

COMPARISION OF NUTRITIONAL STATUS OF INFANTS IN SLUM AREAS: IMPACT OF NUTRITION EDUCATION

Dr. Sarojini Jamadagni
Asstt. Professor
Dept. Of Home Science
S.N.R.L.Jairam Girls College
Lohar Majra(HARYANA)

Dr. Sunita Madaan
Head and Associate Professor
Dept. Of Home Science
University College
K.U. Kurukshetra

Knowledge of nutrition is important for all weather young or old; illiterate or literate; boy or girl; and those living in rural or slums. It helps to choose right food, i.e. develop right attitudes towards food and build good eating habits.

"Nutrition education is the process by which people gain knowledge of nutrition and are persuaded to bring about required changes in their food habits."

Nutrition knowledge, Good selection followed by correct cooking practices and hygienic consumption of food promotes nutritional status.

Assessment of nutritional status by can be done by anthropometric data. If infants and children do not get sufficient food they fail to grow properly. Weighing machine is a useful and accurate tool for assessing body weight. Measurements of weight of children at various ages have been used as an index of nutritional status and have proved very valuable when correctly interpreted.

Body weight is the most widely used and the simplest reproducible anthropometric measurements for the evaluation of nutritional status of young infants and children. It indicates the body mass and is a composite of all body constituents like water, minerals, fat, protein, bone etc. Its potential is perceived not only by the health personnel, but also by the community both the educated and illiterate alike. Serial measurements of weight, as in growth monitoring, are more sensitive indicators of changes in nutritional status than a single measurement

METHODOLOGY

Multistage sampling technique was used for the selection of the sample. Five

urban slums of Kurukshetra District of Haryana were selected on random basis. Total 286 mothers of infants (0-24 months) were selected purposively on random basis.

Data was collected using a pretested interview schedule

Nutritional Education Intervention Programme

The mothers of infants received nutrition education over a period of 8 months. The nutrition education intervention programme covered five lesson and each topic was presented twice. Two related topics were presented on the same day with a break of five minutes in between presentations. The care givers and mothers assembled in group of 2-8 respondents or as per suitability of respondents at nearby areas on the day of nutrition education, as per the appointment made during the prior visit.

Six lesson plans were used

1. Keeping food safe and clean
2. Low cost nutritious foods.
3. Balanced diet
4. Guidelines for mothers at the time of weaning.
5. Some Do's and Don'ts for mothers.
6. Imparting nutrition education through picture.

BODY WEIGHT

It is sensitive even to small changes in nutritional status due to childhood morbidities like diarrhoea etc. Rapid loss of body weight in infants and children should be considered an indicator of potential malnutrition.

Technique

The weight was taken by beam balance (platform scale) for small infants and ordinary weighing balance (bathroom scale) for infants above 12 months.

Body weights of the children were recorded to the nearest 0.1kgm

The per cent level of weight for age was calculated by comparing with WHO (World

Health Organisation) standard (2007), before and after imparting nutrition education.

STATISTICAL ANALYSIS

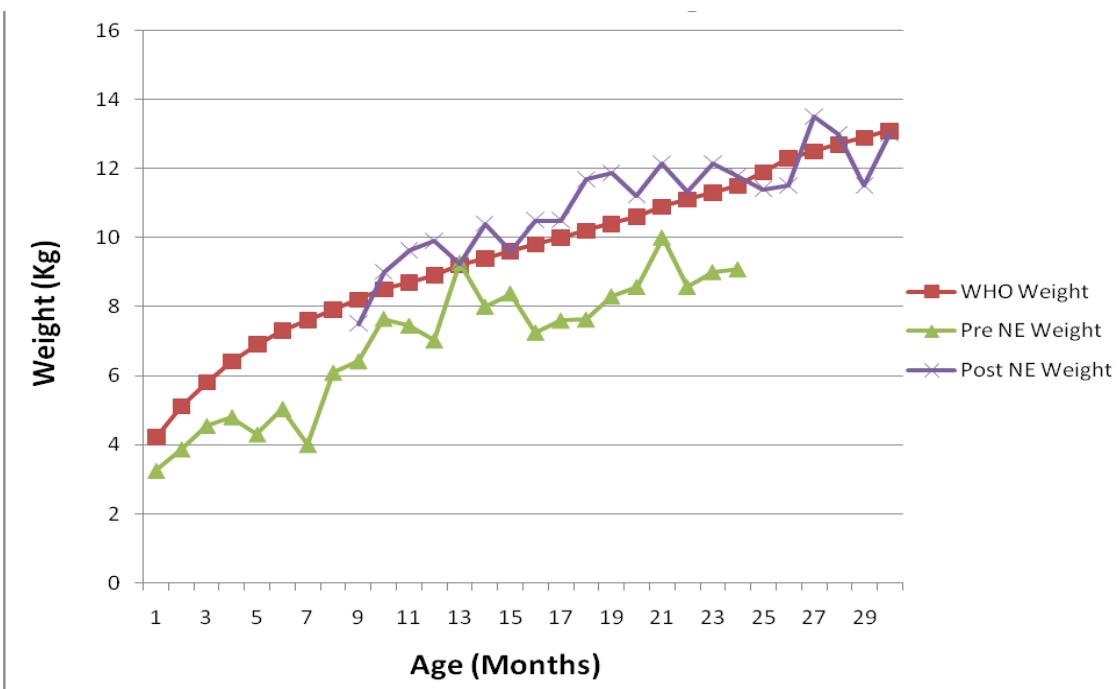
Per centage, Arithmetic mean, standard deviation, paired t-test were used

RESULTS AND DISCUSSION :

TABLE :1

Distribution of Female Infants according to Weight before and after imparting nutrition education as compared with WHO standards.

Before Imparting Nutrition Education				After Imparting Nutrition Education				Correlation	t	df	p
Age (months)	No.	Mean \pm SD	WHO Std	Age (months)	Mean \pm SD	WHO Std	Mean \pm SD				
1	4	3.25 \pm 0.65	4.2	77.38	7.5 \pm 1.0	7.9	94.93	.837	13.16	3	.001 **
2	6	3.87 \pm 0.83*	5.1	75.88	9 \pm 0.5	8.2	109.7	.855	27.13	5	.000 **
3	8	4.55 \pm 1.27	5.8	78.44	9.53 \pm 0.7	8.5	112.1	.882	20.02	7	.000 **
4	5	4.8 \pm 0.21*	6.4	75.00	10.0 \pm 0.3	8.7	115.1	-.849	22.80	4	.000 **
5	5	4.3 \pm 0.27*	6.9	62.31	9.24 \pm 0.2	8.9	103.8	.873	82.33	4	.000 **
6	7	5.04	7.	69.04	14 \pm 0.9	9.2	113.0	.365	14.01	6	.000


		±0.77*	3			9		4		4		**
7	1		7. 6	72	15		9.4	80				
8	9	6.09 ±1.35*	7. 9	77.08	16	10.5 ±1.2 8	9.6	109.3 7	.485	9.930	8	.000 **
9	5	6.42 ±0.64*	8. 2	78.29	17	10.5 ±1.4 6	9.8	107.1 4	.470	7.087	4	.002 **
10	6	7.65 ±1.78	8. 5	90	18	11.6 8 ±0.8 5	10	116.8 0	.840	8.539	5	.000 **
11	11	7.45 ±0.9*	8.7	85.63	19	11.8 6 ±0.6 3	10. 2	116.2 7	.500	18.265	10	.000* *
12	5	7.02 ±0.71*	8.9	78.87	20	11.2 2 ±0.7 7	10. 4	107.8 8	.476	12.385	4	.000* *
13	3	9.27 ±2.37	9.2	100	21	12.1 3 ±1.6 2	10. 6	114.4 3	.999	6.557	2	.022*
14	4	8 ±1.83	9.4	85.10	22	11.3 3 ±1.4 6	10. 9	103.9 4	.790	5.934	3	.010*
15	8	8.38 ±1.3	9.6	87.29	23	12.1 5 ±1.1 1	11. 1	109.4 5	.903	18.896	7	.000* *

16	4	7.25 ±0.87*	9.8	73.97	24	11.7 8 ±0.2 6	11. 3	104.2 4	.329	11.063	3	.002* *
18	6	7.63 ±1.28*	10.2	74.80	26	11.4 ±1.0 6	11. 5	99.13	.563	8.330	5	.000* *
20	3	8.57 ±1.69*	10.6	80.84	28	11.5 ±1.8	11. 9	96.63	1.000	44.000	2	.001* *
21	2	13.5 ±2.12	10.9	123.8 5	29	10 ±2.8 3	12. 3	81.30	1.000	-7.000	1	.090
22	3	13 ±1.73	11.1	117.1 1	30	8.57 ±1.2 7	12. 5	68.56	.980	-13.942	2	.005* *
23	1		11.3	99	31		12. 7	101				
24	6	13 ±0.84	11.5	113.0 4	32	9.08 ±0.8	12. 9	70.38	.522	-11.977	5	.000* *

** Significant at p<.01

* Significant at p<.05

Fig.1 Distribution of Female infants according to Weight before and after imparting nutrition education.

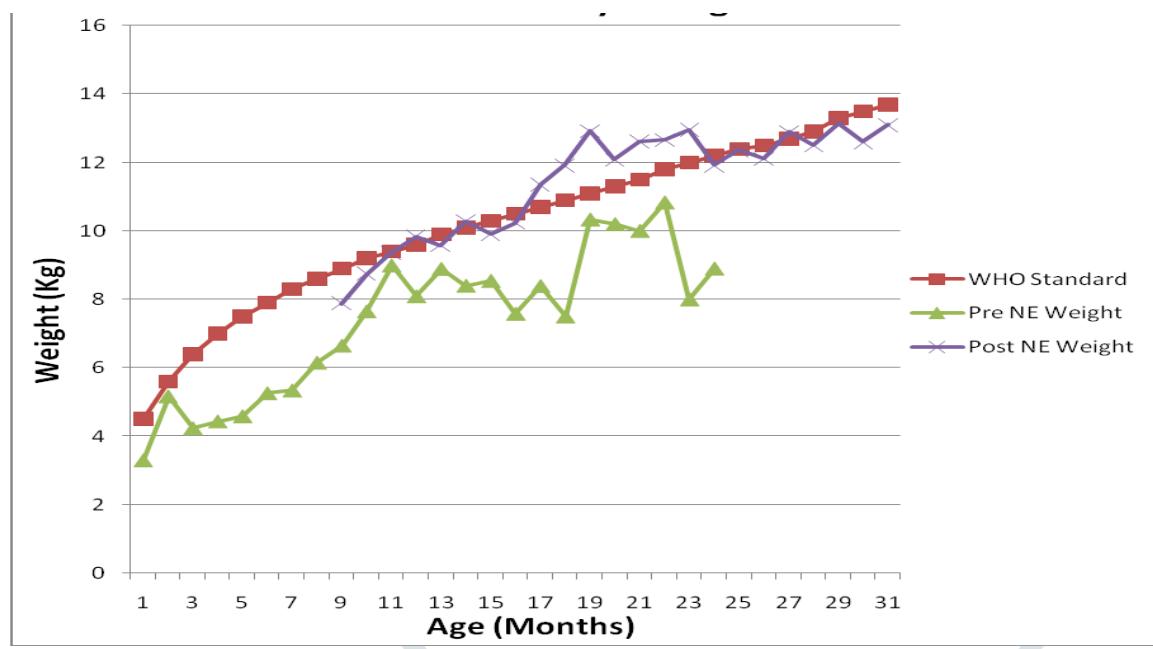
Pre NE: Before Imparting Nutrition Education

Post NE: After Imparting Nutrition Education

Table 1 & fig. 1 indicate the weight of female infants. In all age group except 1, 3, 7, 10, 14, 15, 21, 22, 24 months differ significantly from WHO standards according to their weight. A positive change in mean weight was analyzed while comparing them with WHO standards.

All this data was statistically analyzed for paired t-test the results indicated there was significant difference between weight of female infants before and after imparting nutrition education.

TABLE- 2 Distribution of Male Infants according to Weight before and after imparting nutrition education as compared with WHO standards.


Before Imparting Nutrition Education					After Imparting Nutrition Education					Correlation	df	p
Age (months)	No.	Mean \pm SD	WHO Std	Mean Weight	Age (months)	Mean \pm SD	WHO Std	Mean Weight				
1	4	3.3 \pm 0.6*	4.5	73.33	9	7.6 \pm 1.2	8.9	85.39	0.722	8.99	3	0.003 **
2	5	4 \pm 0.87*	5.6	71.42	10	8.8 \pm 0.6	9.2	95.65	0.958	37.947	4	0.000 **
3	7	4.24 \pm 0.68*	6.4	66.25	11	9.36 \pm 1.2	9.4	99.57	0.075	9.613	6	0.000 **
4	8	4.44 \pm 0.38*	7	63.42	12	9.84 \pm 0.6	9.6	102.5	-0.200	18.445	7	0.000 **
5	9	4.59 \pm 0.74*	7.5	61.20	13	9.58 \pm 1.2	9.9	96.76	0.270	12.175	8	0.000 **
6	14	5.26 \pm 0.94*	7.9	66.58	14	10.29 \pm 1.3	10.1	101.80	0.795	23.452	13	0.000 **
7	8	5.34 \pm 0.95*	8.3	64.33	15	9.91 \pm 0.7	10.3	96.21	0.793	22.405	7	0.000 **
8	11	6.15 \pm 1.15*	8.6	64.33	16	10.24 \pm 1.6	10.5	97.52	0.553	9.716	10	0.000 **

9	11	6.65 ±0.53*	8.9	74.71	17	11.3 6 ±0.8 4	10. 7	106.1 6	-0.114	14.9 95	10	0.000 **
10	13	7.65 ±1.66*	9.2	83.15	18	11.9 2 ±1.0 9	10. 9	109.3 5	0.787	14.7 28	12	0.000 **
11	8	8.99 ±1.33	9.4	95.63	19	12.9 3 ±0.5 8	11. 1	116.4 8	0.737	11.3 68	7	0.000 **
12	13	8.09 ±1.3*	9.6	84.27	20	12.0 9 ±0.7 6	11. 3	106.9 9	0.708	15.5 07	12	0.000 **
13	9	8.89 ±1.22	9.9	89.79	21	12.6 9 ±0.4 7	11. 5	110.3 4	0.739	12.2 93	8	0.000 **
14	9	8.4 ±1.23*	10. 1	83.16	22	12.5 9 ±0.6 7	11. 8	106.6 9	0.294	10.3 43	8	0.000 **
15	5	8.54 ±2.13	10. 3	82.91	23	12.9 6 ±0.4 6	12	108.0 0	0.742	5.42 3	4	0.006 **
16	6	7.58 ±0.9*	10. 5	72.19	24	11.9 2 ±1.2 2	12. 2	97.70	0.730	12.7 35	5	0.000 **
17	7	8.39 ±1.02*	10. 7	78.41	25	12.3 6 ±0.8	12. 4	99.67	0.895	22.8 00	6	0.000 **

							5						
18	14	7.5 ±0.63*	10.9	68.80	26		12.1 1 ±0.8 1	12. 5	96.88	0.213	18.9 45	13	0.000 **
19	3	10.33 ±1.53	11.1	93.06	27		12.9 ±0.8 5	12. 7	101.5 7	0.958	5.92 3	2	0.027 *
21	1		11.5	86.95	29		12.5 ±0	13. 1	95.41			0	
22	3	10.83 ±2.25	11.8	91.77	30		13.1 3 ±1.6 3	13. 3	98.72	0.894	3.68 3	2	0.066
23	2	9.5 ±2.12*	12	79.16	31		12.6 ±0.8 5	13. 5	93.33	1.000	3.44 4	1	0.180
24	4	8.9 ±0.84*	12.2	72.95	32		13.1 ±0.2	13. 7	95.62	0.079	9.89 9	3	0.002 **

** Significant at $p < .01$, * Significant at $p < .05$

Fig.2 Distribution of Boys infants according to Weight before and after imparting nutrition education.

Pre NE: Before Imparting Nutrition Education

Post NE: After Imparting Nutrition Education

Table- 2 & fig.-2 shows that male infants except 11 months, 13 months, 15 months, 19 months, 21 months and 22 months, differ significantly from WHO standards according to their weight.

Change in mean weight was analyzed for males the data indicate drastic improvement in around all age groups. While compared with WHO standards.

When the weight of male was statistically analyzed for paired t-test the results indicated there was a significant difference in almost all the age groups before and after imparting nutrition education when compared with WHO standards

REFERENCES

1. Al-Shookri A, Al-Shukaily L, Hassan F, Al-Sheraji S, Al-Tobi S, (2011), Effect of Mothers Nutritional Knowledge and Attitudes on Omani Children's Dietary Intake. Oman Med J. Jul; 26(4): 248-252.
2. Azmm Azam, MJ Alam, AAM Kurshed, MAH Bhyan. (2013), Impact of Nutrition

education to the mother on nutritional status of hospitalized malnourished children. Dhaka Shishu (Children) Hospital Journal. ISSN 1013-2295.

3. Bartick M, Reinhold A (2010), "The burden of suboptimal breastfeeding in the United States: a pediatric cost analysis". Pediatrics 125 (5): e1048-56. doi:10.1542/peds.2009-1616. PMID 20368314.

4. Chaturvedi M. Nandan D. Gupta SC. (2007), Rapid assessment of infant-feeding practices in Agra district. Indian J community Med 32:227.

5. Chung M, Raman G, et al. (2007), "Breastfeeding and maternal and infant health outcomes in developed countries". Evid Rep Technol Assess (Full Rep) (153): 1-186. PMID 17764214. Retrieved 2009-09-22.

6. Edris M. (2007), Assessment of nutritional status of pre-school children of Gumbrit, Noth West Ethiopia. Ethiopian Journal of Health Development, 21(2): 125-129.

7. Goel, Naveen K; Meenu Kala, Abhiruchi Galhotra, Rambeer Pathak & Hari Mohan Swami (2009), 'Awareness Regarding Maternal and Infant Feeding Practices Among Mothers of Medical Undergraduates' in the Internet Journal of HealthTM ISSN: 1528-8315.

10 Mother's Knowledge and belief on breast feeding mothers knowledge and belief on breast feeding. (2002), Ethioh Med J. Oct. 40(4): 365-74.

11 Monika, Shubhangna and Raj (2004), Factors Affecting Infant feeding Practices among women of Baijnath Block of Himachal Pradesh. J.Hum.Ecol. 16(1): 29-32.

12 Understanding Infant feeding beliefs, practices and preferred nutrution education and health providers approaches (2010), an exploratory study with somali mothers in the USA matern child Nutr. Jan 6(1): 67-88.PMC.

13 Singh I, and Khosla, S. (2000), Impact of Nutrition Education on the Mothers of Anemic Preschool Children. Journal of Research Punjab Agricultural University 37:3-4, 246-252

14 Vani Sethi, Sushma Kashyap and Veenu Seth (2003), Infant feeding practices in a Relocated slum of Delhi and the effect of Nutrition Education of Mothers on the practices Adopted, applied Nutritions Vol. 28, No. 1 & 2 pp 11-21, 2003.