A REVIEW ON RFID, WSN AND IOT

Ashok Kumar Yadav, Associate Professor, Department of Computer Applications,
Galgotias University

ABSTRACT

RFID and wireless sensor networks (WSNs) are two critical foundations of the Internet of Things (IoT). RFID systems are capable of identifying and tracking devices, but WSNs work together to collect and transmit data from networked sensors. This entails overcoming obstacles such as changing RFID systems with identifying capabilities into sensing and computational platforms and treating them as architectures of wirelessly linked sensing tags. This, together with recent advancements in WSNs and the integration of both technologies, has enabled the development of unique IoT applications. This article discusses these two technologies in detail, as well as the barriers and problems that must be solved. Several of these problems include energy harvesting efficiency, communication interference, fault tolerance, increased data processing capacity, economic feasibility, and an effective integration of various aspects. Additionally, two major themes in IoT are discussed: the coupling of RFID and WSNs to maximise their benefits and mitigate their shortcomings, and wearable sensors, which allow new and exciting IoT applications.

KEYWORDS: IoT, RFID, WSN, Communication.

INTRODUCTION

The Internet of things (IoT) concept is primarily focused on offering thousands of tiny networked devices that may collaborate to accomplish a shared goal. The proliferation of these little networked devices enables the Internet of Things to become a reality. These are intelligent yet straightforward items equipped with sensing and wireless communication capabilities. Two technologies are primarily employed in this framework, and have developed into the IoT's two core pillars: radio frequency identification (RFID) and wireless sensor networks (WSNs). Both technologies are centred on wireless sensing and communication, two of the IoT's primary requirements (Fan et al., 2018; Gope et al., 2018; Kang et al., 2016; S. F. Khan, 2017; Tewari & Gupta, 2017; Wang et al., 2018).

RFID is a kind of auto identification that utilises two distinct sorts of devices: a reader, which acts as the communication's master, and tags, which contain a corresponding electrical code that enables them to be individually recognised. The reader uses radio frequency (RF) impulses to interrogate these tags, and the tags answer with their unique identifying code (ID). Additionally, tags may integrate a sensor, in which case they may backscatter the data collected by the sensor. Tags may be active (battery-powered) or passive (harvesting energy from the reader's radio frequency signal) (Ding & Jiang, 2018; Hester & Tentzeris, 2016; Mansoor et al., 2019; Yu et al., 2011; Zhai et al., 2016). RFID is a consolidated technology for asset identification, security, and track-and-trace applications that utilises a dense array of tags inside the interrogation zone, most notably passive tags. WSNs are networks of sensor-equipped devices.
nodes that gather data in a dispersed fashion and wirelessly communicate it to a central node. A wireless sensor network (WSN) is primarily consisting of sensing nodes, gateways (base station or router), a coordinator, and a personal computer server. The sensing nodes gather data from their associated sensors and transmit it to a PC server through gateways. WSNs are extensively employed in a variety of applications, including medical, environmental, military, and security (Hester & Tentzeris, 2017; Parada et al., 2018; Tan et al., 2018).

Unlike RFID, which is intended to identify and monitor devices, WSNs collect and transmit data from their sensors cooperatively. These two technologies may be used in conjunction to maximise their respective benefits and mitigate their respective drawbacks. The challenges in this area include converting RFID devices with identifying capabilities into sensing and computational platforms, as well as finding the right architectures for wirelessly linked sensor networks. This implies that RFID may be used independently as a WSN, consisting of a network of sensing nodes linked to a PC through a coordinator/reader, or it may be incorporated into another WSN, enhancing the capabilities of both systems. Thus, the combination of RFID and WSN technology provides an extremely promising strategy for addressing existing IoT difficulties and has opened a potential for developing unique IoT applications. Additionally, wearable sensors are an exceptional sort of wireless sensor. Additionally, they may be passive or active, and they may be RFID tags or WSN-connected sensors. All of this points to a burgeoning study area, which is discussed in detail in this study (Yu et al., 2011).

RFID

RFID technology has grown exponentially in popularity over the previous several decades for identifying and tracking applications. RFID’s capacity to identify, monitor, and track data through readily deployed tags now enables applications outside supply chain management: it is being used in new fields of sensing, actuation, and even user engagement. RFID tags may be used independently of other sensors or as RF front-ends for other commercially available sensors. By incorporating sensing capabilities with RFID technology, the system can collect data from real-world items and effortlessly incorporate them into the IoT (Çiftler et al., 2017; Parada et al., 2018; Yu et al., 2011; Zhai et al., 2016).

RFID (Analog): Without the need for separate sensing circuits, these systems conduct analogue processing on the physical signals associated with communication between the reader and the tag. Without the need of extra electronics, the reader is able to collect far more information about the target than just identification (Dey & Karmakar, 2018; Merenda et al., 2019; Olaleye et al., 2018; Pang et al., 2019; Romputtal & Phongcharoenpanich, 2019; Yan et al., 2020). Analog RFID sensing is based on the understanding that the performance of an RFID tag is impacted by the item it is attached to, and therefore that sensing data may be retrieved simply by assessing the variation of the signals backscattered from the
tags. Additionally, sensitive coating materials or lumped components moved across the antenna are employed to optimise the device's responsiveness.

RFID (Digital): To create an integrated sensor module, tags are combined with electrical components such as sensing material, analog-to-digital converters, and a microcontroller. These are referred to as Computational RFID systems (CRFID). CRFID systems enable embedded computers to execute programmes using solely scavenged Radio Frequency (RF) energy. The ability to create genuinely pervasive computing applications for the IoT requires battery-free, "invisible" sensing and processing. The CRFID tag serves as a data transmission interface. Passive RFID sensors gather radio frequency energy from radio frequency radiation to power the circuit, conduct sensing tasks, and store data in the RFID chip for access by RFID readers (Mohideen et al., 2017; Safkhani et al., 2020; Zhao et al., 2015).

LIMITATION

These are two of the most significant constraints, since both sensor nodes and RFID tags are composed of finite materials. Existing RFID platforms used in the Internet of Things are mostly passive, in that they cannot work or detect data until they are positioned inside the reader's reading zone. The integrated circuit (IC), microcontroller unit, and sensor module on a passive tag are powered and communicate through backscattering the incident signal. This solution minimises manufacturing costs by minimising the cost of the integrated circuit. The long-range communication and power-hungry sensing capabilities, on the other hand, will be limited by the amount of power available at the tag (Chokchai, 2018; Kossonon & Ya, 2018; Peng & Xu, 2018; Yin et al., 2018).

Additionally, the Federal Communications Commission (FCC) (or comparable regional agency) limits the maximum power transmitted by the reader to 1 W (30 dBm), assuming a maximum gain of 6 dBi on the antenna. After route losses and polarisation mismatches, only a portion of this transmitted RF power reaches the integrated circuit. While all components are normally engineered to be energy efficient, the logic of the sensors is more complicated and time demanding to operate. As a result, it remains a difficulty to power all components and logic functions using solely captured RF energy. This difficulty is exacerbated when the sensors are embedded in the materials being tested, since the RF signal is attenuated by the surrounding materials and the received RF energy is insufficient to power all activities, severely limiting the RFID sensor's read/write range.

CONCLUSION

While the Internet of Things is becoming a reality, there are still some obstacles that must be overcome before it can be used successfully. RFID and WSN are two of the primary technologies that allow the IoT (Bahramali & Lopez-Vallejo, 2021; Izza et al., 2021; H. A. Khan et al., 2021; Mamun et al., 2021; Ranjana et al., 2021; Selvaraj & Anusha, 2021; Sharma & Hashmi, 2021; Tajin et al., 2021; Thakre et al., 2021).
2021; Xiang & Gao, 2011). These technologies, their primary uses, and some unresolved issues have been discussed in this study to pique researchers' interest in order for these two technologies to progress from research concepts and prototypes to strong and powerful solutions that benefit everyone. Several obstacles have been identified, including RFID scanners’ restricted reach, their inefficiency while reading passive tags, and the low precision of low power sensors used in RFID technology. In the case of WSNs, routing protocols and energy usage are also critical areas for improvement.

REFERENCES

Microwave Symposium Digest, 1557–1560. https://doi.org/10.1109/MWSYM.2017.8058927

