑆 of 𝑈. 

Proof : By theorem 3.5(3), we have 𝐶𝑙(𝑀 ∪ 𝑆) = 𝐶𝑙(𝑀) ∪ 𝐶𝑙(𝑆) = 𝐶𝑙(𝑀) ∪ 𝐶𝑙(𝑈) = 𝐶𝑙(𝑀 ∪ 𝑈). Now by assumption, 

𝑊 ⊂ 𝐶𝑙(𝑀 ∪ 𝑈) = 𝐶𝑙(𝑀 ∪ 𝑆). Again 𝑈 ⊂ 𝐶𝑙(𝑈) ⊂ 𝐶𝑙(𝑈) ∪ 𝐶𝑙(𝑀) = 𝐶𝑙(𝑀 ∪ 𝑈) = 𝐶𝑙(𝑀 ∪ 𝑆). Since 𝑊 is open 

neighborhood of 𝑀, it is a open set. So 𝑊 ∪ 𝑈 is open set. Now 𝑀 ∪ 𝑆 ⊂ 𝑊 ∪ 𝑈 ⊂ 𝐶𝑙(𝑀 ∪ 𝑆). This implies that 𝑀 ∪ 𝑆 is 

preopen set. 

Corollary 4.5: Let 𝑈 be a minimal open set and 𝑀 a nonempty subset of𝜎-space 𝑋. If there exists an open neighborhood 𝑊 

of 𝑀 such that 𝑊 ⊂ 𝐶𝑙(𝑈), then 𝑀 ∪ 𝑆 is a preopen set for any nonempty subset 𝑆 of 𝑈. 

Theorem 4.6: Let 𝑈 be a minimal open set and 𝑥 an element of 𝑋 − 𝑈. Then 𝑊 ∩ 𝑈 = ∅ 𝑜𝑟 𝑈 ⊂ 𝑊 for any neighborhood 

𝑊 of 𝑥. 

  

4.1 Finite open sets.  

Now we study some properties of minimal open sets in finite open sets and locally finite spaces in the 𝜎- space or 

Alexandroff space. 

Theorem 4.1.1. Let 𝑉 be a nonempty finite open set. Then then exists at least one(finite) minimal open set 𝑈 such that 𝑈 ⊂

𝑉. 

Proof:  If 𝑉 is a minimal open set, we may set 𝑈 = 𝑉. If 𝑉 is not a minimal open set, then there exists an (finite) open set 

𝑉1(≠ ∅) such that 𝑉1 ⊊ 𝑉. If 𝑉1 is not a minimal open set, then there exists an (finite) open set 𝑉2(≠ ∅) such that 𝑉2 ⊊ 𝑉1 ⊊

𝑉. Continuing this process, we have a sequence of open sets 𝑉 ⊋ 𝑉1 ⊋ 𝑉2 ⊋ ⋯ ⊋ 𝑉𝑘 ⊋ ⋯. Since 𝑉 is finite set, this process 

continues up to finite steps. Therefore, after finite steps we finally get a minimal open set 𝑉𝑛 such that 𝑈 = 𝑉𝑛 ,  for some 

positive integer n. 

Definition 4.1.2: A 𝜎- space or Alexandroff space is said tobe a locally finite space if each of its elements is contained in a 

finite open set. 

http://www.jetir.org/


© 2018 JETIR February 2018, Volume 5, Issue 2                                                            www.jetir.org (ISSN-2349-5162) 

JETIR1802328 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 199 
 

Corollary 4.1.3: Let 𝑋 be a locally finite 𝜎- space and 𝑉 a nonempty open set. Then there exists at least one (finite) minimal 

open set 𝑈 such that 𝑈 ⊂ 𝑉. 

Proof: Since 𝑉 is a nonempty set, there exists an element 𝑥 of 𝑉. Again since 𝑋 is a locally finite 𝜎- space, we can find  a 

finite open set 𝑉𝑥 which containing 𝑥 i.e, 𝑥 ∈ 𝑉𝑥 .  Since 𝑉 ∩ 𝑉𝑥 is a finite open set, we get a minimal open set 𝑈 such that 

𝑈 ⊂ 𝑉 ∩ 𝑉𝑥 ⊂ 𝑉. 

Theorem 4.1.4: Let 𝑉𝑖  be an open set for 𝑖 ∈ Λ and 𝑊 a nonempty finite open set. Then 𝑊 ∩ (∩𝑖∈Λ 𝑉𝑖) is a finite open set. 

Proof: We see that there exists an integer 𝑛 such that  

𝑊 ∩ (∩𝑖∈Λ 𝑉𝑖) = 𝑊 ∩ (∩𝑘=1
𝑛 𝑉𝑖𝑘

) 

and hence we get the result. 

 Now the  

Theorem 4.1.5: Let 𝑉𝑖  be an open set for 𝑖 ∈ Λ and 𝑊𝛼 a nonempty finite open set for any 𝛼 ∈ Ω, where Ω is countable index 

set. Let 𝑆 =∪𝛼∈Ω 𝑊𝛼 . Then 𝑆 ∩ (∩𝑖∈Λ 𝑉𝑖 )  is an open set. 

Proof: Since 𝑊𝛼 is a finite open set, we have 

𝑊 ∩ (∩𝑖∈Λ 𝑉𝑖) 

 is a finite open set for any 𝛼 ∈ Ω. Since  

𝑆 ∩ (∩𝑖∈Λ 𝑉𝑖) = (∪𝛼∈Ω 𝑊𝛼) ∩ (∩𝑖∈Λ 𝑉𝑖) = ∪𝛼∈Ω (𝑊𝛼 ∩ (∩𝑖∈Λ 𝑉𝑖 )) , 

We have the result. 

5. MAXIMAL OPEN SETS: 

 Now we have to studied the maximal open set in Alexandroff space. A proper nonempty subset 𝑈 of 𝑋 is said to be 

maximal open set if any open set containing 𝑈 is either 𝑋 or 𝑈 it self. Therefore, there are no other open set except 𝑋 or 𝑈 

containing 𝑈. Though this definition of maximal open set is obtained by dualizing the definition of minimal open set, but 

there are some properties which is not obtained by dualizing the properties of minimal open set. This is the importance of the 

study of the maximal open set. 

Definition 5.1: A proper open subset 𝑈 of 𝜎- space or Alexandroff space(𝑋, 𝜏) is said to be a maximal open set if any open 

set containing 𝑈 will be itself or 𝑋. 

Theorem 5.2: (1) Let 𝑈 be a maximal open set and 𝑊 an open set. Then  

𝑈 ∪ 𝑊 = 𝑋 or 𝑊 ⊂ 𝑈. 

(2) Let 𝑈 and 𝑉 be maximal open sets. Then  

𝑈 ∪ 𝑉 = 𝑋 or 𝑈 = 𝑉 

Proof: (1) Let 𝑊 be an open set such that 𝑈 ∪ 𝑊 ≠ 𝑋. Since 𝑈 is maximal open set and 𝑈 ⊂ 𝑈 ∪ 𝑊, we get 𝑈 ∪ 𝑊 = 𝑈. 

Therefore, 𝑊 ⊂ 𝑈. 

(2) If  𝑈 ∪ 𝑉 ≠ 𝑋, then  𝑉 ⊂ 𝑈 and 𝑈 ⊂ 𝑉. Therefore, 𝑈 = 𝑉. 

Theorem 5.3: Let 𝑈𝛼, 𝑈𝛽 and 𝑈𝛾 be a maximal open sets in Alexandroff space such that 𝑈𝛼 ≠ 𝑈𝛽. If  𝑈𝛼 ∩ 𝑈𝛽 ⊂ 𝑈𝛾 , then 

𝑈𝛼 = 𝑈𝛾  or  𝑈𝛽 = 𝑈𝛾. 

Proof: We see that  

  𝑈𝛼 ∩ 𝑈𝛾 = 𝑈𝛼 ∩ (𝑈𝛾 ∩ 𝑋) 

   = 𝑈𝛼 ∩ (𝑈𝛾 ∩ (𝑈𝛼 ∪ 𝑈𝛽)), since 𝑈𝛼 , 𝑈𝛽 are disjoint maximal open sets.  

   = 𝑈𝛼 ∩ ((𝑈𝛾 ∩ 𝑈𝛼) ∪ (𝑈𝛾 ∩ 𝑈𝛽)) 

   = (𝑈𝛼 ∩ 𝑈𝛾) ∪ (𝑈𝛼 ∩ 𝑈𝛾 ∩ 𝑈𝛽) 

   =  (𝑈𝛼 ∩ 𝑈𝛾) ∪ (𝑈𝛼 ∩ 𝑈𝛽) , Since 𝑈𝛼 ∩ 𝑈𝛽 ⊂ 𝑈𝛾 . 

   =  𝑈𝛼 ∩ (𝑈𝛾 ∪ 𝑈𝛽). 

Hence we have 𝑈𝛼 ∩ 𝑈𝛾 = 𝑈𝛼 ∩ (𝑈𝛾 ∪ 𝑈𝛽). If  𝑈𝛾 ≠ 𝑈𝛽, then 𝑈𝛾 ∪ 𝑈𝛽 = 𝑋 , and hence 𝑈𝛼 ∩ 𝑈𝛾 = 𝑈𝛼;  namely, 𝑈𝛼 ⊂ 𝑈𝛾 . 

Since 𝑈𝛼 and 𝑈𝛾are maximal open sets, we have 𝑈𝛼 = 𝑈𝛾. 

Theorem 5.4:  Let 𝑈𝛼 , 𝑈𝛽 and 𝑈𝛾 be a maximal open sets in Alexandroff space where they are different from each other. 

Then,  
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𝑈𝛼 ∩ 𝑈𝛽 ⊄  𝑈𝛼 ∩ 𝑈𝛾. 

Proof: If  𝑈𝛼 ∩ 𝑈𝛽 ⊂  𝑈𝛼 ∩ 𝑈𝛾 , then we see that  

(𝑈𝛼 ∩ 𝑈𝛽) ∪ (𝑈𝛽 ∩ 𝑈𝛾)  ⊂  (𝑈𝛼 ∩ 𝑈𝛾) ∪ (𝑈𝛽 ∩ 𝑈𝛾) 

Hence,  

𝑈𝛽 ∩ (𝑈𝛼 ∪ 𝑈𝛾)  ⊂  (𝑈𝛼 ∪ 𝑈𝛽) ∩ 𝑈𝛾 

Since  𝑈𝛼 ∪ 𝑈𝛾 = 𝑋 = 𝑈𝛼 ∪ 𝑈𝛽, we have 𝑈𝛽 ⊂  𝑈𝛾. It follows that 𝑈𝛽 =  𝑈𝛾, which contradicts our assumption. 

Theorem 5.5: Let 𝑉 be a proper nonempty cofinite open subset of 𝜎-space or Alexandroff space. Then, there exists, at least , 

one ( cofinite) maximal open set 𝑈 such that  𝑉 ⊂ 𝑈. 

Proof: If  𝑉 is a maximal open set, we may set 𝑉 = 𝑈. If 𝑉 is not a maximal open set, then there exists an (cofinite ) open set 

𝑉1 such that 𝑉 ⊊ 𝑉1 ≠ 𝑋. If 𝑉1 is a maximal open set, we may set 𝑉1 = 𝑈. If 𝑉1 is not a maximal open set, then there exists an 

(cofinite) open set 𝑉2 such that 𝑉 ⊊ 𝑉1 ⊊ 𝑉2 ≠ 𝑋. Continuing this process, we have a sequence of open sets 

𝑉 ⊊ 𝑉1 ⊊ 𝑉2 … ⊊ 𝑉𝑘 ⊊ ⋯ 

Since 𝑉 is a cofinite set, this process repeats only finitely. Then, finally, we get a maximal open set 𝑉𝑛 such that 𝑉𝑛 = 𝑈, for 

some positive integer 𝑛. 

6. Closure, interior and maximal open sets.  

Theorem 6.1: Let 𝑈 be a maximal open set in Alexandroff space 𝑋  and 𝑥 an element of 𝑋 − 𝑈. Then 𝑋 − 𝑈 ⊂ 𝑊 for any 

open neighborhood 𝑊 of 𝑥. 

Proof: Since 𝑥 ∈ 𝑋 − 𝑈 and  𝑊 ⊄ 𝑈 for any open neighborhood 𝑊 of 𝑥. Then, 𝑊 ∪ 𝑈 = 𝑋. Therefore, 𝑋 − 𝑈 ⊂ 𝑊. 

Corollary 6.2: Let 𝑈 be a maximal open set in Alexandroff space 𝑋. Then either of the following (1) and (2) holds: 

(1) For each 𝑥 ∈ 𝑋 − 𝑈 and each open neighborhood 𝑊 of 𝑥, 𝑊 = 𝑋. 

(2) There exists an open set 𝑊 such that 𝑋 − 𝑈 ⊂ 𝑊  and  𝑊 ⊊ 𝑋. 

Proof: If (1) does not hold, then there exists an element 𝑥 of 𝑋 − 𝑈 and an open neighborhood 𝑊 of  𝑥 such that 𝑊 ⊊ 𝑋. 

Then by above theorem we have 𝑋 − 𝑈 ⊂ 𝑊. 

Corollary 6.3: Let 𝑈 be a maximal open set in Alexandroff space 𝑋. Then either of the following (1) and (2) holds: 

(1) For each 𝑥 ∈ 𝑋 − 𝑈 and each open neighborhood𝑊 of 𝑥, we have 𝑋 − 𝑈 ⊊ 𝑊; 

(2) There exists an open set  𝑊 such that 𝑋 − 𝑈 = 𝑊 ≠ 𝑋.  

Proof: Assume that (2) does not hold. Then by above theorem we have 𝑋 − 𝑈 ⊂ 𝑊 for each 𝑥 ∈ 𝑋 − 𝑈 and each open 

neighborhood  𝑊 of 𝑥. Hence, we have 𝑋 − 𝑈 ⊊ 𝑊. 

Theorem 6.4: Let 𝑈 be a maximal open set in Alexandroff space 𝑋. Then 𝐶𝑙(𝑈) = 𝑋 or 𝐶𝑙(𝑈) = 𝑈. 

Proof: Since 𝑈 be a maximal open set in Alexandroff space 𝑋, by above corollary either of the following cases (1) and (2) 

occur: 

(1) For each 𝑥 ∈ 𝑋 − 𝑈 and each open neighborhood𝑊 of 𝑥, we have 𝑋 − 𝑈 ⊊ 𝑊: let 𝑥 be any element of 𝑋 − 𝑈 and 

𝑊 be any open neighborhood of 𝑥. Since 𝑋 − 𝑈 ≠ 𝑊, we have 𝑊 ∩ 𝑈 ≠ ∅ for any open neighborhood 𝑊 of 𝑥. Hence, 𝑋 −

𝑈 ⊂ 𝐶𝑙(𝑈). Since 𝑋 = 𝑈 ∪ (𝑋 − 𝑈) ⊂ 𝑈 ∪ 𝐶𝑙(𝑈) = 𝐶𝑙(𝑈) ⊂ 𝑋, we have 𝐶𝑙(𝑈) = 𝑋; 

(2) There exists an open set  𝑊 such that 𝑋 − 𝑈 = 𝑊 ≠ 𝑋: Since 𝑋 − 𝑈 = 𝑊 is an open set, 𝑈 is a closed set. 

Therefore, 𝑈 = 𝐶𝑙(𝑈). 

Theorem 6.5: Let 𝑈 be a maximal open set in Alexandroff space 𝑋. Then, 𝐼𝑛𝑡(𝑋 − 𝑈) = 𝑋 − 𝑈  or  𝐼𝑛𝑡(𝑋 − 𝑈) = ∅. 

Proof: By corollary 6.3, we have either (1) 𝐼𝑛𝑡(𝑋 − 𝑈) = ∅ or by (2) 𝐼𝑛𝑡(𝑋 − 𝑈) = 𝑋 − 𝑈. 

Theorem 6.6: Let 𝑈 be a maximal open set in Alexandroff space 𝑋 and 𝑆 a nonempty subset of 𝑋 − 𝑈. Then, 𝐶𝑙(𝑆) = 𝑋 −

𝑈. 

Proof: Since 𝑆 ⊂ 𝑋 − 𝑈, we have 𝑊 ∩ 𝑆 ≠ ∅ for any open neighborhood 𝑊 of 𝑥 ∈ 𝑋 − 𝑈. Then 𝑋 − 𝑈 ⊂ 𝐶𝑙(𝑆).  Since 

𝑋 − 𝑈 is a closed and  𝑆 ⊂ 𝑋 − 𝑈 , we see that 𝐶𝑙(𝑆) ⊂ 𝐶𝑙(𝑋 − 𝑈) = 𝑋 − 𝑈. Therefore 𝐶𝑙(𝑆) = 𝑋 − 𝑈. 

Corollary 6.7: Let 𝑈 be a maximal open set in Alexandroff space 𝑋 and 𝑀 a nonempty subset of 𝑋 where 𝑈 ⊊ 𝑀. Then, 

𝐶𝑙(𝑀) = 𝑋. 
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Proof: Since 𝑈 ⊊ 𝑀 ⊂ 𝑋 there exists a nonempty subset 𝑆 of  𝑋 − 𝑈 such that 𝑀 = 𝑈 ∪ 𝑆. Hence we have 𝐶𝑙(𝑀) =

𝐶𝑙(𝑈 ∪ 𝑆) = 𝐶𝑙(𝑈) ∪ 𝐶𝑙(𝑆) ⊃ 𝑈 ∪ (𝑋 − 𝑈) = 𝑋, by theorem 6.6. Therefore, 𝐶𝑙(𝑀) = 𝑋. 

Theorem 6.8: Let 𝑈 be a maximal open set in Alexandroff space 𝑋 and assume that the subset 𝑋 − 𝑈 has at least two 

elements. Then, for any element 𝑎 of 𝑋 − 𝑈, 𝐶𝑙(𝑋 − {𝑎}) = 𝑋. 

Proof: Since 𝑈 ⊊ 𝑋 − {𝑎} by our assumption, we  have the result by corollary 6.7. 

Theorem 6.9: Let 𝑈 be a maximal open set in Alexandroff space 𝑋 and 𝑁 a proper subset of 𝑋 with 𝑈 ⊂ 𝑁. Then, 𝐼𝑛𝑡(𝑁) =

𝑈. 

Proof: If 𝑁 = 𝑈, then 𝐼𝑛𝑡(𝑁) = 𝐼𝑛𝑡(𝑈) = 𝑈. Otherwise 𝑁 ≠ 𝑈, and hence 𝑈 ⊊ 𝑁. It follows that 𝑈 ⊂ 𝐼𝑛𝑡(𝑁). Since 𝑈 is 

maximal open set, we have also 𝐼𝑛𝑡(𝑁) ⊂ 𝑈. Therefore, 𝐼𝑛𝑡(𝑁) = 𝑈. 

Theorem 6.10: Let 𝑈 be a maximal open set in Alexandroff space 𝑋 and 𝑆 a nonempty subset of 𝑋 − 𝑈. Then, 𝑋 − 𝐶𝑙(𝑆) =

𝐼𝑛𝑡(𝑋 − 𝑆) = 𝑈. 

Proof: Since 𝑈 ⊂ 𝑋 − 𝑆 ⊊ 𝑋 by our assumption, we get the result by the theorems 6.6 and 6.9. 
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