Changing and Unchanging Strong Restrained Domination number of a Graphs

M. Selvaloganayaki\(^1\) and P. Namasivayam\(^2\)

\(^1\)Research Scholar, P.G. & Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli – 627 010, Tamilnadu, India.

(Affiliated to Manonmaniam Sundaranar University, Abishekappatti, Tirunelveli – 627 012, Tamilnadu, India)

\(^2\)Associate Professor, P.G. & Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli – 627 010, Tamilnadu.

(Affiliated to Manonmaniam Sundaranar University, Abishekappatti, Tirunelveli – 627 012, Tamilnadu, India)

Abstract: Let \(G = (V, E)\) be a simple graph. A Subset \(S\) of \(V\) is said to be strong restrained dominating set or restrained strong dominating set of \(G\) if for every \(u \in V - S\), there exists elements \(v \in S\) and \(w \in V - S\) such that \(v\) and \(w\) strongly dominates \(u\). The minimum cardinality of a strong restrained dominating set of \(G\) is called the strong restrained domination number of \(G\) and is denoted by \(\gamma_{sr}(G)\). In this paper, changing and unchanging strong restrained domination number of a graphs are determined.

Keywords: Domination, strong domination, restrained domination, strong restrained domination.

AMS Subject Classification Number(2010): 05C69.

1. INTRODUCTION

Throughout this paper, finite, undirected, simple graph is considered. Let \(G = (V, E)\) be a simple graph. The degree of any vertex \(u\) in \(G\) is the number of edges incident with \(u\) and is denoted by \(\deg u\). The minimum and maximum degree of a vertex is denoted by \(\delta(G)\) and \(\Delta(G)\) respectively. A vertex of degree one is called a pendant (end) vertex and a vertex which is adjacent to an end vertex is called a support vertex.

A set \(S \subseteq V\) is a dominating set of \(G\) if every vertex not in \(S\) is adjacent to a vertex in \(S\). The domination number of \(G\), denoted by \(\gamma(G)\), is the minimum cardinality of a dominating set [1]. The concept of strong domination in graphs was introduced by Sampathkumar and Puspalatha[5] and the restrained domination was introduced by Domke [2] et al. A set \(S \subseteq V(G)\) is a strong dominating set of \(G\) if every vertex \(v \in V - S\) is strongly dominated by some vertex \(u\) in \(S\). A set \(S \subseteq V(G)\) is a restrained dominating set of \(G\), if every vertex not in \(S\) is adjacent to a vertex in \(S\) and to a vertex in \(V - S\). The restrained domination number of a graph \(G\), denoted by \(\gamma_r(G)\), is the minimum cardinality of a restrained dominating set in \(G\). The strong restrained domination was introduced by Selvaloganayaki and Namasivayam [6]. For all graph theoretic terminologies and notations, Harary [3] is referred to. In this paper, changing and unchanging strong restrained domination number of a graphs are characterized.

Definition 1.1: Let \(G = (V, E)\) be a simple graph. A subset \(S\) of \(V\) is said to be a strong restrained dominating set of \(G\) if for every \(u \in V - S\), there exists \(v \in S\) and \(w \in V - S\) such that \(v\) and \(w\) strongly dominate \(u\). The minimum cardinality of a strong restrained dominating set of \(G\) is called the strong restrained domination number of \(G\) and is denoted by \(\gamma_{sr}(G)\).

The existence of a strong restrained dominating set of \(G\) is guaranteed, since \(V(G)\) is a strong restrained dominating set of \(G\).

Example 1.2: Consider the following graph \(G\),

\[
S = \{v_3, v_4\} \text{ is a strong restrained dominating set of } G. \text{ Since every vertex in } V - S \text{ has one strong neighbour in } S \text{ and one strong neighbour in } V - S.
\]
Result 1.3: For the path \(P_{n} \), \(\gamma_{ad}(P_{n}) = \left\{ \begin{array}{ll} n + 2 & \text{if } m = 3n \\ n + 3 & \text{if } m = 3n + 1 \text{ where } n \geq 1 \\ n + 4 & \text{if } m = 3n + 2 \end{array} \right. \)

Result 1.4: \(\gamma_{ad}(C_{n}) = \gamma(C_{n}) = n - 2 \left(\frac{n}{3} \right) \geq 3. \)

Result 1.5: \(\gamma_{ad}(K_{n}) = 1, n \geq 3. \)

Result 1.6: \(\gamma_{ad}(W_{n}) = 1, n \geq 4. \)

Result 1.7: For \(n \geq 1 \), \(\gamma_{ad}(K_{1,n}) = n + 1. \)

Result 1.8: For \(r, s \geq 1 \), \(\gamma_{ad}(D_{r,s}) = r + s + 2. \)

Result 1.9: Let \(G = K_{m,n} \) where \(m, n \in N. \) Then \(\gamma_{ad}(G) = \left\{ \begin{array}{ll} 2 & \text{if } m = n \\ m + n & \text{otherwise} \end{array} \right. \)

Result 1.10: Let \(G \) be a connected graph.

(i) If \(G \) has a unique full degree vertex \(u \) then any strong restrained dominating set of \(G \) contains \(u. \)

(ii) If \(G \) has two full degree vertices \(v \) and \(w, \) then any strong restrained dominating set of \(G \) contains \(v \) and \(w. \)

Result 1.11: If \(G \) is a graph with at least 3 full degree vertices, then \(\gamma_{ad}(G) = 1. \)

2. Main Result: In this chapter, the changing and unchanging values of \(\gamma_{ad} \) when a vertex is removed and an edge is removed from a graph is studied.

Definition 2.1 [4]: Following the notation used in the case of domination, we partition the vertex set \(V(G) \) into subsets \(V_{0}, V_{1}, V_{r} \) as follows:

\[
V_{0}^{+}(G) = \{ v \in V(G) : \gamma_{ad}(G) > \gamma_{ad}(G - v) \} \\
V_{1}^{+}(G) = \{ v \in V(G) : \gamma_{ad}(G) = \gamma_{ad}(G - v) \} \\
V_{r}^{+}(G) = \{ v \in V(G) : \gamma_{ad}(G) < \gamma_{ad}(G - v) \}.
\]

Theorem 2.2: Let \(G = P_{3n}, n \geq 1. \) Let \(v_{i} \) be a vertex of \(P_{3n}. \) Then \(V_{r}^{+}(G) = V(G). \)

Proof: Case i: Let \(v_{i} \) be an end vertex of \(P_{3n}. \) Thus \(P_{3n} - v_{i} = P_{3n - 1}. \) \(\gamma_{ad}(P_{3n - 1}) = n + 3 \) and \(\gamma_{ad}(P_{3n}) = n + 2. \) Therefore \(\gamma_{ad}(P_{3n} - v_{i}) > \gamma_{ad}(P_{3n}). \) Hence \(v_{i} \in V_{r}^{+}(G). \)

Case ii: Suppose \(v_{i} = v_{k} \) or \(v_{i} = v_{3n - 1}. \) Thus \(P_{3n} - v_{i} = P_{3n - 1}. \) \(\gamma_{ad}(P_{3n - 1}) = n + 2. \) Therefore \(\gamma_{ad}(P_{3n} - v_{i}) > \gamma_{ad}(P_{3n}). \) Hence \(v_{i} \in V_{r}^{+}(G). \)

Case iii: Suppose \(v_{i} = v_{3} \) or \(v_{i} = v_{3n - 2}. \) Thus \(P_{3n} - v_{i} = P_{3n - 1}. \) \(\gamma_{ad}(P_{3n - 1}) = n + 1. \) Therefore \(\gamma_{ad}(P_{3n} - v_{i}) > \gamma_{ad}(P_{3n}). \) Hence \(v_{i} \in V_{r}^{+}(G). \)

Case iv: Suppose \(v_{i} = v_{3k}, 2 \leq k \leq n - 1. \) Thus \(P_{3n} - v_{i} = P_{3k + 1} \cup P_{3k - 3k - 1}. \) \(\gamma_{ad}(P_{3k + 1}) = k + 3 \) and \(\gamma_{ad}(P_{3k - 3k - 1}) = n = k + 2. \) Hence \(\gamma_{ad}(P_{3n} - v_{i}) = n + 5. \) Therefore \(\gamma_{ad}(P_{3n} - v_{i}) > \gamma_{ad}(P_{3n}). \) Hence \(v_{i} \in V_{r}^{+}(G). \)

Case v: Suppose \(v_{i} = v_{3k + 1}, 1 \leq k \leq n - 2. \) Thus \(P_{3n} - v_{i} = P_{3k + 1} \cup P_{3k - 3k - 1}. \) \(\gamma_{ad}(P_{3k + 1}) = k + 3 \) and \(\gamma_{ad}(P_{3k - 3k - 1}) = n = k + 2. \) Hence \(\gamma_{ad}(P_{3n} - v_{i}) = n + 5. \) Therefore \(\gamma_{ad}(P_{3n} - v_{i}) > \gamma_{ad}(P_{3n}). \) Hence \(v_{i} \in V_{r}^{+}(G). \)

In all the cases, \(V_{r}^{+}(G) = V(G). \) Hence the theorem.

Theorem 2.3: \(V_{0}^{+}(P_{3n}) = \emptyset, \) where \(n = 3n + 1, 3n + 2, n \geq 1. \)

Proof: Case i: Let \(G = P_{3n + 1}. \) Suppose \(v_{i} \in V_{0}^{+}(G), \) where \(1 \leq i \leq 3n + 1. \) Then \(\gamma_{ad}(G - v_{i}) = \gamma_{ad}(G). \)

Subcase ia: Let \(v_{i} \) be an end vertex of \(G. \) Thus \(G - v_{i} = P_{3n}. \) \(\gamma_{ad}(P_{3n}) = n + 2. \) Therefore \(\gamma_{ad}(G - v_{i}) < \gamma_{ad}(G), \) a contradiction. Therefore \(v_{i} \) cannot be an end vertex of \(G. \)

Subcase ib: Suppose \(v_{i} \neq v_{1} \) or \(v_{i} \neq v_{3n - 1}. \) Thus \(G - v_{i} = P_{3n + 1} \cup P_{3n + 3n - 1}. \) \(\gamma_{ad}(P_{3n + 1}) = n + 3 \) and \(\gamma_{ad}(P_{3n + 3n - 1}) = n + 4. \) Therefore \(\gamma_{ad}(G - v_{i}) < \gamma_{ad}(G), \) a contradiction. Therefore \(v_{i} \neq v_{3k + 1}, 1 \leq k \leq n - 1. \)

Subcase ic: Suppose \(v_{i} \neq v_{3k + 1}, 1 \leq k \leq n - 2. \) Then \(G - v_{i} = P_{3k + 1} \cup P_{3n - 3n - 1}. \) \(\gamma_{ad}(P_{3k + 1}) = k + 3 \) and \(\gamma_{ad}(P_{3n - 3n - 1}) = n = k + 2. \) Hence \(\gamma_{ad}(G - v_{i}) = n + 6. \) Therefore \(\gamma_{ad}(G - v_{i}) > \gamma_{ad}(G), \) a contradiction. Therefore \(v_{i} \neq v_{3k + 1}, 1 \leq k \leq n - 1. \)

Subcase id: Suppose \(v_{i} = v_{3k}, 2 \leq k \leq n - 1. \) Thus \(G - v_{i} = P_{3k + 1} \cup P_{3n - 3n + 1}. \) \(\gamma_{ad}(P_{3k + 1}) = k + 3 \) and \(\gamma_{ad}(P_{3n - 3n + 1}) = n = k + 2. \) Hence \(\gamma_{ad}(G - v_{i}) = n + 6. \) Therefore \(\gamma_{ad}(G - v_{i}) > \gamma_{ad}(G), \) a contradiction. Therefore \(v_{i} \neq v_{3k}, 2 \leq k \leq n - 1. \)

Subcase id: Suppose \(v_{i} = v_{3k + 1}, 1 \leq k \leq n - 1. \) Thus \(G - v_{i} = P_{3k + 1} \cup P_{3n - 3n + 1}. \) \(\gamma_{ad}(P_{3k + 1}) = k + 2 \) and \(\gamma_{ad}(P_{3n - 3n + 1}) = n = k + 3. \) Hence \(\gamma_{ad}(G - v_{i}) = n + 5. \) Therefore \(\gamma_{ad}(G - v_{i}) > \gamma_{ad}(G), \) a contradiction. Therefore \(v_{i} \neq v_{3k + 1}, 1 \leq k \leq n - 1. \)
Theorem 2.4: Let $G = C_m$, $m \geq 4$. Then $V_{sr}(G) = V(G)$.

Proof: Case i: Let $G = C_{3n}$, $n \geq 2$. Let $v \in V(G)$. Then $y_{sr}(G) = n$, $G - v$ is a path P_{3n-1} and $y_{sr}(P_{3n-1}) = n + 3$. Therefore $y_{sr}(G - v) > y_{sr}(G)$.

Case ii: Let $G = C_{3n+1}$, $n \geq 1$. Let $v \in V(G)$. Then $y_{sr}(G) = n + 1$, $G - v$ is a path P_{3n} and $y_{sr}(P_{3n}) = n + 2$. Therefore $y_{sr}(G - v) > y_{sr}(G)$.

Case iii: Let $G = C_{3n+2}$, $n \geq 1$. Let $v \in V(G)$. Then $y_{sr}(G) = n + 2$, $G - v$ is a path P_{3n+1} and $y_{sr}(P_{3n+1}) = n + 3$. Therefore $y_{sr}(G - v) > y_{sr}(G)$. Therefore $V_{sr}(G) = V(G)$. Hence the theorem.

Remark 2.5: Let $G = C_1$. Let $v \in V(G)$. Then $y_{sr}(G) = 1$, $G - v$ is a path P_2 and $y_{sr}(P_2) = 2$. Therefore $y_{sr}(G - v) > y_{sr}(G)$. Therefore $V_{sr}(G) = V(G)$.

Theorem 2.6: Let $G = K_{1,n}$. Then $V_{sr}(G) = V(G)$, $n \geq 2$.

Proof: Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and $E(G) = \{v_i v_j : 1 \leq i \leq n - 1\}$. Therefore $y_{sr}(K_{1,n}) = n + 1$.

Case i: Suppose $G - v$ is a complete bipartite graph $K_{m,n}$ and $y_{sr}(K_{m,n}) = n$. Therefore $y_{sr}(G - v) < y_{sr}(G)$. Hence $v \in V_{sr}(G)$.

Case ii: Suppose $G - v$ is a cycle C_n and $y_{sr}(C_n) = n - 2$. Therefore $y_{sr}(G - v) > y_{sr}(G)$. Hence $v \in V_{sr}(G)$, a contradiction.

Theorem 2.7: $V_{sr}(W_n) = \emptyset$, $n \geq 4$.

Proof: Let $G = W_n$, $n \geq 4$. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and let $E(G) = \{v_i v_j : 1 \leq i \leq n - 1\}$. Therefore $y_{sr}(W_n) = 1$. Suppose $v \in V_{sr}(W_n)$. Then $y_{sr}(G - v) > y_{sr}(G)$, a contradiction. Therefore $V_{sr}(W_n) = \emptyset$. Hence the theorem.

Theorem 2.8: Let $G = K_{m,n}$, $m, n \geq 2$. Then $V(G) = \{y_{sr}(G) \text{ if } m = n \}$.

Proof: Let $G = K_{m,n}$, $m, n \geq 2$. Let $V(G) = \{v_i \in V(G) / 1 \leq i \leq m, 1 \leq j \leq n\}$. Therefore $y_{sr}(K_{m,n}) = m + n - 1$. Suppose $v \in V_{sr}(G)$. Then $y_{sr}(G - v) = y_{sr}(G)$ and $y_{sr}(G - v) < y_{sr}(G)$. Therefore $V_{sr}(G) = V(G)$.

Case i: Suppose $m = n$. Therefore $V_{sr}(G) = V(G)$.

Case ii: Suppose $m < n$.

Subcase iia: Suppose $n - m = 1$, $y_{sr}(G) = m + n$.

Subcase iiai: Suppose $G - u$ is a complete bipartite graph $K_{m-1,n}$ and $y_{sr}(G - u) = m + n - 1 < y_{sr}(G)$.

Subcase iiaii: Suppose $G - v$ is also a complete bipartite graph $K_{m-1,n}$, $m = n - 1$; then $y_{sr}(G - v) = 2 < y_{sr}(G)$.

Subcase iib: Suppose $n - m = 1$, $y_{sr}(G) = m + n$.

Subcase iib: Suppose $G - u$ is a complete bipartite graph $K_{m,n-1}$ and $y_{sr}(G - u) = m + n - 1 < y_{sr}(G)$.

Subcase iibii: Suppose $G - v$ is also a complete bipartite graph $K_{m,n-1}$, $m = n - 1$, then $y_{sr}(G - v) = m + n - 1 < y_{sr}(G)$. Therefore $V_{sr}(G) = V(G)$. Hence the theorem.

Theorem 2.9: Let $G = D_{t,r}$, $s \geq 2$. Then $V_{sr}(G) = V(G)$.

Proof: Let $v \in V(G)$, $y_{sr}(G) = r + s + 2$. Thus $G - v = K_{t,s}$ or sK_t (or) rK_t, $K_{t,1}$, $K_{t,1}$ (or) K_{s-1}, K_{s-1}, $sK_t = r + s + 1 < y_{sr}(G)$. Therefore $v \in V_{sr}(G)$. Therefore $V_{sr}(G) = V(G)$. Hence the theorem.

Definition 2.10 [4]: Following the notation used in the case of domination, we partition the edge set $E(G)$ into subsets E_0, E_1, E_2, E_3, E_4. Then $E_{sr}(G) = E(G)$.

Proof: Let $G = P_{3n}$, $n \geq 2$. Let $v \in V(G)$. Then $y_{sr}(G) = y_{sr}(P_{3n}) + 1$. Hence $v \in E_{sr}(G)$.

Case i: Suppose $e_1 = e_2$ or $e_1 = e_3$. Thus $P_{3n} - e_1 = P_1 \cup P_{3n-1}$ and $y_{sr}(P_1) = n + 3$, $y_{sr}(P_{3n-1}) = n + 4$. Therefore $y_{sr}(P_{3n} - e_1) = y_{sr}(P_{3n})$. Hence $e_2 \in E_{sr}(G)$.

Case ii: Suppose $e_0 = e_2$ or $e_0 = e_3$. Thus $P_{3n} - e_0 = P_1 \cup P_{3n-2}$ and $y_{sr}(P_{3n-2}) = n + 2$, $y_{sr}(P_{3n-2}) = n + 4$. Therefore $y_{sr}(P_{3n} - e_0) = y_{sr}(P_{3n})$. Hence $e_2 \in E_{sr}(G)$.

Case iii: Suppose $e_0 = e_0$, $1 \leq k < n - 1$. Thus $P_{3n} - e_0 = P_1 \cup P_{3n-3}$ and $y_{sr}(P_{3n-3}) = n + k + 2$ and $y_{sr}(P_{3n-3}) = n + k + 2$. Therefore $y_{sr}(P_{3n} - e_0) = y_{sr}(P_{3n})$. Hence $e_2 \in E_{sr}(G)$.

Case iv: Suppose $e_0 = e_{k+1}$, $1 \leq k < n - 2$. Thus $P_{3n} - e_0 = P_1 \cup P_{3n-3}$ and $y_{sr}(P_{3n-3}) = n + k + 3$ and $y_{sr}(P_{3n-3}) = n + k + 3$. Therefore $y_{sr}(P_{3n} - e_0) = y_{sr}(P_{3n})$. Hence $e_2 \in E_{sr}(G)$.

JETIR1809603 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 644
Case v: Suppose $e_i = e_{3i+2}$, $1 \leq k \leq n - 2$. Thus $P_{3n} - e_i = P_{3i+2} \cup P_{3n-3k-2}$. Hence $\gamma_{srd}(P_{3n-3k-2}) = k + 4$ and $\gamma_{srd}(P_{3n}) = n + 3$. Therefore $\gamma_{srd}(P_{3n}) > \gamma_{srd}(P_{3i+2})$. Hence $e_i \in E^+_s(G)$. In all the cases, $E^+_s(G) = E(G)$. Hence the theorem.

Theorem 2.12: $E^+_s(P_{3n}) = \emptyset$, where $m = 3n + 1, n \geq 2, 3n + 2, n \geq 1$.

Proof: Case i: Let $G = P_{3n}$. Suppose $e_i \notin E^+_s(G)$, where $1 \leq i \leq 3n + 1$. Therefore $\gamma_{srd}(G - e) < \gamma_{srd}(G)$.

Subcase ia: Suppose $e_i = e_i = e_{3n+1}$. Thus $G - e = P_i \cup P_{3n-1}$. Hence $\gamma_{srd}(G - e) = n + 2$ and $\gamma_{srd}(G - e) = n + 3$. Therefore $\gamma_{srd}(G - e) > \gamma_{srd}(G)$, a contradiction. Therefore $e_i \in E^+_s(G)$.

Subcase ib: Suppose $e_i = e_i = e_{3n+1}$. Suppose $e = e_i = e_{3n+1}$. Therefore $\gamma_{srd}(G - e) > \gamma_{srd}(G)$, a contradiction. Therefore $e_i \notin E^+_s(G)$.

Subcase ic: Suppose $e_i = e_i = e_{3n+1}$. Suppose $e = e_i = e_{3n+1}$. Therefore $\gamma_{srd}(G - e) = n + 5$ and $\gamma_{srd}(G - e) = n + 6$. Therefore $\gamma_{srd}(G - e) > \gamma_{srd}(G)$, a contradiction. Therefore $e_i \neq e_i = e_{3n+1}$.

Subcase id: Suppose $e_i = e_i = e_{3n+1}$. Suppose $e = e_i = e_{3n+1}$. Therefore $\gamma_{srd}(G - e) > \gamma_{srd}(G)$, a contradiction. Therefore $e_i \neq e_i = e_{3n+1}$.

Result 2.13: Let $G = P_i \cup P_{3n}$. Suppose $e_i = e_{3n+1}$. Then $\gamma_{srd}(G - e) = 3 = \gamma_{srd}(G)$ and $\gamma_{srd}(G - e) = n + 3$. Therefore $\gamma_{srd}(G - e) = \gamma_{srd}(G)$, a contradiction. Therefore $e_i \notin E^+_s(G)$.

Result 2.14: Let $G = P_i \cup P_{3n}$. Suppose $e_i = e_{3n+1}$. Then $\gamma_{srd}(G - e) = 4 = \gamma_{srd}(G)$, a contradiction. Therefore $e_i \in E^+_s(G)$.

Theorem 2.15: Let $G = C_{3n}, m \geq 3$. Then $E^+_s(G) = E(G)$.

Proof: Case i: Let $m = 3n, n \geq 1$. Let $e = e_i \in E(G)$. Then $\gamma_{srd}(G - e) = n$, $G - e = P_i \cup P_{3n}$. Hence $\gamma_{srd}(G - e) = n + 2$. Therefore $\gamma_{srd}(G - e) > \gamma_{srd}(G)$. Hence $e_i \in E^+_s(G)$.

Case ii: Let $m = 3n + 1, n \geq 1$. Let $e = e_i \in E(G)$. Then $\gamma_{srd}(G - e) = n + 1$. $G - e$ is a path P_{3n+1} and $\gamma_{srd}(G - e) = n + 3$. Therefore $\gamma_{srd}(G - e) > \gamma_{srd}(G)$. Hence $e_i \in E^+_s(G)$.

Case iii: Let $m = 3n + 2, n \geq 1$. Let $e = e_i \in E(G)$. Then $\gamma_{srd}(G - e) = n + 2$. $G - e$ is a path P_{3n+2} and $\gamma_{srd}(G - e) = n + 4$. Therefore $\gamma_{srd}(G - e) > \gamma_{srd}(G)$. Hence $e_i \in E^+_s(G)$.

Theorem 2.16: Let $G = K_{1,n}$. Suppose $e_i = e_{3i+1}, e_{3i+2} \in E(G)$, $n \geq 2$.

Proof: Let $e = e_i \in E(G)$. Then $\gamma_{srd}(G - e) = n + 1$. $G - e = K_{1,n-1}$. Therefore $\gamma_{srd}(G - e) = n + 1$. Therefore $\gamma_{srd}(G - e) = \gamma_{srd}(G)$. Hence $e_i \in E^+_s(G)$. Therefore $E^+_s(G) = E(G)$. Hence the theorem.

Theorem 2.17: Let $G = D_{r,s}, r, s \geq 1$. Then $E^+_s(D_{r,s}) = E(G)$.

Proof: Let $e = e_i \in E(G)$. Then $\gamma_{srd}(G - e) = r + s + 2$. Suppose $G = D_{r,s-1}$. Therefore $\gamma_{srd}(G - e) = r + s + 2$. Therefore $\gamma_{srd}(G - e) = E(G)$. Hence $e_i \in E^+_s(G)$. Therefore $E^+_s(G) = E(G)$. Hence the theorem.

Theorem 2.18: Let $G = K_n, n \geq 2$. Then $E^+_s(K_n) = E(G)$.

Proof: Let $e = e_i \in E(G)$. Then $\gamma_{srd}(G - e) = 1$. $G - e$ has at least 3 full degree vertices, by result 1.11, $\gamma_{srd}(G - e) = 1$. Therefore $\gamma_{srd}(G - e) = \gamma_{srd}(G)$. Hence $e_i \in E^+_s(G)$. Therefore $E^+_s(G) = E(G)$. Hence the theorem.

Result 2.19: Let $G = K_4$. Suppose $e_i = e_{3i+1}, e_{3i+2} \in E(G)$. Then $\gamma_{srd}(G - e_i) = n + 1$. $G - e_i$ has at least 3 full degree vertices, by result 1.11, $\gamma_{srd}(G - e_i) = 1$. Therefore $\gamma_{srd}(G - e_i) = \gamma_{srd}(G)$. Hence $e_i \in E^+_s(G)$. Therefore $E^+_s(G) = E(G)$. Hence the theorem.

Theorem 2.20: Let $G = W_n, n \geq 5$. Then $E^+_s(W_n) = E(G)$.

Proof: Let $V(G) = \{v_i, v_j, 1 \leq i \leq n\}$, $E(G) = \{e_1 = v_i v_{i+1} / 1 \leq i \leq n - 2 \} \cup \{e_{n-1} = v_n v_1 \} \cup \{e_{n+1} = v_1 v_i / 1 \leq i \leq n - 1\}$ and $\gamma_{srd}(W_n) = 1$. Suppose $e_i, e_{3i+1}, e_{3i+2} \in E_s(G)$. Then $\gamma_{srd}(G - e_i) < \gamma_{srd}(G), \gamma_{srd}(G - e_i) < \gamma_{srd}(G)$, and $\gamma_{srd}(G - e_i) < \gamma_{srd}(G)$, a contradiction.

Case i: $G - e_1 \in K_{2,3}$. Suppose $e_i \in E_s(G)$, a contradiction. Therefore $e_i \in E_s(G)$, a contradiction. Therefore $e_i \in E_s(G)$, a contradiction. Therefore $e_i \in E_s(G)$, a contradiction.

Case ii: $G = G - e_1 = P_{n+1}$ and $e_1 \in E_s(G)$. Hence $e_i \in E_s(G)$, a contradiction.

Case iii: $G = G - e_1 = P_{n+1}$ and $e_1 \in E_s(G)$. Hence $e_i \in E_s(G)$, a contradiction.

Case iv: $G = G - e_1 = P_{n+1}$ and $e_1 \in E_s(G)$. Hence $e_i \in E_s(G)$, a contradiction.
\(\gamma_{str}(G) \). Hence \(c_{i \times n - 1} \in E_{\gamma_{str}}(G) \), a contradiction. From cases (i) and (ii), there is no edges belong to \(E_{\gamma_{str}}(G) \). Therefore \(E_{\gamma_{str}}(G) = \emptyset \). Hence the theorem.

Result 2.21: Let \(G = W_n \). Let \(e \in E(G) \). \(\gamma_{str}(G) = 1 \). \(G - e \) has two full degree vertices, by theorem 1.10, any strong restrained dominating set of \(G \) consists of two full degree vertices and there is no vertex to strongly dominate the remaining two vertices, they also belong to strong restrained dominating set of \(G \). Hence \(\gamma_{str}(G - e) \geq 4 \). Therefore \(\gamma_{str}(G - e) > \gamma_{str}(G) \). Hence \(e \in E_{\gamma_{str}}(G) \). Therefore \(E_{\gamma_{str}}(G) = E(G) \).

Theorem 2.22: Let \(G = W_4 \). Let \(e \in E(G) \), \(\gamma_{str}(G) = 1 \). \(G - e \) has two full degree vertices, by theorem 1.10, any strong restrained dominating set of \(G \) contains two full degree vertices and there is no vertex to strongly dominate the remaining two vertices, they also belong to strong restrained dominating set of \(G \). Hence \(\gamma_{str}(G - e) \geq 4 \). Therefore \(\gamma_{str}(G - e) > \gamma_{str}(G) \). Hence \(e \in E_{\gamma_{str}}(G) \). Therefore \(E_{\gamma_{str}}(G) = E(G) \).

Remark 2.23: Suppose \(m = n = 2 \), \(\gamma_{str}(K_{2, 2}) = 2 \). Since \(K_{2, 2} - e = P_4 \), \(\gamma_{str}(K_{2, 2} - e) = 4 \). Hence \(\gamma_{str}(K_{2, 2} - e) > \gamma_{str}(K_{2, 2}) \). Therefore \(e \in E_{\gamma_{str}}(K_{2, 2}) \). Hence \(E_{\gamma_{str}}(K_{2, 2}) = E(K_{2, 2}) \).

3. CONCLUSION

In this paper, the authors studied changing and unchanging strong restrained domination number of a graphs. Similar studies can be made on this type.

REFERENCES

