USE OF MACHINE LEARNING IN NETWORKING: A DETAILED ANALYSIS

Arvindhan M, Assistant Professor, Department of Computer Science & Engineering, Galgotias University

ABSTRACT

For the first time, machine learning (ML) has seen a rise of use cases across multiple areas in which ML helps solve issues and automate work. Primarily, this is because there has been an increase in the amount of data available, major advances in machine learning algorithms, and more powerful computer hardware. ML has undoubtedly been used to a range of issues in network operation and administration, both ordinary and complicated. Several surveys have been completed for particular networking topics, such as networking technologies, or specialised network technology areas. This study is unique, since it looks at how ML approaches are used in various networking niches across multiple network technologies. Such a discussion aims to benefit readers in a number of ways, from discussing the various learning models and machine learning techniques that are applied to fundamental networking problems, such as traffic prediction, routing, and classification, to dealing with congestion control, resource and fault management, QoS and QoE management, and network security. This survey not only defines the boundaries, but also shines a light on the research and implementation problems and possibilities that will enable ML in networking. Now, because of this, the increasing role of machine learning in networking represents a crucial contribution to the advancement of network operation and administration.

KEYWORDS: Machine Learning, Networking, Technology

INTRODUCTION

By using machine learning (ML), a system may derive information from the data. It beyond the mere acquisition of information, including also the putting to good use and personal growth from learning. The main benefit of machine learning is the ability to find and capitalise on patterns that are buried in training data. Learning the patterns from past experiences allows you to assess unfamiliar material, allowing you to discover patterns in the new material and classify it accordingly. By engaging in this new method, people are redefining how computer programmes are developed, since they now write programmes to automate chores. Program construction is implemented via ML[1-7]. Over the last several years, ML has seen a surge of attention. Early machine learning algorithms were inflexible and could not accept any changes to the training data. Real-world use of machine learning is become more versatile and robust because to recent developments in ML. For instance, the use of machine learning in the healthcare industry has led to enormous improvements in imaging and diagnostic techniques. Generally, we employ technology that is based on machine learning. For example, search engines often use machine learning for activities including...
suggesting queries, correcting spelling, indexing web pages, and ranking websites. In the future, as we seek
to automate even more elements of our life, such as automating the house, driverless cars, and making
compound decisions, ML approaches will play an increasingly essential role in these systems. Additional
than the surge in ML approaches, numerous other reasons have contributed to the renewed interest in
machine learning. Above all, successful ML approaches depend on reliable data [8-10].

ML FOR NETWORKING

There have been recent breakthroughs in computer power that provide the capacity to store and process a
large amount of data for training and testing machine learning models, which are essential for dealing with
large amounts of data. Some of these cloud computing solutions, for example, promise an endless supply of
computation and storage resources. GPU's and TPU's, however, enable accelerated training and inference
for data-laden problems. In order to better comprehend this point, bear in mind that a trained ML model,
for inference, may be used on less competent devices such as smartphones. Although networks have seen
considerable advancement, operations and administration remain laborious, and defects exist because of
human mistake [11-14]. In the event of network problems, network providers are held financially liable and
have their reputations negatively affected. A great level of interest in self-healing networks exists because
they are automatically self-configuring, self-optimizing, self-protective, and self-healing[12,15-16].

Network operation and administration, whilst needing a fair amount of cognitive control, provides a unique
set of obstacles for ML. The first challenge is that each network is unique, and standards are not used to
provide consistency across networks. An example of this is the wide and divergent variety of corporate
networks. What has worked in one kind of network may not be applicable in another. The second major
obstacle to effective network management is that the network is always changing and dynamic factors
impede the use of fixed sets of patterns that help the network operate and manage. Because the number of
programmes operating in the network and the sorts of devices linked to the network have continuously
increased, manual network management is almost impossible[17-20].

Networking technologies that have been made possible by programmability at the network level via
Software-Defined Networking (SDN) foster the use of machine learning in networking. It has, however,
seen little use for tasks such as pattern recognition, voice synthesis, and outlier detection, whereas ML has
found a greater use in tasks like as pattern recognition, voice synthesis, and outlier detection. These are the
primary challenges, which include: How can the most relevant data be collected? What controls can be
applied to old network devices? This, together with SDN, overcomes these issues. The cognitive capacity
from machine learning may be used to network management and operation activities. Furthermore, it is an
interesting and meaningful process to use machine learning (ML) methods for a wide range of complicated
networking challenges. As a result, ML in networking is a very intriguing topic, and it's necessary to have a
good grasp of ML approaches and networking challenges[21-22].
Our work here concerns the advancements in the use of machine learning in networking. For our job, we take into consideration all the many aspects of website traffic, performance, and network security. Classification, classifiers, and routing are essential in delivering differentiated and prioritised services in traffic engineering. Under the context of congestion control, QoS/QoE correlation, and resource and fault management, we talk about the implementation of machine learning methods. There is no question that security is one of the key foundations of networking, and in this respect, we focus on technologies that use machine learning (ML) approaches for network security[23-27].

CONCLUSION

The term “Machine Learning” was first used in 1959 and referred to “the practise of computer science that makes computers capable of learning without being explicitly programmed” [28]. These four types of issues are the four major areas that may make use of machine learning: clustering, classification, regression, and rule extraction. In difficulties with clustering, the goal is to group comparable data such that they're further apart from one other, but at the same time, make the distance between the groups greater. Rather than aim to map a collection of fresh input data to a collection of discrete or continuous valued output, in classification and regression issues, the objective is to locate a set of distinct or continuous valued output. These challenges are quite different since the purpose is to find statistical correlations in data, not to classify rules.

Techniques like machine learning have been put to work in many different sectors. Related domains of data analysis and data mining include data mining on huge databases, which is often referred to as data mining on databases [29]. While, ML approaches may be deployed to assist in data mining, the primary objective of data mining issues is to examine the characteristics, variables, invariants, temporal granularity, probability distributions, and transformations of the data. However, beyond data mining, machine learning can foresee future events or occurrences[30-34].

REFERENCES


