On Various Cyclic Contractions In Dislocated Quasi **B-Metric Spaces**

¹Krati Shukla ¹Research Scholar ¹Department of Mathematics, ¹Institute for Excellence in Higher Education, Bhopal, M.P.,India

Abstract: In this paper we prove some new fixed point results in dislocated quasi b-metric spaces. We introduce dqb-cyclic-Chatterjea type contraction,dqb-cyclic-Ciric type contraction and dqb-cyclic-Reich type contraction. We also provide proofs for fixed point results using aforesaid contraction conditions.

2010 MSC: Primary: 47H10, 46J10; Secondary: 54H25, 46J15; IndexTerms-Cyclic Contraction, Fixed Point, Dislocated Quasi B-Metric Space.

I. INTRODUCTION

Fixed Point Theory has witnessed enormous amount of research in past few decades. As Banach[3], in 1922, laid the foundations of contraction principle and devised the mechanism for ensuring and finding a fixed point to be existent provided the self-map be continuous, he opened up a broad opportunity to generalizations and applications of the contraction principle. The principle may be stated as follows:

"If X is a complete metric space, then every contraction mapping from X to itself has a unique fixed point."

In 1930, Wilson [10] introduced the concept of quasi – metric, which is merely suppressing one of the abiding axioms for being a complete metric i.e. d(x,y) = d(y,x). Hitzler & Seda[6] introduced the concept of dislocated metric and generalized the Banach's contraction principle. Ahmed, Hassan & Zeyada[12] introduced the concept of dislocatedquasimetricspace, which is an obvious generalization of dislocatedmetricspace and Banach's contraction principle. In 1989, Bakhtin[2], introduced the concept of b-metric space and generalized Banach's contraction principle for b - metricspace. Chakkrid and Cholatis[8] introduced the concept of dislocated quasib - metricspace.

In this paper we establish some new outcomes using Chatterjea contraction principle[4], Ciric contraction principle[5] and Rich contraction principle[9].

II. PRELIMINARIES

Definition 2.1[1]. Let X be a non empty set, let $d: X \times X \to [0, \infty)$ and let $k \in \mathbb{R}$. Then (X, d) is said to be b-metric space if the following conditions are satisfied:

```
(i) d(x, y) = 0 if and only if x = y, \forall x, y \in X.
```

$$(ii)d(x,y) = d(y,x), \ \forall x,y \in X.$$

(iii) There exist a real number $k \ge 1$ such that $d(x, y) \le k[d(x, z) + d(z, y)], \forall x, y \in X$.

Definition 2.2[1]. Let X be a non empty set and let $d: X \times X \to \mathbb{R}$, then (X, d) is known as dislocated metric if the following conditions are met and $\forall x, y, z \in X$.

```
(i) d(x, y) \ge 0, \forall x, y \in X.
```

(ii)
$$d(x, y) = d(y, x), \forall x, y \in X$$
.

(iii)
$$d(x,y) = d(y,x) \Longrightarrow x = y, \ \forall x,y \in X.$$

$$(\mathrm{iv})d(x,y) \leq d(x,z) + d(z,y), \forall x,y \in X.$$

dsatisfies (i),(iii) and (iv) dis called dislocated quasimetric onXand (X, d) is the pair called dislocated quasimetric space.

Definition 2.3[1]. Let X be a non-empty set and let the mapping $d: X \times X \to [0, \infty)$. Let a constant $k \ge 1$. If following conditions

```
(i) d(x, y) = d(y, x) = 0, \ \forall x, y \in X.
```

(ii)
$$d(x, y) \le k[d(x, z) + d(z, y)], \forall x, y \in X$$
.

Then the pair (X, d) is called *dislocated quasib* – *metric space*.

Definition 2.4[1]. Let (X, d) be adqb - metric space. A sequence $< x_n > \text{in } X$ is called to be dqb-converges to $x \in X$ if

$$\lim_{n\to\infty}d(x_n,x)=0=\lim_{n\to\infty}d(x,x_n)$$

In this case x is called dqb - limit of $\langle x_n \rangle$ and is written as $x_n \to x$.

Definition 2.5[8]. Let (X, d) be a dqb-metric space. A sequence $\langle x_n \rangle$ in X is called as dqb-Cauchy sequence if

$$\lim_{n,m\to\infty}d(x_n,x_m)=0=\lim_{n\to\infty}d(x_m,x_n)$$

Proposition 2.6[8]. If (X, d) is a dqb - metric space then a function $f: X \to X$ is continuous if and only if $x_n \to x \Longrightarrow fx_n \to x$ fx.

Definition 2.7 Let A and B be nonempty closed subsets of ametricspace (X, d) and $S: A \cup B \rightarrow A \cup B$. S is called a cyclic map iff $S(A) \subseteq BandS(B) \subseteq A$.

Definition 2.8[7]. A cyclic map $S: A \cup B \to A \cup B$ is said to be a cyclic contraction if there exists $\alpha \in [0,1)$ such that $d(Sx, Sy) \le \alpha d(x, y)$

 $\forall x \in Aandv \in B$.

Definition 2.9 Let A and B be non empty closed subsets of a *completed qb - metric space* (X, d). A cyclic mapping $S: A \cup B \rightarrow A$ $A \cup B$ is called a $dqb - cyclicChatterjeatypecontraction if there exist some <math>r \in (0, \frac{1}{2})$ such that

$$d(Sx, Sy) \le r[d(x, Sy) + d(y, Sx)]$$

 $\forall x \in A, y \in B \text{ with } k \ge 1 \text{ and } kr \le 1.$

Definition 2.10 Let A and B be non empty closed subsets of a completed p-metric space(X,d). A cyclic mapping $S:A\cup$ $B \to A \cup B$ is called a $dqb - cyclicCirictype contraction if there exist some <math>r \in (0,1)$ such that

$$d(Sx, Sy) \le rmax[d(x, y), d(Sx, x), d(Sy, y)]$$

 $\forall x \in A, y \in B \text{ with } k \ge 1 \text{ and } kr \le 1.$

Definition2.11 Let A and B be non empty closed subsets of a completed qb - metric space(X, d). A cyclic mapping $S: A \cup S$ $B \to A \cup B$ is called a dqb - cyclicReichtypecontractionif there exist some a, <math>b&cwhere(a + b + c) < 1, such that

$$d(Sx, Sy) \le a.d(x, Sx) + b.d(y, Sy) + c.d(x, y)$$

 $\forall x \in A, y \in B \text{ with } k \ge 1 \text{ and } k(a+b+c) \le 1.$

III. MAIN RESULTS

Now, we prove cyclic - Chatterjea type Contraction in dislocated quasi b-metric space.

Theorem 3.1 Let A and B be nonempty closed subsets of a complete dislocated quasi -b - metric space (X,d). Let cyclic mapping $S: A \cup B \rightarrow A \cup B$ satisfies the condition of a dqb - cyclic - Chatterjea type Contraction. Then S has a unique fixed point in $A \cap B$.

Proof: Let $x \in A(fix)$. Then, by the condition of the theorem,

$$d(S^{2}x,Sx) = d(S(Sx),Sx)$$

$$d(S^{2}x,Sx) \leq r[d(Sx,Sx) + d(x,S^{2}x)]$$

$$d(S^{2}x,Sx) \leq r\alpha$$
And
$$d(Sx,S^{2}x) = d(Sx,S(Sx))$$

$$d(Sx,S^{2}x) \leq r[d(x,S^{2}x) + d(Sx,Sx)]$$

$$d(Sx,S^{2}x) \leq r[d(Sx,Sx) + d(x,S^{2}x)]$$

$$d(Sx,S^{2}x) \leq r[d(Sx,Sx) + d(x,S^{2}x)]$$

$$d(Sx,S^{2}x) \leq r\alpha$$
(2)

Where $\alpha = (d(Sx, Sx) + d(x, S^2x))$

Now, from (1) and (2), we have, $d(S^3x, S^2x) \le r^2\alpha$, and $d(S^2x, S^3x) \le r^2\alpha$.

And in general $\forall n \in \mathbb{N}$, we get,

$$(S^{n+1}x, S^n x) \le r^n \alpha$$
And
$$(S^n x, S^{n+1} x) \le r^n \alpha$$

Let $n, m \in \mathbb{N}$ with m > n, by using the triangular inequality, we have

$$\begin{split} d(S^mx,S^nx) & \leq k^{m-n}d(S^mx,S^{m-1}x) + k^{m-n-1}d(S^{m-1}x,S^{m-2}x) + \dots + k(S^{n+1}x,S^nx) \\ & = (k^{m-n}r^{m-1} + k^{m-n-1}r^{m-2} + k^{m-n-2}r^{m-3} + \dots + k^2r^{n+1} + kr^n)\alpha \\ & = ((kr)^{m-n}r^{n-1} + (kr)^{m-n-1}r^{n-1} + + (kr)^{m-n-2}r^{n-1} + \dots + (kr)^2r^{n-1} + (kr)r^{n-1})\alpha \\ & \leq (r^{n-1} + r^{n-1} + r^{n-1} + \dots + r^{n-1} + r^{n-1})\alpha \\ & = (r^{n-1})(m-n-1)\alpha \\ d(S^mx,S^nx) & \leq (r^{n-1})\beta\alpha \end{split}$$

With $\beta > 0$, as $n \to \infty$, we get $d(S^m x, S^n x) \to 0$.

In a similar way, let $m, n \in \mathbb{N}$, with m > n, by using triangular inequality, we have

$$d(S^n x, S^m x) \le (r^{n-1})\beta \alpha$$

With $\beta > 0$, as $n \to \infty$, we get $d(S^m x, S^n x) \to 0$. Therefore sequence $\langle S^n x \rangle$ is a Cauchy sequence that converges to some $u \in X$. As (X, d) is complete, sequence $\langle S^n x \rangle$ is in A and sequence $\langle S^{2n-1} x \rangle$ is in B in a way that we have both the sequences tend to same limit $u \in X$.

Since A and B are closed subsets of X and, $u \in A \cap B$, therefore $A \cap B \neq \emptyset$.

Now we will prove the existence of fixed point i.e. Su = u.

By the condition of the theorem we have

$$d(S^n x, Su) = d(S(S^{n-1}x), Su)$$

$$d(S^n x, Su) \le r[d(S^{n-1}x, Su) + d(u, S^n x)]$$

Now as $n \to \infty$, we get

$$d(u, Su) \le r[d(u, Su) + d(u, u)]$$

$$d(u, Su) \le rd(u, Su)$$

Since $r \ge 1$, this inequality is only possible if d(u, Su) = 0.

Similarly from the condition of the theorem, we have

$$d(Su, S^n x) = d(Su, S(S^{n-1}x))$$

$$d(Su, S^n x) \le r[d(u, S^n x) + d(S^{n-1}x, Su)]$$

Now as $n \to \infty$, we get

 $d(Su, u) \le r[d(Su, u) + d(u, Su)]$

From triangular inequality,

 $d(Su, u) \le rd(Su, Su)$ d(Su,u)=0.

Which gives

Hence d(u, Su) = d(Su, u) = 0 and thus, Su = u. This implies that u is a fixed point of S.

Now we prove the uniqueness of the fixed point. Let $v \in X$ be another fixed point of S, such that Sv = v. Then by the condition of the theorem we lead to

$$\begin{aligned} d(u,v) &= d(Su,Sv) \\ d(u,v) &\leq r[d(u,Sv) + d(v,Su)] \\ d(u,v) &\leq r[d(u,v) + d(v,u)] \\ d(u,v) &= r d(u,u) \\ d(u,v) &= 0. \end{aligned}$$

Similarly,

$$d(v,u) = d(Sv,Su) d(v,u) \le r[d(v,Su) + d(u,Sv)] d(v,u) \le r[d(v,u) + d(u,v)] d(v,u) = r d(v,v) d(v,u) = 0.$$

d(u, v) = d(v, u) = 0. This implies that u = v and u is the unique fixed point of S.

Now, we provide alternate proof for cyclic - Ciric type Contraction in dislocated quasi b - metric space. Wu et.al.[8] in 2016 proved cyclic — Ciric type Contraction in dislocated quasi b — metric space.

Theorem 3.2 Let A and B be nonempty closed subsets of a *complete dislocated quasi* -b - metric space (X, d). Let cyclic mapping $S: A \cup B \rightarrow A \cup B$ satisfies the condition of a dqb - cyclic - Ciric type Contraction. Then S has a unique fixed point

Proof: Let $x \in A(fix)$. Then, by the condition of the theorem,

$$d(S^{2}x, Sx) = d(S(Sx), Sx)$$

$$d(S^{2}x, Sx) \le r \max[d(Sx, x) + d(S^{2}x, Sx) + d(Sx, x)]$$
Let $\alpha = \max[d(S^{2}x, Sx) + d(Sx, x)]$

$$d(S^{2}x, Sx) \le r \alpha$$
(3)

And

$$d(Sx, S^2x) = d(Sx, S(Sx))$$

$$d(Sx, S^2x) \le r \max[d(x, Sx) + d(Sx, x) + d(S^2x, Sx)]$$
Let $\beta = \max[d(x, Sx) + d(Sx, x) + d(S^2x, Sx)]$

$$d(Sx, S^2x) \le r \beta$$
(4)

Let $\zeta = \max[\alpha, \beta]$

Now, from (3) and (4), we have, $d(S^3x, S^2x) \le r^2\zeta$ and $d(S^2x, S^3x) \le r^2\zeta$.

And more generally $\forall n \in \mathbb{N}$, we get,

$$(S^{n+1}x, S^nx) \le r^n\zeta$$

And

$$(S^n x, S^{n+1} x) \le r^n \zeta$$

Let $n, m \in \mathbb{N}$ with m > n, by using the triangular inequality, we have

$$\begin{split} d(S^mx,S^nx) &\leq k^{m-n}d(S^mx,S^{m-1}x) + k^{m-n-1}d(S^{m-1}x,S^{m-2}x) + \dots + k(S^{n+1}x,S^nx) \\ &= (k^{m-n}r^{m-1} + k^{m-n-1}r^{m-2} + +k^{m-n-2}r^{m-3} + \dots + k^2r^{n+1} + kr^n)\zeta \\ &= ((kr)^{m-n}r^{n-1} + (kr)^{m-n-1}r^{n-1} + +(kr)^{m-n-2}r^{n-1} + \dots + (kr)^2r^{n-1} + (kr)r^{n-1})\zeta \\ &\leq (r^{n-1} + r^{n-1} + r^{n-1} + \dots + r^{n-1} + r^{n-1})\zeta \\ &= (r^{n-1})(m-n-1)\zeta \\ d(S^mx,S^nx) &\leq (r^{n-1})\lambda\zeta \end{split}$$

With $\lambda > 0$, as $n \to \infty$, we get $d(S^m x, S^n x) \to 0$.

In a similar way, let $m, n \in \mathbb{N}$, with m > n, by using triangular inequality, we have

$$d(S^n x, S^m x) \le (r^{n-1})\lambda \zeta$$

With $\lambda > 0$, as $n \to \infty$, we get $d(S^m x, S^n x) \to 0$. Therefore sequence $\langle S^n x \rangle$ is a Cauchy sequence that converges to some $u \in X$. As (X, d) is complete, sequence $\langle S^n x \rangle$ is in A and sequence $\langle S^{2n-1} x \rangle$ is in B in a way that we have both the sequences tend to same limit $u \in X$.

Since A and B are closed subsets of X and, $u \in A \cap B$, therefore $A \cap B \neq \emptyset$.

Now we will prove the existence of fixed point i.e. Su = u.

By the condition of the theorem we have

$$d(S^{n}x, Su) = d(S(S^{n-1}x), Su)$$

$$d(S^{n}x, Su) \le r \max[d(S^{n-1}x, u) + d(S^{n}x, S^{n-1}x) + d(Su, u)]$$

Now as $n \to \infty$, we get

$$d(u,Su) \le r \max[d(u,Su) + d(u,u) + d(Su,Su)]$$

$$d(u,Su) \le rd(u,Su)$$

Since $r \ge 1$, this inequality is only possible if d(u, Su) = 0.

Similarly from the condition of the theorem, we have

$$d(Su, S^{n}x) = d(Su, S(S^{n-1}x))$$

$$d(Su, S^{n}x) \le r \max[d(u, S^{n-1}x) + d(Su, u) + d(S^{n}x, S^{n-1}x)]$$

Now as $n \to \infty$, we get

$$d(Su, u) \le r \max[d(u, u) + d(Su, Su) + d(u, u)]$$

Which gives

$$d(Su, u) = 0.$$

Hence d(u, Su) = d(Su, u) = 0 and thus, Su = u. This implies that u is a fixed point of S.

Now we prove the uniqueness of the fixed point. Let $v \in X$ be another fixed point of S, such that Sv = v. Then by the condition of the theorem we lead to

$$d(u,v) = d(Su,Sv) d(u,v) \le r \max[d(u,v) + d(Su,u) + d(Sv,v)] d(u,v) \le r \max[d(u,v) + d(u,u) + d(v,v)] d(u,v) \le r[d(u,v)] d(u,v) = 0. d(v,u) = d(Sv,Su) d(v,u) \le r \max[d(v,u) + d(Sv,v) + d(Su,u)] d(v,u) \le r \max[d(v,u) + d(v,v) + d(u,u)] d(v,u) \le r[d(v,u)]$$

Similarly,

d(u,v) = d(v,u) = 0. This implies that u = v and u is the unique fixed point of S.

Now, we prove cyclic - Reich type Contraction in dislocated quasi b- metric space.

d(v,u)=0.

Theorem 3.3 Let A and B be nonempty closed subsets of a *complete dislocated quasi* -b - *metric space* (X,d). Let cyclic mapping $S: A \cup B \rightarrow A \cup B$ satisfies the condition of a dqb - cyclic - Reich type Contraction. Then S has a unique fixed point

Proof: Let x be some arbitrary in X. We define a sequence $\langle x_n \rangle$ in X such that $x_1 = S(x_0)$, $x_2 = S(x_1)$... in general $S(x_{2n}) = S(x_1)$ x_{2n+1} , $S(x_{2n+1}) = x_{2n+2}$ for n = 0, 1, 2, 3 ... Then, by the condition of the theorem,

$$d(x_1, x_2) = d(Sx_0, Sx_1)$$

$$d(x_1, x_2) \le a. d(x_0, Sx_0) + b. d(x_1, Sx_1) + c. d(x_0, x_1)$$

$$d(x_1, x_2) \le a. d(x_0, x_1) + b. d(x_1, x_2) + c. d(x_0, x_1)$$

$$d(x_1, x_2) \le (a + c)d(x_0, x_1) + b. d(x_1, x_2)$$

$$d(x_1, x_2) - b. d(x_1, x_2) \le (a + c)d(x_0, x_1)$$

$$(1 - b)d(x_1, x_2) \le (a + c)d(x_0, x_1)$$

$$d(x_1, x_2) \le \left(\frac{a + c}{1 - b}\right)d(x_0, x_1)$$

In a similar way we have, $d(x_2, x_3) \le \left(\frac{a+c}{1-b}\right) d(x_1, x_2)$

or,
$$d(x_2, x_3) \le \left(\frac{a+c}{1-b}\right)^2 d(x_0, x_1)$$

And continuing like this we have, $d(x_n, x_{n+1}) \le \left(\frac{a+c}{1-b}\right)^n d(x_0, x_1)$

$$d(x_{n+1}, x_{n+2}) \le \left(\frac{a+c}{1-b}\right)^{n+1} d(x_0, x_1)$$

Now as $n \to \infty$, $\left(\frac{a+c}{1-b}\right)^{n+1} d(x_0, x_1) \to 0$, This, therefore, suggests that the sequence $\{x_n\}$ is a Cauchy Sequence in X.Thus, there is a point $u \in X$ such that $x_n \to u$. Therefore we have, Su = u. Now we prove the uniqueness of the fixed point. Let $v \in X$ be another fixed point of S, such that Sv = v. Then by the condition of the theorem we have

$$d(u,v) = d(Su,Sv) d(u,v) \le a.d(u,Su) + b.d(v,Sv) + c.d(u,v) d(u,v) \le a.d(u,u) + b.d(v,v) + c.d(u,v) d(u,v) \le c.d(u,v) d(u,v) = 0.$$

Similarly,

$$d(v,u) = d(Sv,Su)$$

$$d(v,u) \le a.d(v,Sv) + b.d(u,Su) + c.d(v,u)$$

$$d(v,u) \le a. d(v,v) + b. d(u,u) + c. d(v,u)$$

 $d(v,u) \le c. d(v,u)$
 $d(v,u) = 0.$

d(u, v) = d(v, u) = 0. This implies that u = v and u is the unique fixed point of S.

IV. CONCLUSION

We presented some new results and provided alternate proof for fixed point result in dislocated quasi b-metric space using dqbcyclic Ciric type contraction.

V. ACKNOWLEDGMENT

The author sincerely acknowledges help and guidance of Dr. SS Pagey, Professor (Retd.), institute for excellence in higher education, Bhopal..

REFERENCES

- [1] Aage, C.T., Golhare, P.G., 2016, On fixed point theorems in dislocated quasi b-metric spaces, International Journal of Advances in Mathematics, Vol. 2016, No. 1, pp. 55-70.
- [2] Bakhtin I.A., The contraction mapping principle in almost metric spaces. 30. In Functional Analysis. Ul'yanovsk Gos. Ped. Inst., Ul'yanovsk; 1989:26–37.
- [3] Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux 'quations intègrales, Fund. Math., Vol. 3 (1922), pp. 133–181.
- [4] Chatterjea, S.K., Fixed point theorems, C.R. Acad. Bulgare Sci., 25 (1972), pp.727-730.
- [5] Ciric, Lj. B., A generalization of Banach's contraction principle, Proceedings of the American Mathematical Society, Vol 45, No. 2(Aug. 1974).
- [6] Hitzler, P., Seda, A. K, Dislocated Topologies, J. Electr. Engin., 51(12/s) (2000), pp. 3-7.
- [7] Kirk, W.A., Srinivasan, P.S., Veeramani, P., Fixed points for mapping satisfying cyclic contractive conditions. Fixed Point Theory 4, pp.79-89 (2003)
- [8] Klin-eam, Chakkrid, Suanoom, Cholatis, Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions, Fixed Point Theory and Applications, (2015).
- [9] Reich, S., Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), pp. 121-124.
- [10] Wilson, W. A., American Journal of Mathematics, Vol. 53, No. 3 (Jul., 1931), pp. 675-684.
- [11] Wu, H., Wu, D., Some Fixed Point Theorems in Complete Dislocated Quasi-b-metric Space, Journal of Mathematics Research, Vol. 8, No. 4, pp. 68-73, August 2016.
- [12] Zeyada, F. M., Hassan, G. H., Ahmed, M. A., A Generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces, The Arabian Journal for Science and engeering, Vol.31(2005), pp 111-114.