Vascular plant diversity of the select sacred grove of Kanyakumari district, Tamilnadu, India

¹Siva Pradeesh, D.S., ¹Asha Prayline, E., ¹Sukumaran, S., ¹Paul Raj, K., ²Mary Sujin, R. and ³Jeeva, S.

¹Department of Botany and Research Centre, Nesamony Memorial Christian College, Marthandam (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Nesamony Tamilnadu, India - 629 165. ²Department of Botany, PTMTM College, Kamuthi, Tamilnadu, India - 623 604.

³Department of Botany, Scott Christian College (Autonomous), Nagercoil, (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Tamilnadu, India - 629 003.

Abstract

Sacred groves are the important places in which biodiversity is preserved in mostly undisturbed condition because of certain taboos and religious beliefs. Based on the inventory and preliminary survey, two sacred groves were selected in 'Parakudi' village along the southwest coast of Kanyakumari district for the purpose of detailed studies on floristic richness. Floristically a total of 124 species of angiosperms belonging 48 families, 10 species of pteridophytes and 1 species of gymnosperms were recorded. Of these 25 were trees, 28 shrubs, 56 herbs and 15 climbers were well represented in the sacred forests studied. Five species remain unidentified including an orchid taxa. Family-wise distribution of plant families shows that Poaceae was the most speciose family with 10 species in site 1, whereas, Asteraceae, Fabaceae and Malvaceae were the dominant family in site 2 with 5 species each. Thus, the enumeration of the sacred grove at Parakudi village of Vilavancode taluk in Kanyakumari district and the assessment of the floristic wealth would provide a strong basis for evolving measures for their protection.

Key words: floristic survey, Kanyakumari district, Parakudi village, sacred grove, vascular plants

Introduction

Sacred groves are the important places in which biodiversity is preserved in mostly undisturbed condition because of certain taboos and religious beliefs. They are ancient natural sanctuaries that have supported the growth of several interesting and rare species of flora and fauna (Kosambi, 1962). In India, the sacred groves are spread over the country and most of them remain unprotected today from lack of federal legislation. The role of sacred groves in the conservation of biodiversity has long been recognized (Kosambi, 1962; Haridasan and Rao, 1985; Khan *et al.*, 1997; Anthwal *et al.*, 2006). All forms of vegetation in the sacred groves are supposed to be under the protection of the reigning deity of that grove, and the removal of even a small twig is taboo (Vartak and Gadgil, 1973). There are about 14,000 sacred groves known and reported in the country

that harbor and act as repositories of rare fauna and flora. Sacred groves are abundantly present along the Western Ghats in the states of Kerala and Karnataka (Deshmukh *et al.*, 1998), Further, these sacred groves vary in size from a few trees to dense forests covering vast tracts of land (Jonathan, 2008).

Many scholars have been working on conservation of sacred groves through socio-cultural practices in different parts of India (Gadgil and Vartak, 1975, 1976; Boojh and Ramakrishnan, 1983; Khiewtam and Ramakrishnan, 1989; Rodgers, 1994; Oliver *et al.*, 1997; Sinha and Maikhuri, 1998; Sunitha and Rao, 1999; Basu, 2000; Kushalapa *et al.*, 2001). However, a little information is available on sacred groves and conservation of the biodiversity in Kanyakumari district. In view of this fact, the present study was conducted to investigate the floristic richness and highlights the botanical significance of the sacred groves of Parakudi village, which is situated on the foothills of the fragmented hillock of southern Western Ghats.

Materials and Methods

Study Area

Based on the inventory and preliminary survey, two sacred groves (site I and II) was selected in 'Parakudi' village along the south west coast of Kanyakumari district for the purpose of detailed studies on floristic composition and ethnobotanical importance (Plate 1). The sacred forest mainly lies in the boundary of Kerala and Tamilnadu, at Kunnatoor village and managed by the village communities. The distance between the two groves was 100m. As per the information of villagers it is a single grove in olden days, however due to anthropogenic disturbance, mainly construction of road inside the forests and agricultural activity leads to fragmentation of these groves.

The total area of this grove is about 1 hectare. Nearly 60% of this area has been now converted into agroecosystem. Previously, this grove was a 'Kaavu' where the snakes were worshipped. At that period of time, there was not much destruction of the grove by the people because of their religious beliefs. Species loss may now happen due to the construction of the road. Because of this reason, now the area of this sacred forest has been reduced to one acre with canopy openings. The perennial fresh water source present in this grove is consumed by the local people near the vicinity of the sacred forest.

Taxonomic Evaluation

Plants species were collected and identified taxonomically with the help of regional and local floras (Gamble, 1915-1936; Matthew, 1999; Manickam *et al.*, 2008). The Herbaria of Botanical survey of India, Southern Circle, Coimbatore; Kerala Forest Research Institute, Peechi; Tropical Botanical Garden and Research Institute (TBGRI), Palode, Trivandrum, Kerala, and Department of Botany, N. M. Christian College were consulted for correct identification of plant specimens. The nomenclature of species follows the regional flora. The voucher specimens were made and deposited in the herbarium (NMCCH) of N.M. Christian College, Marthandam, Kanyakumari, Tamil Nadu, India for further reference.

Results and Discussion

Floristically a total of 124 taxa of angiosperms belonging 48 families (Table 1), 10 species of pteridophytes and a species of gymnosperm were recorded. Of these, 25 were trees, 28 shrubs, 56 herbs and 15 climbers (Figure 1). Five species remain unidentified including a species of orchids. The invasion of exotic weeds such as *Lantana camara* and *Chromolaena odorata* in the periphery of the sacred groves depicted that the sacred groves are under various degrees of disturbance due to the declination of religious beliefs of the managing trustee of the sacred groves.

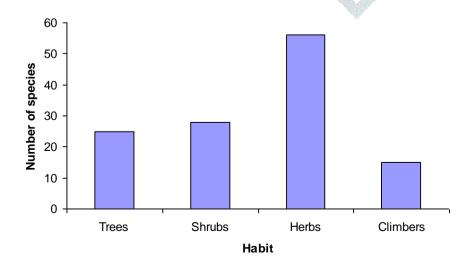


Figure 1. Habit wise distribution of plant species in the study area

© 2018 JETIR December 2018, Volume 5, Issue 12

Family wise distribution of plant families in site I shows that Poaceae was the most speciose family with 10 species and Asteraceae with 9 species was the co-dominat family, followed by Acanthaceae and Fabaceae with 5 species each, four families (Lamiaceae, Moraceae, Euphorbiaceae and Amaranthaceae) having 4 species each. Three families (Rubiaceae, Malvaceae, Oleaceae) having 3 species each, 9 families had 2 species each, whereas, 25 familes were monospecific. Asteraceae, Fabaceae and Malvaceae were the dominant family in site II with 5 species each, Euphorbiaceae, Lamiacaeae and Poaceae with four species was the codominant family, followed by Acanthaceae with 3 species.

The pteridophytes recorded in the study area are, *Acrostichum aureum*, *Adiantum latifolium*, *Christella parasitica*, *Hemionitis arifolia*, *Marislea minuta*, *Pityrogramma calomelanos*, *Lygodium flexuosum* and *Salvinia molesta*. Presence of an IUCN red listed rare gymnospermic species *Cycas circinalis* denotes the conservation status of the groves. However, it is being defoliated during the festival time for decoration purposes is the serious threat to this species.

During the study, some species of wild related cultivated species were reported in the sacred forests. They are Ananas comosus, Artocarpus hirsutus, Artocarpus heterophyllous, Borassas flabellifer, Gloriosa superba, Hemidesmus indicus, Murraya koenigii, Tamarindus indicus and Zizyphus oenoplia. The medicinal plants ranked first, followed by edible, timber, non-timber forest produce, etc. Among the edible species, Artocarpus heterophyllus, A. hirsutus, Mangifera indica and Tamarindus indica are economically valuable.

Table 1. Plant species observed from the sacred groves

S.No	Botanical Name	Family	Sacred Grove	
		Family	Site 1	Site II
	Trees			
1	Allianthus triphysa	Simaroubaceae	+	-
2	Acacia mangiam	Fabaceae	+	-
3	Artocarpus hirsutus	Moraceae	+	-
4	Azadirachta indica	Meliaceae	+	+
5	Borassus flabellifer	Areceeae	+	+

		D 1'			
6	Canthium dicoccum	Rubiaceae	+	-	
7	Calophyllum inophyllum	Guttiferae	+	-	
8	Cocus nucifera	Arecaeae	+	+	
9	Dichrostachys cinera	Nimosaceae	+	-	
10	Fiscus benghalensis	Moraceae	+	-	
11	Lannea coromandelica	Anacerdiaceae	+	-	
12	Leucaena leucocephala	Mimosaceae	+	-	
13	Madhuca indica	Sapotaceae	+	-	
14	Morinda tinctoria	Rubiaceae	+	-	
15	Murraya koenigii	Rutaceae	+	-	
16	Musa paradisiacal	Musaceae	+	-	
17	Olea dioca	Oleaceae	+	-	
18	Pongamia pinnata	Fabaceae	+	-	
19	Psidium guajava	Myrtaceae	+	-	
20	Santalum album	Santalaceae	+	-	
21	Schleicheria oleosa	Sapindaceae	+	\mathbf{D}	
22	Sizygium cumini	Myrtaceae	+		
23	Tamrindus indica	Caesalpiniaceae	+	+	
24	Tectona grandis	Verbanaceae	- 2	+	
25	Terminalia catappa	Combretaceae	4		
	Shurbs			SA L	
26	Abutilon indicom	Malvaceae	_	+	
27	Alstonia scholaris	Apocyanaceae	+		
28	Annona squmosa	Annoaceae	+		
29	Anisomeles malabarica	Lamiaceae	+	+	
30	Barleria prionitis	Acanthaceae	+		
31	Barleria mysorensis	Acanthaceae			
32	Carmona retusa	Boraginaceae	+	+	
33	Carissa carandas	Apocyanaceae	fe let	+	
34	Carissa spinarum	Apocyanaceae		+	
35	Canthium angustifolium	Rubiaceae	+	_	
36	Crotalaria juncea	Fabaceae	_	+	
37	Chlerodendrum inerme	Vernanaceae	+	_	
38	Chlnomolena oderata	Asteraceae	' +	+	
39	Desmodium vaxillatum	Papilionaceae	+	-	
40	Grewia bracteata	Teliaceae	+	_	
41	Hibiscus rosa-sinensis	Malvaceae	+		
42	Jatropha glandulifera	Euphorbiaceae	Т	-	
42	Knoxia heyneana	Rubiaceae	-	+	
43 44			-	+	
44 45	Lantana camara Manihot asculanta	Verbanaceae	+	+	
	Manihot esculenta	Euphorbiaceae	-	+	
46	Naregamia alata	Meliaceae	+	+	
47	Orthosiphon thymifloorum	Lamiaceae	-	+	
48	Polygala javana	Polygalaceae	-	+	

+
+
+

_

-+

+

_

+ + + + +

+

+

+

_

+

+

+

+

+

+

49	Phyllanthus emblica	Euphorbiaceae	+ -	
50	Sida cordifola	Malvaceae	- +	
51	Streblus asper	Moraceae	+ -	
52	Urena lobata	Malvaceae	- +	
53	Ziziphus oenoplia	Rhamaceae	+ -	
	Herbs			
54	Achyranthus aspera	Amaranthaceae	e + +	
55	Aerva lanata	Amaranthaceae	e + +	
56	Ageratum coryzoides	Asteraceae	+ -	
57	Alloteropsis cimicina	Poaceae	+ +	
58	Alternanthera sessilis	Amaranthacea	e + -	
59	Altnanthera sps	Amaranthacea	e + -	
60	Andrographis paniculata	Acanthaceae	+ +	
61	Apluda mutica	Poaceae	+ +	
62	Aristida setacea	Poaceae		
63	Asteracanta longifolia	Acanthaceae		Y
64	Axonopus compressus	Poaceae	+ -	
65	Biophytum sensitivum	Oxalidaceae	+. +	
66	Centella asiatica	Apiaceae	+	
67	Chrysanthimum sps	Asteraceae	A+	
68	Cleome rutidosperma	Capparaceae		
69	Commelina benghalensis	Commelinacea		
0,	Commental Congitations is			
	70 Commelina er	ecta	Commelinaceae	+
	71 Cymbapogon t		Poaceae	+
	72 Cyanodon dac		Poaceae	+
	73 Cyperus coryb	101 11 10 10 10 10 10 10 10 10 10 10 10	Cyperaceae	+
	74 Cyrtococcum		Poaceae	79
	75 Dactylocteniur	n aegyptium	Poaceae	1
	76 Eclypta alba		Asteraceae	+
	77 Eleusine indice		Poaceae	+
	78 Elephantopus		Asteraceae	+
	79 Emillia sonchi		Asteraceae	+
	80 Eragrostis gan	•	Poaceae	+
	81 Euphorbia hiri		Euphorbiaceae	+
	82 Evolvulus alsin		Convolulaceae	+
	83 Evolvulus nun		Convolulaceae	-
	84 Gymnema sylv		Asclepiadaceae	-
	85 Hedyotis coryr		Rubiaceae	+
	86 Helotropium i		Boraginaceae	-
	87 Hibiscus brack	•	Malvaceae	+
	88 Hybanthus enn	-	Violaceae	+
	89 Hyptis suaveol		Lamiaceae	+

- 91 Kyllinga squamulata
 92 Leucas aspera
 93
- 93 Maranta arundinacea
- 94 Mimosa pudica

Acanthaceae

Cyperaceae

Lamiaceae

Aeraceae

95	Ocimum sanctum	Lamiaceae	+	-
96	Panicum antidotate	Poaceae	+	-
97	Phyllanthus niruri	Euphorbiaceae	+	+
98	Pseudarthria viscida	Fabaceae	+	+
99	Sesbastiana chamalea	Euphorbiaceae	-	+
100	Scoparia dulcis	Scorphulariaceae	+	-
101	Sida acuta	Malvaceae	+	+
102	Sporobolus inclados	Poaceae	+	-
103	Stylosanthus fruticosa	Fabaceae	+	+
104	Tephrosia sps	Papilionaceae	-	+
105	Tridax procumbens.	Asteraceae	+	+
106	Vernonia cineria	Asteraceae	+	+
107	Vicoa indica	Asteraceae	-	+
108	Weddelia trilobata	Asteraceae	+	-
109	Synedrella nodiflora 🛛 🔪	Asteraceae	+	-
			A.	
	Climbers			
110	Aristolochia indica	Aristolochiaceae	+	-
111	Blepharis maderaspatensis	Acanthaceae	+	-
112	Cardiospermum halicacabum	Sapindaceae	-	+
113	Centrosema pubescens	Fabaceae	-	+
114	Cissampelos pareira	Menispermaceae	-	+
115	Crotalaria retusa	Fabaceae	-	+
116	Ficus tinctoria	Moracae	+	-
117	Glorisa superba	Liliaceae	-	+
118	Jasminium angustifolium	Oleaceae	+	-
119	Jasminium malaba <mark>ricum</mark>	Oleaceae	+	-
120	Merremia tridellata	Convolvulaceae	, + 🚺	-
121	Mukia maderaspatans	Cucurbitaceae	+	+
122	Piper nigrum	Piperaceae	+	-
123	Tinospora cordifolia	Menispermaceae	- 19	+
124	Vanda tassellata 📃 💛	Orchidaceae	+	+

Abbreviations: (- absent; + present)

Sorensen similarity index showed, 35.71% (20 species) of the herbaceous species were common in both the groves. It may due the due to the locality of the groves, i.e., both the groves are situated in between 100m distance. An epiphytic orchidaceous species *Vanda tasellata* (Orchidaceae) represented both the groves showed the similarity distribution of species in the groves studied.

Dominance of phanerophytes (44 - 51%) in the sacred groves brings them closer to the tropical forests at Mexico (Vazquezg *et al.* 1998) and Costa Rica (Lieberman *et al.* 1996). High concentrations of lianas and climbers, another important characteristic feature of the tropical forests (Daniels *et al.*1995; Vazquezg *et al.* 1998) was also observed in the sacred forests. High percentage of epiphytes (11 - 16%) in the sacred groves

is attributed to the year round precipitation and high atmospheric humidity (Benzing 1983; Sugden and Robins 1979). The finding of the present study is supported with the earlier work of Upadhaya *et al.* (2003) in the sacred groves of Jaintia Hills in Meghalaya, northeast India. Sunitha (2002) studied 14 sacred groves in Kurnool district of Andhra Pradesh and recorded a maximum of 83 tree species in the 50 ha Upper Ahobilam sacred grove.

Conclusion

The present study has documented the prevalence of the sacred forest among the agricultural/urban societies. It further confirms that this forest have managed to survive up to the modern times but are struggling for survival now. Despite their alarming conservation status, the biodiversity conserved in them is significantly rich, varied and valuable. Unless urgent and stem measures are taken, the time is not far-off that the "mini biosphere reserves" will be turned to the "relicts of dying wisdom".

References

- Anthwal A., Sharma R.C. and Sharma A. 2006. Sacred Groves: Traditional Way of Conserving Plant Diversity in Garhwal Himalaya, Uttaranchal. The Journal of American Science, 2(2): 35-38.
- Basu R. 2000. Studies on Sacred Groves and Taboos in Purulia District of West Bengal. Indian Forester, pp.1309–1317.
- Benzing, D.H. 1983. Vascular epiphytes: a survey with special reference to their interactions with other organisms. pp. 11-23. In: S.L. Sutton, T.C. Whitmore & A.C. Chadwick (eds.) Tropical Rain Forest, Ecology and Management. Blackwell Scientific Publications, Oxford.
- Boojh R. and Ramakrishan P.S. 1983. Sacred Groves and their Role in Environmental Conservation. In: Strategies for Environmental Management. Souvenir Vol.. Dept. of Science and Environmental of Uttar Pradesh, Lucknow, pp. 6–8.

- Daniels, R.J.R., M. Gadgil & N.V. Joshi. 1995. Impact of human extraction on tropical humid forests in the western ghats in Uttara Kannada, South India. *Journal of Applied Ecology* 32: 866-874.
- Deshmukh, S., Gogate, M.G. and Gupta, A.K. 1998. Sacred groves and biological diversity: providing new dimensions to conservation issue. Pages 397-414, In: Ramakrishnan, P.S., Saxena, K.G. and Chandrashekara, U.M. (Editors) Conserving the Sacred for Biodiversity Management. UNESCO and Oxford-IBH Publishing, New Delhi.
- Gadgil, M. and Vartak, V.D. 1975. Scared groves of India-A plea of the continuous conservation. *Journal of Bombay Natural History Society* 72(2): 313-320.
- Gadgil, M. and Vartak, V.D. 1976. Sacred groves of Western Ghats of India. Economic Botany 30: 152-160.
- Gamble, J.S. and Fischer, C.E.C. 1915-1936. *The Flora of the Presidency of Madras*. Part I- II, Adlard and Son Ltd., London.
- Haridasan, K. and Rao, R.R. 1985. Forest Flora of Meghalaya. Vol.1. Bishen Singh and Mahendrapal Singh, Dehradun. p.451.
- Henry Jonathan, K. 2008. Sacred groves the need for their conservation in the Eastern Ghats region. EPTRI ENVIS Newsletter, 14(3): 3-5.
- Khan, M.L., Menon, S. and Bawa, K.S. 1997. Effectiveness of the protected area network in biodiversity conservation, a case study of Meghalaya, India. *Biodiversity and Conservation* 6: 853-868.
- Khiewtam R.S. and Ramakrishnan P.S. 1989. Socio-cultural studies of the sacred groves at Cherrapunji and adjoining areas in North-Eastern India. Man in India 69(1): 64–71.
- King Oliver I.E.D., Chitra V. and Narasimha D. 1997. Sacred groves: traditional ecological heritage. Int. J. Ecol. Environ. Sci. 23: 463–470.
- Kosambi D.D. Myth and Reality. Popular Press, Bombay, India. 1962.

- Kushalapa C.G., Bhagwat S.A. and Kushalapa K.A. 2001. Conservation and management of sacred groves of Hodagu, Karnataka, South India - a unique approach. In: Ganeshaiah K.N., Shaanker Uma R. and Bawa K.S. (eds), Tropical Ecosystems: Structure, Diversity and Human Welfare. Oxford IBH Publishing Co. Pvt. Ltd, New Delhi, pp. 565–569.
- Lieberman, D., M. Lieberman, R. Peralta & G.S. Hartshorn. 1996. Tropical forest structure and composition on a large scale altitudinal gradient in Costa Rica. *Journal of Ecology* 84: 137-152.
- Manickam, V.S., Murugan, C. and Jothi, G.J. 2008. *Flora of Tirunelveli Hills* (Southern Western Ghats), Vol. 1, *Polypetalae*. Bishen Singh Mahendra Pal Singh, Dehra Dun.
- Matthew, K.M. 1999. The Flora of the Palani Hills South India, Vol. 3. The Rapinat Herbarium, Thiruchirapalli, Tamilnadu.
- Rodgers, W.A. 1994. The sacred groves of Meghalaya. Man in India 74: 339-348.
- Sinha B. and Maikhuri R.K. 1998. Conservation through 'socio-cultural-religious practice' in Garhwal Himalaya: a case study of Hariyali sacred grove'. In: Ramakrishan P.S., Saxena K.G. and Chandrasekhar U. (eds), Conserving the Sacred: For Biodiversity Management. UNESCO and Oxford IBH Publishing Co. Pvt. Ltd, New Delhi, pp. 289–299.
- Sugden, A.M. & R.J. Robins. 1979. Aspects of the ecology of vascular epiphytes in Columbian cloud forest.1. The distribution of the epiphytic flora. *Biotropica* 11: 173-188
- Sunitha S. and Rao R.P.B. 1999. Sacred groves in Kurnool District, Andhra Pradesh. In: Sivadasan M. and Philip Mathew (eds), Biodiversity, Taxonomy and Conservation of Flowering Plants. Mentor books, Calicut, pp. 367–373.
- Sunitha, S. 2002. *Plant Biodiversity of the Sacred Groves of Kurnool District, A.P.*. Ph.D. Thesis, Sri Krishnadevaraya University, Ananatapur.

- Upadhaya, K., Pandey, H. N., Law, P. S., & Tripathi, R. S. (2003). Tree diversity in sacred groves of the Jaintia hills in Meghalaya, northeast India. *Biodiversity & Conservation*, *12*(3), 583-597.
- Vartak V.D. and Gadgil M. 1973. Dev Rahati: an ethnobotanical study of the forests preserved on grounds of religious beliefs. Proc. Indian Sci. Cong. 60: 341.
- Vazquezg, J., A. Thomas & J. Givnish. 1998. Altitudinal gradients in tropical forests composition, structure and diversity in the Sierra de Manantan. *Journal of Ecology* 86: 999-1020.
- Vazquezg, J., A. Thomas & J. Givnish. 1998. Altitudinal gradients in tropical forests composition, structure and diversity in the Sierra de Manantan. *Journal of Ecology* 86: 999-1020.

