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Abstract: With the rapid development of microarray chip technology, gene expression data are being generated in large 

throughput .The indispensable task of data mining, as a result, is to effectively and efficiently extract useful biological 

information discussed above from gene expression data. However, the high-dimensionality and the complex relationships among 

genes impose great challenges for existing data mining methods. Extensive experimental studies are conducted on synthetic and 

real-life datasets. The experimental results show the effectiveness and efficiency of our algorithms. While we mainly use gene 

expression data in our study, our algorithms can also be applied to high-dimensional data of other domains. 
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I INTRODUCTION 

 
Gene expression is the process of transcribing a gene’s DNA sequence into mRNA sequences, which are later translated into 

amino acid sequences of proteins.  The number of copies of produced RNA is called the expression level of the gene. The 

regulation of gene expression level is considered important for proper cell function.  As an effective technology to study gene 

expression regulation, microarray gene expression profiling uses arrays with immobilized c DNA or oligonu cleotide sequences 

to measure the quantity of mRNA based on hybridization.  Microarray technologies provide the opportunity to measure the 

expression levels of tens of thousands of genes in cells simultaneously which are correlated with the corresponding protein 

made either under different conditions or during different time spots.  Gene expression profiles generated by microarrays can 

help us understand the cellular mechanism of biological process.  For instance, it provides information about the cancerous 

mutation of cells: which genes are most responsible for the mutation, how they are regulated, and how experimental conditions 

can affect cellular function. With these advantages, microarray technology has been widely used in post genome cancer research 

studies. With the rapid advance of microarray technology, gene expression data are being generated in large throughput so that an 

imposing data mining task is to effectively and efficiently extract useful biological information discussed above from the huge and 

fast-growing gene expression data. 

 

II NONLINEAR CORRELATION AND SHIFTING-AND-SCALING CORRELATION 

 
For high-dimensional data like gene expression data, a subset of data objects (genes) is probably strongly correlated only in a 

subset of conditions, while not correlated at all in the remaining ones.  Besides, the orientation of these local correlation 

clusters can be arbitrarily oriented. The above problems have been addressed by several subspace clustering algorithms such as 

LDR, ORCLUS, and 4C  are proposed to identify local correlation clusters with arbitrary orientations, assuming each cluster 

has its own fixed orientation.   

 Both the linear correlation and the nonlinear correlation subspace clustering methods are density-based, requiring gene 

members to be close to each other in correlated subspace.  However, correlated genes don’t need to be close in correlated 

subspaces at all:  positive-correlated genes and negative-correlated genes exhibit no spatial proximity; genes co-regulated 

together may exhibit pure shifting or pure scaling patterns across the subset of the correlated samples, as addressed in pCluster  

and TRICLUSTER .  

III CONTRIBUTIONS 

Propose the concept of Top KRGs to handle the problems of inefficiency and huge rule number in class association rule mining; to 

address the problem of rule selection in associative classification, present classifier RCBT based on Top KRGs; design two 

algorithms, CURLER and Reg-Cluster, for finding nonlinear correlation clusters and shifting-and-scaling correlation clusters in 

subspace respectively. in particular,  make the following contributions. 

 3.1  Top KRGs 

propose the concept of top-k covering  rule groups (Top KRGs) for each row of a gene expression dataset and have 

designed a row-wise mining algorithm to discover the top-k covering rule groups for each row.  In this way, numerous rules 

have been clustered into a limited number of rule groups, bounded by k ∗ n, where n is the number of rows of  gene expression 

dataset and k is the user specified parameter. Our algorithm is specially efficient for gene expression data with extremely large number 

of genes but relatively small number of samples. Extensive experiments on real-life gene expression datasets show that our algorithm can 

be several order of magnitudes better than FARMER , CLOSET+  and CHARM  which uses different  sets. 
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3.2 RCBT 

Top KRGs also facilitates rule selection for associative classification. Based on that,  combine the nl rules generated by the most 

significant genes from each discovered TopKRGs and further develop a new associative classifier called RCBT. Essentially, our RCBT 

classifier works in a committee-like way.  Each test data is first classified by the  main classifier built on rules of the top one covering rule 

groups for each class; if unclassified, the test data is further passed on to the subsequent ordered classifiers built on the rules from the 

top 2, 3, ..., j covering rule groups until it is classified or j == k.   

3.3 CURLER 

Detecting nonlinear correlation clusters is quite challenging.  Unlike the detection of linear correlation in which 

clusters are of unique orientations, finding nonlinear correlation clusters of varying orientations requires merging clusters of 

possibly very different orientations. Combined with the fact that spatial proximity must be judged based on a subset of features 

that are not originally known, deciding which clusters to be merged during the clustering process becomes a challenge.  To 

avoid the problems discussed above,  propose a novel concept called co-sharing level which captures both spatial proximity 

and cluster orientation when judging similarity between clusters. 

3.4 Reg-Cluster 

 Propose a new model for coherent clustering of gene expression data called reg-cluster. The proposed model allows 

(1) the expression profiles of genes in a cluster to follow any shifting-and-scaling patterns in a certain subspace, where the scaling 

can be either positive or negative, and (2) the expression value changes across any two conditions of the cluster to be significant, 

when measured by a user-specified regulation threshold. Also develop a novel pattern-based bi clustering algorithm for identifying 

shifting-and-scaling co-regulation patterns, satisfying both regulation constraint and coherence constraint. 

 
IV TOPKRGS: EFFICIENT MINING OF TOP K COVERING RULE GROUPS 

Define a class association rule as a set of items, or specifically a set of conjunctive gene expression level intervals 

(antecedent) with a single class la- bel (consequent). The general form of a class association rule is: gene1[a1, b1], ...,genen [an 

, bn] → class, where genei is the name of the gene and [ai , bi ] is its expression interval. 

 

4.1 Problem Statement and Preliminary 

To address the problems  discussed in the above section,  propose to discover the most significant top-k 

covering rule groups (Top kRGS) for each row of a gene expression dataset, will illustrate this with an example. 
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covering rule group for rows r1  and r2  is {abc  → C } with confidence 100%, the top-1 covering rule group for row r3   is 

{cde  → C } with confidence 66.7%, and the top-1 covering rule group for rows r4  and r5  is {f ge → ¬C } with confidence 66.7%. 

The support values of the above top-1 covering rule groups are all 2, which is equal to minsup. 

4.2 Efficient Discovery of Top kRGS 

The first problem that  address is to efficiently discover the set of top-k covering rule groups for each row (Top kRGS) of gene 

expression data given a user-specified 

 

4.3 Experimental Studies 

 

 
4 popular gene expression datasets for experimental studies are used. The 4 datasets are the clinical data on ALL-AML leukemia 

(ALL) , lung cancer (LC)
 
, ovarian cancer(OC) , and prostate cancer (PC) . In such datasets, the rows represent clinical samples while the 

columns represent the activity levels of genes/proteins in the samples. There are two categories of samples in these datasets. 

4.4 Comparisons of Runtime on Gene Expression Dataset 
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V CBT: CLASSIFICATION WITH TOP K COVERING RULE GROUPS 

Recent studies have shown that class association rules are very useful in classification.  Due to their relative simplicity, 

they can be easily interpreted by biologists, providing great help in the search for gene predictors (especially those still unknown to 

biologists) of the data categories (classes). Moreover, it is shown in that classifiers built from association rules are rather accurate 

in identifying cancerous cell. RCBT is one novel associative classifier built on class association rules. 

5.1 RCBT and CBA Classifier 

First prove that the set of top-1 covering rule groups for each row contain the set of rules required to build CBA 

classifier. The basic idea of CBA can be summarized as the following steps: 

Step 1: Generate the complete set of class association rules C R for each class that satisfy the user-specified minimum support 

and minimum confidence.  

Step 2: Select rules from sorted rule set C R.   For each rule r in C R,  if it can correctly  classify  some training data in D, 

CBA puts it into classifier C 
0
, removes those training data covered by r and continues to test the rules after r in C R. 

Meanwhile, CBA selects the majority class in the remaining data as default class and computes the errors made by 

current C 
0   

and default class. This process continues until there are no rules or no training data left. 

 

   Figure 5.1  RCBT and CBA Classifier 

 

 

 

Each node in the lattice except the root node maps to the antecedent support set of one rule group in the 

rule group subset. The antecedent support set of the parent node includes that of the child node. The root node corresponds 

to the set of all the 47 rows. 
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    Figure : 5.2 Semantic Visualization of a Single rule group Using the Barcode View and the Flower View 

 
       Figure :5.3 Rule Group Comparisons   Using the Matrix View 

 
5.2 RCBT Classifier 

RCBT tries to reduce the chance of classifying test data with default class by building a series of stand-by 

classifiers apart from the main classifier.  Moreover, RCBT carefully combines a subset of lower bound rules to make a 

collective decision instead of selecting only one shortest lower bound rule as CBA does. The subset of lower bound rules are 

selected based on the discriminate ability of genes. In this way, RCBT will not miss globally significantly rules which are 

unable to be identified because of advance feature selection, while concentrate on a small number of informative genes. 

5.3 Building Classifier 
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Let RGj  denote the set of rules groups, each of which is a top-j rule group for at least one training data of a certain 

class.  Will thus have k sets of rule groups RG1, RG2, ..., RGk . These k sets of rule groups are used to build k classifiers 

C L1 , C L2, ...,C Lk   with C Lj  being built from RGj . Call C L1   the main  classifier and C L2, ..., C Lk   backup classifiers. 

For each rule group in RGj ,  RCBT finds its nl shortest lower bound rules by calling algorithm FindLB(). 

 
 
VI  CURLER: FINDING AND VISUALIZING NONLINEAR CORRELATION CLUSTERS 

 

Detecting nonlinear correlation clusters is challenging because the clusters can have both local and global orientations, 

depending on the size of the neighborhood being considered. As an example, consider Figure 6.1, which shows a 2D sinusoidal 

curve oriented at 45 degrees to the two axes. Assuming the objects cluster around the curve,  will be able to detect the global 

orientation of this cluster if  consider a large neighborhood which is represented by the large circle centered at point p. However, if 

take a smaller neighborhood at point q,  will only find  The local orientation which can be very different from the global one. 

Furthermore, the local orientations of two points that are spatially close may not be similar at the same time, as can be seen from 

the small neighborhoods around q and r. 

 

6.1 Algorithm 

EM Clustering: A modified expectation-maximization subroutine EM C luster is applied to convert the original dataset into a 

sufficiently large number of refined micro clusters with varying orientations. Each microcluster Mi is represented by its mean 

value µi  and covariance matrix Σi .  
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At the same time, a similarity measure called co-sharing level between each pair of microclusters is computed. 

Cluster Expansion: Based on the co-sharing level between the microclusters, a traversal through the microclusters is carried 

out by repeatedly choosing the nearest microcluster in the co-shared  − neighborhood of a currently processed cluster. 

Denote this subroutine as ExpandC luster. 

NNCO plot (Nearest Neighbor Co-sharing Level & Orientation plot): In this step, nearest neighbor co-sharing levels and 

orientations of the microclusters are visualized in cluster expansion order. This allows us to visually observe the nonlinear 

correlation cluster structure and the orientations of the micro clusters from the NNCO plot. 

                                             
6.2 Top-down clustering 
 

Having identified interesting clusters from the orientation plot, it is possible to perform another round of clustering by focusing on 

each individual cluster. The reason for doing so is that the orientation captured by the initial orientation plot could only represent the 

global orientation of the clusters.Each data object is assumed to have membership probabilities for several micro clusters in 

CURLER. Define the data members represented by a discovered cluster C which consists of micro cluster set M C S as the set of 

data objects whose highest membership probabilities are achieved in the micro cluster . 
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6.3 Synthetic Dataset 
The difficulty of getting a public high-dimensional dataset of well-known nonlinear cluster structures,  compared the effectiveness 

of CURLER with 4C on a 9D synthetic dataset of three helix clusters. The three helix clusters existed in dimensions 1 − 3 

(cluster 1), 4 − 6 (cluster 2), and 7 − 9 (cluster 3) respectively and the remaining six dimensions of each cluster were occupied 

with large random noise, approximately five times the data. Each cluster mapped a different color: red for cluster 1, blue for 

cluster 2, and yellow for cluster 3, as shown in Figure 6.4. Below is the basic generation function of helix, where t ∈ [0, 6π],    

x1   = c ∗t, 

x2   = r ∗sin(t), 
 

x3   = r ∗cos(t). 

 

The top-level NNC plot in Figure 6.2 shows that all the three clusters were identified by  CURLER in the sequence of cluster 1, 

cluster 3 and cluster 2, separated  

 

by two NNC-zero-gaps. The top-level orientation plot further indicates the cluster existence subspace of each cluster, 

the gray dimensions. The noise dimensions are marked with irregular dazzling darkening and brightening patterns. 
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6.4 Real Case Studies 

To have a rough idea of the potential of CURLER in practical applications, applied the algorithm to three real-life datasets in 

various domains.  Our experiments on the iris plant dataset, the image segmentation dataset, and the Iyer time series gene 

expression dataset show that CURLER is effective for discovering both nonlinear and linear correlation clusters on  all the 

datasets above.  As the cluster structures of the first two public datasets have not been described, will begin our discussion with the 

examination of their data distributions with the projected views. Will only report the top-level clustering results of CURLER here 

due to space constraint. 

 

 

 
 

        
 
VII  IMPLEMENTATION  

 
Gene expression clustering algorithms may be classified into two big categories: full space clustering algorithms which evaluate 

the expression profile similarity of genes in all conditions, and subspace clustering algorithms which evaluate similarity in a subset 

of conditions. The most commonly applied full space clustering algorithms on gene expression profiles are hierarchical 

clustering algorithms, self-organizing maps, and K-means clustering algorithms, Hierarchical algorithms merge genes with the 

most similar expression profiles iteratively in a bottom-up manner. Self organizing maps and K-means algorithms partition 

genes into user-specified k optimal clusters.  Other full space clustering algorithms applied on gene expression data include 

Bayesian  network  and neural network. Density-based subspace clustering algorithms, and our CURLER algorithm too, would 

assign each data object (gene) to just one cluster. Bi clustering algorithms provide an answer to this problem 

which allow overlapping clusters. These algorithms require genes of the same cluster to be dense and close to 

each other in correlated subspace. 
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n 

 

 

7.1 Regulation Measurement 

Suppose dica   and dicb    are the expression levels of gene gi  under conditions ca  and cb respectively. Could then say 

gi  is up-regulated from condition cb  to condition ca , denoted as Reg(i, ca, cb ) = U p, if the increase in expression level 

exceeds its regulation threshold γi , as described in Equation 5.3.  Alternatively, say gi  is down-regulated from condition 

ca  to cb , denoted as Reg(i, cb , ca) = Down.   In this case, call cb  the regulation predecessor of ca , denoted as cb   x 

ca , and ca  as the regulation successor of cb  for gi , denoted as ca   y cb  (the arrow always points from bigger value to 

smaller value). Otherwise there is no regulation between ca  and cb for gi . 

 

In this chapter, for ease of understanding,  assume the regulation threshold of gi , γi , as a pre-defined percentage of the 

expression range of gi  in Equation5.4, where n is the dimensionality of the expression dataset and γ is a user-defined parameter 

ranging from 0 to 1.0.  Consider imposing a regulation threshold important for pattern validation, as it will help to distinguish 

useful patterns from noise.  In practice, other regulation thresholds, such as the average difference between every pair of 

conditions whose values are closest, normalized threshold , average expression value , etc., can be used where appropriate. 

 

 

The intuition behind using a local regulation threshold for different genes instead of a global one is that individual 

genes have different sensitivities to environmental stimulations. For instance, studies in  reveal that the magnitudes of the rise 

or fall in the expression levels of a group of genes inducible or repressible by hormone E2 can differ by several orders of 

magnitude.Current pattern-based and tendency-based models  can only cope with the extreme and probably biased case where 

γ = 0, and is constrained to the positive correlation. If γ > 0, these models become problematic. 

 

To support this general concept of regulation, a naive approach is to record the regulation relationships between all possible 

pairs of C 
2  

conditions. Instead, propose a new model, called RW ave
γ  1

, which only keeps the regulation information of 

bordering condition-pairs for the genes in a wave-boosting manner with respect to γ. Figure 5.3 illustrates the RW ave
0.15  

model (γ1 = γ2  = 4.5 and γ3 = 1.8) for the running example (Table 5.1). c5  − c1  is one bordering condition-pair for g1  

since it represents the smallest interval above γ1  = 4.5. Consequently, any condition ci  that lies on the left hand side of c5  will 

guarantee to have a bigger difference than γ1  when compared to any condition cj  that lies on the right hand side of c1. 

as can be seen, there is no need to keep the regulation information of non-bordering pairs. The formal definition of the RW aveγ  

model is given below. 

 

7.2 Effectiveness  

Ran the reg-cluster algorithm on the 2D 2884 × 17 yeast dataset with M inG =20, M inC  = 6, γ = 0.05 and ² = 1.0; 21 bi-reg-

clusters are output in 2.5 seconds, where the overlapping percentage a bi-reg-cluster with another one generally ranges from 0% 
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to 85%. Note that did not perform any splitting and merging of clusters. Due to space limit, only report the details of three non-

overlapping bi-reg-clusters with 21 genes and six conditions each. 

 

 
Figure 7.1 illustrates the gene expression profiles for each of the three bi-reg clusters.  Our reg-cluster algorithm can 

successfully identify shifting-and-scaling patterns satisfying the regulation and coherence thresholds, where the scaling factor 

can be either positive or negative.   For each bi-reg-cluster, represent its p-members with black solid lines and its n-

members with red dashed lines.  Obviously, the relationship between any two p-member genes or  between any two n-

member genes of the same cluster is shifting-and-positive-scaling while that between a p-member gene and a n-member gene 

is shifting-and-negative-scaling. As a remarkable characteristic of reg-clusters, crossovers can be observed frequently in the 

gene expression profiles of a pair of genes, resulting from the combination effects of shifting and scaling. In contrast, 

previous pattern-based biclustering algorithms  only allow pure shifting or pure positive-scaling patterns (but not a mixture of 

both) and hence fail to identify the three bi-reg-clusters. 

 

                                                                      Figure 7.2 RW ave
0.15  

Models 

 

VIII CONCLUSION 

In recent years, large amounts of high-dimensional data, such as images, handwriting and gene expression profiles, have 

been generated.  Analyzing and handling such kinds of data have become an issue of keen interest. Elucidating the patterns 

hidden in high-dimensional data imposes an even greater challenge on cluster analysis. It is proposed effective and efficient data 
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mining methods for gene expression analysis in capturing the correlation between gene expression profiles and environmental 

conditions, and also the correlation among genes themselves.  While focus on gene expression data, our data mining techniques 

can be applied to other kinds of high-dimensional data with homologous correlations as well. 

The high-dimensionality of gene expression data renders traditional item wise association rule mining algorithms 

impractical due to exponential explosion of item combinations. Although a recent row wise rule mining algorithm FARMER is 

much more efficient than traditional item-wise algorithms by identifying interesting rule groups instead of searching individual 

rules one by one, the number of interesting rule groups can still be very large. Proposed the concept of top k covering rule 

groups, Top KRGs, and developed an efficient algorithm for Top KRGs discovery. In this way, not only solved the problems of 

inefficiency and huge rule number, but also helped users concentrate on the most significant information and minimized the 

information loss .Experimental studies on four benchmark gene expression datasets demonstrate that our Top KRGs algorithm is 

significantly faster than FARMER. 

                           Based on Top KRGs, designed a novel associative classifier RCBT composed of a committee of k sub-

classifiers. Each test sample is classified by the highest ranked sub-classifier and will be assigned the default class only when 

no sub-classifiers matches the test sample.  Compared with previous associative classifiers, RCBT greatly reduces the chance 

of default class judgment as well as successfully locating globally significant rules. Moreover, by combining the discriminating 

powers of the delicately selected rules from Top-KRGs, RCBT achieves a rather high classification accuracy on four benchmark 

gene expression datasets. To give users some hints on Top-KRGs criteria, effective visualization techniques are also introduced, 

which provides an interactive graphic interface for users to observe, compare and explore rule groups. 

To address nonlinear correlation, proposed a novel algorithm CURLER which adopts a fuzzy EM clustering 

subroutine to estimate the nonlinear orientations of the data in a trade off for efficiency and accuracy.  Inspired by the 

reachability plot of OPTICS, it also proposed NNCO plot which visualizes the clusters embedded in subspace as well as 

their orientations.  As another contribution, CURLER works in top-down manner so that users are able to further explore the 

sub-structure of any cluster of their interest. Experimental studies were carried out on synthetic helix datasets, UCI machine 

learning repository and real-life gene expression data to show the efficiency and effectiveness. 
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