
© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803428 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 78

 A VHDL IMPLEMENTATION OF THE

ADVANCED ENCRYPTION STANDARD-

RIJNDAEL ALGORITHM

1ASHWINI K S, 2SHANKARA C
1Lecturer, 2 Lecturer

1Department of Electronics and Communication Engineering, 2Department of Electronics and Communication Engineering
1Government Polytechnic Chamarajanagar, India, 2Government Polytechnic Nagamangala, Mandya, India

Abstract: The National Institute of Standards and Technology (NIST) has initiated a process to develop a Federal

information Processing Standard (FIPS) for the Advanced Encryption Standard (AES), specifying an Advanced Encryption

Algorithm to replace the Data Encryption standard (DES) the Expired in 1998. NIST has solicited candidate algorithms for inclusion

in AES, resulting in fifteen official candidate algorithms of which Rijndael was chosen as the Advanced Encryption Standard. The

Advanced Encryption Standard can be programmed in software or built with pure hardware. However, Field Programmable Gate

Arrays (FPGAs) offer a quicker, more customizable solution. This research investigates the AES algorithm with regard to FPGA

and the Very High-Speed Integrated Circuit Hardware Description language (VHDL). Altera Max+plus II software is used for

simulation and optimization of the synthesizable VHDL code. All the transformations of both Encryptions and Decryption are

simulated using an iterative design approach in order to minimize the hardware consumption. Altera ACEX1K Family devices are

utilized for hardware evaluation.

Index Terms – Encryption, Decryption, FPGA, DES, AES.

I. INTRODUCTION

The National Institute of Standards and Technology, (NIST), solicited proposals for the Advanced Encryption Standard, (AES).

The AES is a Federal Information Processing Standard, (FIPS), which is a cryptographic algorithm that is used to protect electronic

data. The AES algorithm is a symmetric block cipher that can encrypt, (encipher), and decrypt, (decipher), information. Encryption

converts data to an unintelligible form called cipher-text. Decryption of the cipher-text converts the data back into its original form,

which is called plaintext. The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt
data in blocks of 128 bits [1].

Many algorithms were originally presented by researchers from twelve different nations. Fifteen, (15), algorithms were selected

from the first set of submittals. After a study and selection process five, (5), were chosen as finalists. The five algorithms selected

were MARS, RC6, RIJNDAEL, SERPENT and TWOFISH. The conclusion was that the five Competitors showed similar

characteristics. On October 2nd 2000, NIST announced that the Rijndael Algorithm was the winner of the contest. The Rijndael

Algorithm was chosen since it had the best overall scores in security, performance, efficiency, implementation ability and flexibility,

[NIS00b].

The Advanced Encryption Standard (AES), also known as the Rijndael algorithm, is a symmetric encryption algorithm widely
used to secure sensitive data in various applications, including secure communications, data storage, and digital content protection.

It was selected as the official encryption standard by the U.S. National Institute of Standards and Technology (NIST) in 2001,

replacing the older Data Encryption Standard (DES) [2].

AES is based on the Rijndael block cipher, designed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen. The

strength and popularity of AES lie in its ability to provide a high level of security, efficiency, and flexibility. AES operates on fixed-

size blocks of data, typically 128 bits, and supports three key lengths: 128, 192, and 256 bits. The encryption process involves multiple

rounds of transformations, including substitution, permutation, and mixing operations. The key expansion algorithm generates round

keys based on the original encryption key, and these keys are used in each round to transform the data. The number of rounds depends

on the key length: 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys.

Due to its simplicity, robustness, and widespread adoption, AES has become the de facto standard for data encryption and is used

in a plethora of applications and protocols worldwide, providing a strong foundation for data privacy and security in the digital age.

It has undergone extensive analysis by cryptographers, with no known practical attacks against the full AES algorithm, making it one

of the most trusted and secure encryption algorithms available today. Its continuous use and prominence in various industries

demonstrate the enduring significance and impact of the AES-Rijndael algorithm on modern data security [3].

II. RELATED WORK

AES Proposal: Rijndael. NIST AES Proposal by J. Daemen and V. Rijmen. In this literature, the authors have proposed the cipher

Rijndael. The authors first presented the mathematical aspects-based study in order to understand the specifications such as

description and design rationale. Later, Cipher implementation aspects and then its inverse are considered. This helps in future works

of all the choices of design and resistance treatment for all types of known attacks. The authors have hinted for goals and security

claims, Cipher advantages and disadvantages, in which way it has been used for functionality (other than decryption / encryption

blocks) [4].

http://www.jetir.org/

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803428 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 79

 “Advanced Encryption Standard (AES)”, National Institute of Standard and Technology (NIST of U.S.), Federal Information

Processing Standards Publications (FIPS) are issued by the National Institute of Standards and Technology (NIST) after approval by

the Secretary of Commerce pursuant to Section 5131 of the Information Technology Management Reform Act of 1996 (Public Law

104 – 106) and the Computer Security Act of 1987 (Public Law 100 – 235) [5].

“Triple Data Encryption Algorithm Modes of Operation,” The publication specifies the tests required to validate Implementations

under Test (IUTs) for conformance to the Triple DES algorithm (TDEA) as specified in ANSI X9.52, Triple Data Encryption

Algorithm Modes of Operation. When applied to IUTs that implement the TDEA, the TDEA modes of Operation Validation System

(TMOVS) provide testing to determine the correctness of the algorithm implementation. This involves both testing the specific

components of the algorithm, as well as, exercising the entire algorithm implementation. In addition to determining conformance, the

TMOVS is structured to detect implementation flaws including pointer problems, insufficient allocation of space, improper error

handling, and incorrect behavior of the TDEA implementation [6].

A DES key has 64 binary digits such as 0’s and 1’s in which the 56-bit digits are randomly produced and are used in the algorithm.

The remaining 8-bit digits are used to detect error not in the algorithm and are set in order to build the each (8 bit) parity of odd key,

i.e., there exists an odd number (1’s) in each (8 bit) byte [7].

III. PROBLEM STATEMENT

To design and develop a hardware-efficient and high-performance AES encryption and decryption module. The VHDL

implementation should be capable of processing 128-bit data blocks using key sizes of 128, 192, or 256 bits, adhering to the AES

standard. The main objectives include achieving secure data encryption and decryption with low latency and minimal resource

utilization while ensuring robustness against common cryptographic attacks. The design should be scalable, easily configurable for

different key sizes, and capable of meeting the throughput requirements for real-world applications such as secure communication

and data storage systems.

IV. PROPOSED METHODOLOGY

The first step in the methodology is to understand the AES-Rijndael algorithm thoroughly and break it down into its individual

components, such as SubBytes, ShiftRows, MixColumns, and AddRoundKey. Each component will be designed as a separate VHDL

module, with appropriate inputs, outputs, and internal logic, implementing the corresponding AES transformation. Next, the main

AES encryption and decryption modules will be developed by integrating the individual components in the correct order, following

the AES encryption and decryption processes. The main modules will take the plaintext or ciphertext as input, along with the

encryption or decryption keys, and produce the encrypted or decrypted output, respectively. Once the VHDL design is complete, it

will be simulated using VHDL simulation tools to verify the correctness and functionality of the hardware implementation. Test

vectors and known plaintext-ciphertext pairs will be used to validate the design and ensure that the hardware implementation matches

the expected results. After successful simulation, the VHDL design will be synthesized to generate a hardware circuit description

compatible with the target FPGA or ASIC (Application-Specific Integrated Circuit) device. The synthesis process converts the high-

level VHDL code into lower-level gates and registers, optimizing the design for area, speed, and power. Finally, the synthesized

hardware description will be implemented on the target FPGA or ASIC device. The performance and security of the AES hardware

implementation will be evaluated in this phase, considering factors like throughput, resource utilization, and security against known

attacks.

4.1 Encryption Process

Encryption is a process of converting plaintext or readable data into an unintelligible form, called ciphertext, to secure it from

unauthorized access or interception during transmission or storage. The purpose of encryption is to protect sensitive information,

such as personal data, financial details, passwords, or confidential communications, from being understood by anyone except those

with the appropriate decryption key [8].

In an encryption process, an algorithm and a cryptographic key are used to convert the plaintext into ciphertext. The algorithm is

a set of mathematical operations that determine how the data is transformed, and the key acts as a parameter for the algorithm,

influencing the encryption process. To decrypt the ciphertext back into plaintext and make it readable again, the recipient or
authorized party needs the corresponding decryption key.

http://www.jetir.org/

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803428 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 80

Figure 1. Encryption Process

This block diagram is generic for AES specifications. It consists of a number of different transformations applied consecutively

over the data block bits, in a fixed number of iterations, called rounds. The number of rounds depends on the length of the key used

for the encryption process.

4.2 Decryption

Decryption is the process of converting encrypted or ciphertext data back into its original plaintext form, making it readable and

understandable again. It is the inverse operation of encryption and requires the use of a decryption key, which corresponds to the

encryption key used during the encryption process[9,10].

In an encryption process, a cryptographic algorithm and a key are used to transform plaintext into ciphertext. During decryption,

the same algorithm is applied, but with the decryption key, to reverse the encryption and recover the original plaintext. The decryption

key is a crucial piece of information and must be kept secure and only accessible to authorized parties.

Decryption is a vital aspect of secure communication and data protection. When data is encrypted before transmission or storage,

even if intercepted or accessed by unauthorized individuals, it remains incomprehensible without the corresponding decryption key.

This ensures that sensitive information, such as personal data, financial details, and confidential messages, remains confidential and
safeguarded from potential attackers and eavesdroppers.

http://www.jetir.org/

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803428 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 81

Figure 2. Encryption Process

This process is direct inverse of the Encryption process (chapter2). All the transformations applied in Encryption process are

inversely applied to this process. Hence the last round values of both the data and key are first round inputs for the Decryption process

and follows in decreasing order.

V. RESULTS AND DISCUSSION

VHDL is used as the hardware description language because of the flexibility to exchange among environments. The code is

pure VHDL that could easily be implemented on other devices, without changing the design. The software used for this work is

Altera Max+plus II 10.2. This is used for writing, debugging and optimizing efforts, and also for fitting, simulating and checking the

performance results using the simulation tools available on MaxPlus II design software.

All the results are based on simulations from the Max+plus II and Quartus tools, using Timing Analyzer and Waveform Generator.

All the individual transformation of both encryption and decryption are simulated using FPGA ACEX1K family and EP1K100

devices. The characteristics of the devices are presented in figure 3. An iterative method of design is implemented to minimize the
hardware utilization and the fitting is done by the Altera’s Quartus fitter Technology.

5.1 Encryption Process

General Characteristics of the ACEX Family

Device EP1K10 EP1K30 EP1K50 EP1K100

Typical Gates 10,000 30,000 50,000 100,000

Maximum
System Gates

56,000 119,000 199,000 257,000

Logic Elements 576 1,728 2,880 4,992

Embedded Array
Blocks (EABs)

3 6 10 12

Maximum RAM
Bits

12,288 24,576 40,960 49,152

Speed Grades -1, -2, -3 -1, -2, -3 -1, -2, -3 -1, -2, -3

Package (mm) Maximum User I/O Pins

100-Pin TQFP 66

144-Pin TQFP 92 102 102

http://www.jetir.org/

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803428 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 82

208-Pin PQFP 120 147 147 147

256-Pin (BGA) 136 171 186 186

484-Pin (BGA) 249 333

Figure 3. Basic Characteristics of the ACEX1K Family Devices [4]

In order to allow a full parallel process of the state, it is necessary to implement all the transformations over 128 bits. The most

expensive one is the Byte substitution, because it is a table lookup operation, implemented as ROM. Each 8 bits requires a 2048-bit

ROM. To process 128 bits, it is necessary 32768 bits. The Key Expansion uses a Byte substitution operation over 32 bits also, so
another 8192 bits should be allocated.

The following figure 18 shows the waveforms generated by the 8-bit byte substitution transformation. The inputs are clock of

100ns time period, Active High reset, and 8-bit state as a standard logic vector, whose output is 8-bit S-box lookup substitution. This

design utilizes 32% of the area of EP1K100FC484-1, around 1631 logic elements are consumed to implement only 8-bit S-box lookup

table. Hence, approximately 20,000 logic elements are necessary to implement the complete 128-bit byte substitution transformation.
It can be done by the APEX20K family devices.

Figure 4. Waveforms of 8-bit Byte Substitution

The following figure 19 represents the waveforms generated by the 8-bit byte substitution transformation. The inputs are clock

of 100ns time period, Active High reset, and 128-bit state as a standard logic vector, whose output is shifted as explained in the
section 2.3. Design utilizes 2% of the area of EP1K100FC484-1, around 128 logic elements are consumed.

Figure 5. Waveforms of Shift Row Transformation

The following figure 20 represents the waveforms generated by the 12 8-bit Mix Columns transformation. The inputs are clock

of 100ns time period, Active High reset, and 128-bit state as a standard logic vector, whose output is shifted as explained in the

section 2.4. Design utilizes 5% of the area of EP1K100FC484-1, around 156 logic elements are consumed.

Figure 6. Waveforms of Mix Column Transformation

The following figure 21 represents the waveforms generated by the 128-bit Key Schedule Generation. The inputs are clock of

100ns time period, Active High reset, round, and 128-bit state as a standard logic vector, whose output is the 128-bit key for round
one is generated. Design utilizes 74% of the area of EP1K100FC484-1, around 3700 logic elements are consumed.

http://www.jetir.org/

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803428 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 83

Figure 7. Waveforms of Key Schedule Generation

5.2 Decryption Process

The decryption implementation results are similar to the encryption implementation. The key schedule generation module is

modified in the reverse order. In which last round key is treated as the first round and decreasing order follows.

The following figure 22 represents the waveforms generated by the 8-bit byte substitution transformation. The inputs are clock

of 100ns time period, Active High reset, and 8-bit state as a standard logic vector, whose output is 8-bit Inverse S-box lookup

substitution. This design utilizes 50% of the area of EP1K30TC144-1, around 877 logic elements are consumed to implement only
8-bit S-box lookup table

Figure 8. Waveforms of 8-bit Inverse Byte Substitution

The following figure 23 represents the waveforms generated by the 8-bit Inverse byte substitution transformation. The inputs are

clock of 100ns time period, Active High reset, and 8-bit state as a standard logic vector whose output is shifted as explained in the

section 3.3. Design utilizes 2% of the area of EP1K100FC484-1, around 128 logic elements are consumed.

Figure 9. Waveforms of Inverse Shift Row Transformation

The following figure 24 represents the waveforms generated by the 8-bit byte substitution transformation. The inputs are clock

of 100ns time period, Active High reset, and 8-bit state as a standard logic vector, whose output is shifted as explained in the section

3.4. Design utilizes 12% of the area of EP1K100FC484-1, around 624 logic elements are consumed.

http://www.jetir.org/

© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1803428 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 84

Figure 10. Waveforms of Inverse Mix Column Transformation

VI.CONCLUSION

Optimized and Synthesizable VHDL code is developed for the implementation of both encryption and decryption process. Each

program is tested with some of the sample vectors provided by NIST and output results are perfect with minimal delay. Therefore,

AES can indeed be implemented with reasonable efficiency on an FPGA, with the encryption and decryption taking an average of

320 and 340 ns respectively (for every 128 bits). The time varies from chip to chip and the calculated delay time can only be regarded

as approximate. Adding data pipelines and some parallel combinational logic in the key scheduler and round calculator can further

optimize this design. The software can be used to program an FPGA device with the Advanced Encryption Standard (with key widths

of 128-bit, 192-bit and 256-bit on a single FPGA device). The Field Programmable Gate Arrays (FPGAs) provide the more

customized and quicker AES solution. The research explores the AES algorithm with the help of Verilog as the hardware description

language and Field Programmable Gate Arrays (FPGAs). For optimization and simulation purpose, Xilinx ISIM 14.7 software is

used. The simulation of both decryption and encryption is done by using an approach of iterative design to minimize the consumption

of hardware. For hardware evaluation is carried out by the help of Xilinx Spartan 6 devices.

VI. ACKNOWLEDGMENT

The authors will like to express sincere thanks and appreciation to his esteemed mentor and supervisor for their ongoing

inspiration, technical support, guidance, encouragement, and insightful suggestions that enabled him to undertake this research work.

REFERENCES

[1] FIPS 197, “Advanced Encryption Standard (AES)”, November 26, 2001 http://csrc.nist.gov/publications/fips/fips197/fips-

197.pdf

[2] Daemen and V. Rijmen, “AES Proposal: Rijndael”, AES Algorithm Submission, September 3, 1999

http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijndaeldocV2.zip

[3] ALTERA. Max+plus II VHDL. San Jose. Altera, 1996

[4] ALTERA “ACEX1K Embedded Programmable Logic Family Data Sheet”, pdf files,

http://www.altera.com/literature/ds/acex.pdf (May 2003)

[5] ALTERA High-Speed Rijndael Encryption/Decryption Processors, http://www.altera.com/literature/wp/wp_hcores_rijnfast.pdf

[6] Marcelo B. de Barcelos Design Case, “Optimized performance and area implementation of Advanced Encryption Standard in

Altera Devices, by, http://www.inf.ufrgs.br/~panato/artigos/designcon02.pdf

[7]“FPGA Simulations of Round 2 Advanced Encryption Standards”

http://csrc.nist.gov/CryptoToolkit/aes/round2/conf3/presentations/elbirt.pdf.

[8] http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

[9] Tilborg, Henk C. A. van. “Fundamentals of Cryptology: A Professional Reference and Interactive Tutorial”, New York Kluwer

Academic Publishers, 2002

[10] Peter J. Ashenden, “The Designer's Guide to VHDL”, 2nd Edition, San Francisco, CA, Morgan Kaufmann, 2002

http://www.jetir.org/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijndaeldocV2.zip
http://www.altera.com/literature/ds/acex.pdf
http://www.altera.com/literature/wp/wp_hcores_rijnfast.pdf
http://www.inf.ufrgs.br/~panato/artigos/designcon02.pdf
http://csrc.nist.gov/CryptoToolkit/aes/round2/conf3/presentations/elbirt.pdf
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

