INTRODUCTION AND APPLICATION OF **BANACH-STEINHAUS THEOREM IN 2-BANACH SPACES**

Dr. Hans Kumar Singh Department of Physics, Jai Prakash University, Chapra, Bihar.

ABSTRACT- A White introduced the notion of cauchy sequences in 2- normed spaces. After he also defined 2-Banach spaces during this he introduced the notion of 2-functional and the norm of 2 functional and proved a remarkable theorem MX [b] C L X L where L is a 2- Banach space and M and [b] are linear manifolds in L [b] being generated by b which is similar to the Hahn-Banach theorem. And he applied his theorem to obtain some result.

KEYWORD- 2-Banach theorem, 2-normed spaces, etc

INTRODUCTION- Let L be a linear space. The pair (L, ||., ||) is called a linear 2-normed space provided $\|...\|$ satisfies that following condition where $\|...\|$ is real valued function defined on L:a,b.c \in L

- ||a,b|| = 0 if and only if a and b are linearly dependent, 1.
- ||a,b||=||b,a||,2.
- $||a,\alpha\beta|| = |\beta| ||a,b|| \beta real,$ 3.
- $||a,b+c|| \le ||a,b|| + ||a,c||$. 4.

||.,.|| is called a 2- norm which has been shown in [1] on to be non negative. A linear 2-normed (L, ||...||) will simply be denoted by L, unless otherwise stated.

A sequence $\{x_n\}$ is L is called a Cauchy sequence if there exist y, $z \in L$ such that y and z are linearly independent and $\lim_{n \to \infty} ||x_n - x_m, y|| = 0$, $\lim_{n \to \infty} ||x_n - x_m, z|| = 0$, A sequence $\{x_n\}$ is called convergent if there is an $x \in L$ such that $\lim ||x_n - x_m, y|| = 0$ for all $y \in L$. In this case we say that $\{x_n\}$ converges to x, write $x_n \to x$, and call x the limit of $\{x_n\}$. A linear 2-normed space in which every Cauchy sequence is convergent is called a 2-Banach spaces. A 2-functional is real-valued mapping with domain A × C where A and C are linear manifolds of

L. Let F be a 2-functional with domain $A \times C$. F is called a linear 2-functional if:

- F(a+c,b+d) = F(a,b) + F(a,d) + F(c,b) + F(c,d),1.
- $F(\alpha a, \beta b) = \beta b F(a, b)$ where α, β are scalars. 2.

Let F be a 2- functional with domain D(F). F is called bounded if there is a constant $K \ge 0$ such that $|F(a,b)| \le K \parallel a,b \parallel$ for all $(a,b) \in D(F)$. If F is bounded then the norm of $F \parallel F \parallel$, is given

 $\parallel F \parallel = glb\{K: \mid F(a,b) \mid \leq K \parallel a,b \parallel for \, all \, \big(a,b\big) \in D(F)\} \ \ if \ F \ is \ not \ bounded, \ then \ \parallel F \parallel = +\infty$

Clearly the domain of definition of F may in some cases be $L \times L$.

Theorem. Let F be a bounded linear 2-functional with domain D(F). Then

 $||F|| = \sup\{|F(x,y)|: ||x,y|| = 1, (x,y) \in D(F)\}$

$$= \sup \left\{ \frac{|F(x,y)|}{\|(,y)\|} : \|x,y\| \neq 0, (x,y) \in D(F) \right\}.$$

We have a theorem on $M \times [b] \subset L \times L$ where L is a 2-Banach space and M and [b] are linear manifolds L, [b] being generated by the element b, which is similar to the Hahn-Banach theorem.

Definition: Let $\{x_n\}$ be an infinite sequence of elements in L. The series $\sum_{n=1}^{\infty} x_n$ is said to be convergent in L if the sequence of partial sums $\{S_n\}_{\text{where }} S_n = x_1 + x_2 + ... + x_n$ is convergent in L.

If
$$S_n \to \infty$$
 as $n \to \infty$, we write $\sum_{n=1}^{\infty} x_n = S$.

Definition: Let L be dimension ≥ 2 and a, b be two linearly independent elements in L. Then L is said to have the property (P) with respect to a and b if $|x,\lambda| \le |x,a+b|$ for all $x \in L$. and where $\lambda = a \text{ or } b$.

Theorem: Let L be a 2-Banach space of dimension ≥ 2 and let a and b be two linearly independent elements in L. Suppose L has the property (P) with respect to a and b. Let $\{F_i\}_{i \in A}$, A is an index set, be a family of bounded linear 2-functionals with domain Lx[a+b] such that $\{F_i(x,a+b)\}_{i\in A}$ is bounded for each $x\in L$ then $\sup ||f_i|| < \infty$.

Suppose $\{\|F_i\|_{i\in A}\}$ is unbounded. We will construct a sequence $\{x_n, a+b\} \subset Lx[a+b]$ and **Proof:** a sequence $\left\{F_{n}\right\}$ from $\left\{F_{i}\right\}_{i\in A}$ so that

$$x = \sum_{n=1}^{\infty} x_i \in L \quad \text{and} \quad \left| F_n \left(x, a + b \right) \right| > n.$$
 (1)

Since $\{\|F_i\|\}$ is unbounded, there exists $F_i \in \{F_i\}_{i \in A}$ with $\|F_i\| > 4$. Hence it follows that

$$||F_1|| = \sup \left\{ \frac{\left| F_1(x, \alpha(a+b)) \right|}{\left\| x, \alpha(a+b) \right\|}, \left\| x, \alpha(a+b) \right\| \neq 0 \right\}$$

$$= \sup \left\{ \frac{\left| F_1(x,(a+b)) \right|}{\left\| x,(a+b) \right\|}, \left\| x,(a+b) \right\| \neq 0 \right\}.$$

So there exists (x', a+b) with ||x', a+b|| = 0 such that $|F_i(x', a+b)| > 4. ||x', a+b||$. Let $x_1 = \frac{x}{4\|x' \cdot \alpha(a+b)\|}.$

Then $x_1 \in L$, $||x_1, a+b|| = \frac{1}{4}$ and $|F_1(x_1, a+b)| > 1$. Suppose in this way it has been possible to select the elements x_2, x_3, x_4, x_{n-1} from L and F_2, F_3, F_4, F_{n-1} from $\left\{F_i\right\}_{i \in A}$ which satisfy (1), for these n's. Let

$$M_{n-1} = \sup_{i \in A} |F_i(x_1 + x_2 + ... + x_{n-1}, a + b)|.$$

Then from hypothesis, M_{n-1} is finite. There exists and F_n , say belonging to $\left\{F_i\right\}$ with

$$\|F_n\| > 3 \cdot 4^n [M_{n-1} + n]$$
 (2)

we obtain an $x'' \in L$, similarly as x' was obtained, such that

$$\frac{\left|F_{n}(x'',a+b)\right|}{\|x'',a+b\|} > \frac{2}{3}\|F_{n}\|.$$

$$\begin{aligned} & x_n = \frac{x''}{4^n \left\| x'', a + b \right\|} \\ & \text{Then} & x_n \in L, \left\| x_n, a + b \right\| = \frac{1}{4^n} \text{ and } \left| F_n \left(x_n, a + b \right) \right| > \frac{2}{3} \left\| F_n \right\| \frac{1}{4^n} \\ & \text{i.e.} & \left\| F_n \left(x_n, a + b \right) \right|. \\ & \left| F_n \left(x_n, a + b \right) \right| > \frac{2}{3} \cdot 3 \cdot \frac{4^n}{4^n} \left[M_{n-1} + n \right], \\ & = 2 \left[M_{n-1} + n \right]. \end{aligned} \tag{3}$$

We form the infinite series

$$x_1 + x_2 + x_3 + ... + x_n + ...$$

Which we show first to be convergent Let $S_n = x_1 + x_2 + ... + x_n$, n = 1, 2, ... and n > m. Using the property (P) we see that

$$||S_n - S_m, a|| \le \sum_{i=m+1}^n ||x_i, a|| \le \sum_{i=m+1}^n ||x_i, (a+b)||$$

and similarly

$$||S_n - S_m, b|| \le \sum_{i=m+1}^n ||x_i, (a+b)||$$

Since $\|x_n,(a+b)\| = \frac{1}{4^n}$ n = 1,2,..., the sequence $\{S_n\}$ is Cauchy. So $\{S_n\}$ converges to an element x,

$$\sum_{n=1}^{\infty} x_n = x \in L$$
Say of L i.e. $n=1$

$$\begin{split} \mid F_{n}\left(x_{n+1}+x_{n+2}+...,a+b\right) \mid \leq \parallel F_{n}\left\{\parallel x_{n+1},a+b\parallel+\parallel x_{n+2},a+b\parallel+...\right\} \\ = & \parallel F_{n}\parallel\left\{\frac{1}{4^{n+1}}+\frac{1}{4^{n+2}}+...\right\} \\ = & \parallel F_{n}\parallel\frac{1}{4^{n}}\cdot\frac{1}{3}. \end{split} \tag{5}$$

From (3) and (5) we obtain

$$|F_{n}(x_{n+1} + x_{n+2} + ..., a + b)| \leq \frac{1}{2}F_{n}(x, a + b).$$
Now,
$$|F_{n}(x, a + b)| = |F_{n}(x_{1} + x_{2} + ... + x_{n} + x_{n+1} + ..., a + b)|$$

$$= |F_{n}(x_{n} + (x_{1} + x_{2} + ... + x_{n-1}) + x_{n+1} + ..., a + b)|$$

$$\geq |F_{n}(x_{n}, a + b)| - |F_{n}(x_{1} + x_{2} + ... + x_{n-1}, a + b)|$$

$$-|F_{n}(x_{n+1} + x_{n+2} + ..., a + b)|$$
(6)

$$\geq |F_{n}(x_{n}, a+b)| - \frac{1}{2} |F_{n}(x_{n}, a+b)|$$

$$-|F_{n}(x_{1} + x_{2} + ... + x_{n-1}, a+b)|, \text{ by (6)}$$

$$= \frac{1}{2} |F_{n}(x_{n}, a+b)| - |F_{n}(x_{1} + x_{2} + ... + x_{n-1}, a+b)|.$$

Using (4) and the definition of M_{n-1} , it follows that

$$|F_n(x,a+b)| \ge \frac{1}{2} |(x_n,a+b) - M_{n-1}.$$

$$> 2[M_{n-1} + n]\frac{1}{2} - M_{n-1} = n.$$

This contradiction proves the theorem.

APPLICATION Let L denote the set of all polynomials

$$x(t) = x_n + x_1t + x_2t^2 + ... + x_nt^n$$

of degree n where $x_i, 0 \le i \le n$ are real numbers. Here the positive integer n is not fixed. With the usual definition of addition and scalar (real) multiplication, L is a linear space. We define

||x,y||=0 if x and y are linearly dependent and

$$|| x, y || = \max | x_i | \cdot \max | x_j |$$

$$i \qquad j \qquad ,$$

Where $y(t) = y_0 + y_t + ... + y_m t^m \in L$. It may be easily verified that

 $\|\mathbf{x}, \mathbf{y}\|$ is a 2-norm on L.

Since i = l and j = t are two linearly independent elements of L, the dimension of L is at least two. Let $x \in L$ and let

$$x(t) = x_0 + x_1t + ... + x_nt^n$$
.

Then

$$\parallel x,i \parallel = \max \parallel x_k \parallel = \parallel x,j \parallel = \parallel x,i+j \parallel$$

$$k \qquad .$$

This shows that L has the property (P) with respect to I and j. We write a polynomial $x(t) \in L$ of

 $x(t) = \sum_{j=0}^{\infty} x_j t^j$ where $x_i = 0$ for $j > N_x$. If $x \in L$ the we construct a sequence degree N_x in the form $\{Fn\}\ of\ 2$ -functionals on Lx[1+t] by

$$F_n(x,y) = (x_0 + x_1 + + x_{n-1}) \cdot \lambda$$

Where $y = \lambda(1+t)$ and λ is real. Let n be fixed and $x, y \in L, u, v \in [1+t]$. Suppose the degree of x be N_x and the degree of y be N_y Then

$$x = \sum_{j=0}^{\infty} x_{j} t^{j}, x_{j} = 0$$
for $j > N_{x}$ and $y = \sum_{j=0}^{\infty} y_{j} t^{j}, y_{j} = 0$
for $> N_{y}$.

Then

$$x+y=\sum_{j=0}^{\infty}\Bigl(x_{j}+y_{j}\Bigr)t^{j}$$
 where

$$x_j + y_j = x_j$$
 for $N_x > N_y$; $N_y < j \le N_x$,

$$= y_{j \text{ for }} N_{y} > N_{x}; N_{x} < j \le N_{y},$$

$$= 0 \text{ for } j > \max\{N_x, N_y\}.$$

Also $u = \lambda(1+t)$ and v = u(1+t) where λ and u are real. It is seen easily that $F_n(x+y,u+v)$ $=F_{n}\left(x,u\right)+F_{n}\left(x,v\right)+F_{n}\left(y,u\right)+F_{n}\left(y,v\right)_{\text{and}}F_{n}\left(\alpha x,\beta u\right)=\alpha\beta F_{n}\left(x,u\right)_{\text{where }}\alpha,\beta\text{ are real}$ numbers. Therefore F_n is linear for each n.

Also
$$|F_n(x,u)| = \left| \sum_{j=0}^{n-1} x_j \lambda \right| \le \sum_{j=0}^{n-1} |x_j \lambda| \le n \quad \max_{0 \le j \le n-1} |x_j \lambda| \le nx$$

 $x \max || x_i \lambda |= n || x, u |,$

j so that F_n is bounded for each n. If $x \in L$ then x(t) is a polynomial of degree

 N_x which has at most $N_x + 1$ non-zero co-efficients and therefore $|F_n(x, 1+t)| \le (N_x + 1)$ $\max |x_i|$

is taken over x_0, x_1, \dots, x_N . Therefore the sequence $\{F_n(x, 1+t)\}$ is for each n where $\ j$ bounded for each $x \in L$. On the other hand, if $x(t) = 1 + t + t^2 + t^n$ then $||x,u|| = \lambda |$ and $F_n(x,u)$ $= (1+1+...+1)\lambda$. So $F_n(x,u) = n | \lambda | = n | |x,u| | .$ So

$$\parallel F_n \parallel \geq \frac{\mid F_n(x,u) \mid}{\parallel x,u \parallel} = n$$

Which shows that $\left\{\parallel F_n\parallel\right\}$ is not bounded. Therefore by the above theorem L with the above 2-norm is not a 2-Banach space.

References —

- 1. W. F. Eberlin (1947), Weak Compactness in Banach Spaces, Proc. Nat. Acad. Sci. USA. 33, 51-53.
- 2. S. Gahler (1969), Uber 2-Banach Raume, Math-Nachr, 42, 335-347.

- 3. B. K. Lahiri and Kalishankar Tiwari (1994), Banach Slinhans Theorem in 2-Banach spaces, Jr. Math Sci (Delhi University), 28, 91-101.
- 4. A. White (1969, 2-Banach Spaces, Math Nachr, 42, 44-60.
- 5. A. White (1973), The Cauchy-Schwartz inequality and the Riesz-Fisher Theorem in G-Inner Product Spaces Science Studies, 29, 1-4.
- 6. Ryan Raymond A, (2002). Introduction to Tessor Products of Banach Spaces, Spring monoographs in Mathematics. London Springer – verity ISBN-1-85233, 437-1
- 7. R. Maleeski, K. Anevska, About the 2-Banach spaces, International Journal of Modern Engineering Research (IJMER), Vol. 4 Iss. 5 (2014), 28-32.
- 8. Wu, H.-C.: Hausdorff topology induced by the fuzzy metric and the fixed point theorems in fuzzy metric spaces. J. Korean Math. Soc. 52(6), 1287-1303 (2015)
- 9. Saadati, R., Vaezpour, S.M.: Some results on fuzzy banach spaces. J. Appl. Math. Comput. 17(1-2), 475-484 (2005)
- 10. Sokal Alam (2011) A really simple elementary proof of the uniform boundedness theorem, Amer Math monthly 118, 450 – 452.
- 11. Wilansky, Albert (2013) Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publication, Inc. ISBN 978-0-486-49353-4.
- 12. Wojtaszczyk, Przemyslaw (1991), Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, 25, Cambridge: Cambridge University Press, pp. xiv+382, ISBN 0-521-35618-0.
- 13.R. Malceski, A. Ibrahimi, Contraction Mappings and Fixed Point in 2-Banach Spaces. IJSIMR, e-ISSN 2347-3142, p-ISSN 2346-304X, Vol-4, Iss. 4, (2016), pp. 34-43.