A SPECIAL NEAR-RING STRUCTURE

Dr. G. Sugantha

Assistant Professor, Department of Mathematics, Pope's College (Autonomous), Sawyerpuram-628251, (Affiliated to Mannonmaniam Sundaranar University, Tirunelveli-627012) TamilNadu.

Abstract: In this paper we introduce a new type of near-ring. In [1] R.Balakrishnan and S.Silviya defined a right near-ring N to be a B₁ near-ring if for every $a \in N$, there exists $x \in N^*$ such that Nax = Nxa. Motivated by this, we introduce the concept of β_1 near-rings by defining that N is β_1 if xNy= Nxy for all x, y in N. We discuss the properties of this newly introduced structure. We prove that in a β_1 near-ring with mate functions, the set of all N-subgroups is a Boolean algebra under the usual set inclusion.

Mathematics Subject Classification: 16Y30

IndexTerms - near-ring, ideal, Boolean algebra.

I. INTRODUCTION

Near-rings are generalized rings. If in a ring $(N, +, \cdot)$ with two binary operations '+' and '\cdot', we ignore the commutativity of '+' and one of the distributive laws, $(N, +, \cdot)$ becomes a near-ring. If we do not stipulate the left distributive law, $(N, +, \cdot)$ becomes a right near-ring. Throughout this paper, N stands for a right near-ring $(N, +, \cdot)$ with at least two elements. Obviously, 0n = 0 for all n in N, where '0' denotes the identity of the group (N, +). As in [4], a subgroup (M, +) of (N, +) is called (i) a left N-subgroup of N if MN⊆M, (ii) an N-subgroup of N if NM⊆M and (iii) an invariant N – subgroup of N if M satisfies both (i) and (ii). Again in [4], a normal subgroup (I, +) of (N, +) is called (i) a left ideal if $n(n' + i) - nn' \in I$ for all $n, n' \in N$ and $i \in I$ (ii) a right ideal if IN ⊆ I and (iii) an ideal if I satisfies both (i) and (ii). An ideal I of N is called (i) a prime ideal if for all ideals J, K of N, JK \subseteq I \Rightarrow J \subseteq I or K \subseteq I. (ii) a completely semiprime ideal if for $a \in N$, $a^2 \in I \Rightarrow a \in I$. (iii) an IFP ideal, if for a, b $\in N$, $ab \in I \Rightarrow anb \in I$ for all n in N. (iv) a semiprime ideal if for all ideals J of N, $J^2 \subseteq I \Rightarrow J \subseteq I$. If $\{0\}$ is a semiprime ideal, then N is called a semiprime near-ring [2.87, p.67 of Pilz [4]]. The concept of a mate function in N has been introduced in [5] with a view to handling the regularity structure with considerable ease. A map 'f' from N into N is called a mate function for N if x = xf(x)x for all x in N. Also the existence of mate functions is preserved under homomorphisms. By identity 1 of N, we mean only the multiplicative identity of N. Basic concepts and terms used but left undefined in this paper can be found in Pilz [4].

II. NOTATIONS

- A. E denotes the set of all idempotent of N (e in N is called an idempotent if $e^2 = e$)
- B. L denotes the set of all nilpotent of N (a in N is nilpotent if $a^k = 0$ for some positive integer k)
- $C. \quad N_d = \{n \in N \ / \ n(x+y) = nx + ny \ \text{for all } x, y \ \text{in } N\} \text{set of all distributive elements of } N.$
- D. $C(N) = \{n \in N \mid nx = xn \text{ for all } x \text{ in } N\} Centre \text{ of } N.$
- E. $N_0 = \{n \in N / n0 = 0\}$ zero-symmetric part of N.
- F. $(0: A) = \{n \in N \mid nA = \{0\}\}\ \text{annihilator of } A.$

III. PRELIMINARY RESULTS

We freely make use of the following results and designate them as R(1),R(2),...etc

- **R(1)** N has no non-zero nilpotent elements (i.e) $L = \{0\}$ if and only if $x^2 = 0 \Rightarrow x = 0$ for all x in N
- **R(2)** If f is a mate function for N, then for every x in N, xf(x), $f(x)x \in E$ and Nx = Nf(x)x, xN = xf(x)N (Lemma 3.2 of [5])
- **R(3)** If L= $\{0\}$ and N = $\{0\}$ and N = $\{0\}$ then (i) xy = $\{0\}$ for all x, y in N (ii) N has Insertion of Factors Property IFP for short i.e. for x, y in N, xy=0⇒xny=0 for all n in N. If N satisfies (i) and (ii) then N is said to have (*, IFP) (Lemma 2.3 of [5] &[6])
- **R(4)** N has strong IFP if and only if for all ideals I of N, and for x, $y \in N$, $xy \in I \Rightarrow xny \in I$ for all $n \in N$. (Proposition 9.2, p.289 of Pilz [4])
- **R(5)** For any n in N, (0 : n) is a left ideal of N (1.43, p.21 of Pilz [4])
- R(6) If N is zero-symmetric, then every left ideal is an N-subgroup (Proposition 1.34(b), p.19 of Pilz [4])
- R(7) A zero-symmetric near-ring N has IFP if and only if (0: S) is an ideal where S is any non-empty subset of N (Proposition 9.3, p.289 of Pilz [4])
- **R(8)** If L= $\{0\}$ and N = $\{0\}$, and e is an idempotent in N, then for any $a,b \in \mathbb{N}$, abe = aeb. (Section 2 of Lemma 3 of [3])

IV. Definition 4.1

Let N be a right near-ring. If for every x, y in N, xNy = Nxy then we say N is a β_1 near-ring.

Examples: (i) Let (N, +) be the Klein's four group $\{0,a,b,c\}$. The near-ring $(N,+,\cdot)$ where '.' is defined as per scheme 4, p.408, Pilz [4], which forms a part of Clay [2] is given as follows.

	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	a	c	b
c	0	a	b	c

This near-ring is a β_1 near-ring. It is worth noting that this near-ring does not admit mate functions.

(ii) The near-ring $(N,+,\cdot)$ where (N,+) is the group of integers modulo 5 and "'defined as per scheme 6, p.408, Pilz[4], is given as follows.

	•	0	1	2	3	4
	0	0	0_	0_	0	0
Ų	1	0	0	4	1	0
	2	0	0	3	2	0
	3	0	0	2	3	0
	4	0	0	1	4	0

Then N is not a β_1 near-ring, since $2N \ 2 \neq N \ 22$

Remark: A β_1 near-ring with identity 1 is zero-symmetric. But the converse is not valid.

For example, Let (N, +) be the group of integers modulo 6. We define 'as per scheme 36, p.409, Pilz [4] as follows.

	0	1	2	3	4	5
0	0	0 4 2 4 2	0	0	0	0
1	0	4	2	0	4	2
2	0	2	4	0	2	4
3	0	0	0	0	0	0
4	0	4	2	0	4	2
5	0	2	4	0	2	4

This near-ring $(N, +, \cdot)$ is a zero-symmetric β_1 near-ring with no identity.

Proposition 4.2: If N is a β_1 near-ring, then $xNx = Nx^2$ for all x in N.

Proof: When N is a β_1 near-ring, by definition, for all x, y in N, xNy= Nxy The desired result follows by replacing y by x in Equation (4.2.1)

(4.2.1)

Remark 4.3: The converse of proposition 4.2 is not true.

For example, the near-ring $(N,+,\cdot)$ where (N,+) is the Klein's four group $\{0,a,b,c\}$ and '·' defined as per scheme 8, p.408, Pilz[4] is as follows.

	0	a	b	c
0	0	0	0	0
a	0	0	0	a
b	0	a	b	b
c	0	a	b	c

This near-ring satisfies the condition $xNx = Nx^2$ for all x in N. But it is not a β_1 near-ring.

Proposition 4.4: Every zero-symmetric β_1 near-ring has strong *IFP*.

Proof:

Let N be a
$$\beta_1$$
 near-ring. Then $xNy = Nxy$ for all x, y in N

(4.4.1)

Let I be an ideal of N. Since N is zero-symmetric

$$NI \subseteq I$$
 (4.4.2)

Let $ab \in I$. Now, for any $n \in N$, $anb \in aN$ b = Nab [by Equation 4.4.1] $\subseteq NI \subseteq I$ [by Equation 4.4.2].

(i.e) $anb \in I$.

Now, R(4) guarantees that N has strong IFP.

Theorem 4.5: Let N be a zero-symmetric β_1 near-ring with a mate function f. Then we have,

- (i) Every N-subgroup of N is an ideal.
- (ii) $(0:x) = (0:x^2)$ for every x in N.
- (iii) $N = (0: x) \oplus Nx$ where (0:x) and Nx are ideals of N.
- (iv) (0:x) = eN where e is an idempotent and $1 \in N$.

Proof:

(i) Since N is a β_1 near-ring, we have by Proposition 4.2

$$xNx = Nx^2 \tag{4.5.1}$$

Let $x \in \mathbb{N}$. Since f is a mate function for \mathbb{N} , x = xf(x)x. Let $f(x)x = e \in E$ [by R(2)] and

$$Ne=Nx$$
 [by R(2)] (4.5.2)

Let $S=\{n-ne/n\in N\}$. We claim that (0:S)=Ne. Since (n-ne)e=0 for all $n\in N$, $(n-ne)Ne=\{0\}$ [by R(3))]

which implies $(n-ne)Nx = \{0\}$ [by Equation (4.5.2)] Consequently,

$$Nx \subseteq (0:S) \tag{4.5.3}$$

For the reverse inclusion, Let $z \in (0:S)$. Then since f is a mate function for N,

$$z = zf(z)z \in zNz = Nz^2$$
 [by Equation 4.5.1].

Then
$$z = yz^2$$
 for some $y \in N$ (4.5.4)

Now, $yz \in N$ implies $yz - yze \in S$. Since $z \in (0:S)$, z(yz - yze) = 0.

By R(3), (yz-yze)z = 0. This implies that $yz^2 - yzez = 0$ and $yz^2 - yz^2e = 0$. [by R(8)]

Therefore, by Equation (4.5.4) z - ze = 0. Hence $z = ze \in Ne$ and $z \in Nx$ [by Equation 4.5.2]

It follows that $(0:S)\subseteq Nx$ (4.5.5)

Combining Equations (4.5.3) and (4.5.5), we get (0:S) = Nx. Using R(7), we get Nx is an ideal of N.

Now, if M is any N-subgroup of N, then $M=\sum Nx$ for $x \in M$. Thus M becomes an ideal of N.

(ii) Let $x \in N$ and $y \in (0:x)$ for some y in N. Then $yx \in N$. Now, $yx^2 = yx \cdot x = 0 \cdot x = 0$. This implies $y \in (0:x^2)$,

```
Therefore,
                                            (0:x) \subseteq (0:x^2)
                                                                                                           (4.5.6)
  On the other hand, let u \in (0:x^2). Then ux^2 = 0
  Now, (xux)^2 = (xux)(xux) = x(ux^2)ux = x \cdot 0 \cdot ux = 0 [since N = N_0].
  Now, since L=\{0\}, by R(1), we have xux=0.
  Also, (ux)^2 = (ux)(ux) = u(xux) = u.0 = 0 [since N = N_0], Again L=\{0\} implies ux = 0. Therefore, u \in (0:x).
      Thus,
                                           (0:x^2) \subseteq (0:x)
  Combining Equations (4.5.6) and (4.5.7) we get the desired result.
(iii) Since f is a mate function for N, we have, x \in Nx^2 for all x in N. Then x = n^1x^2 for some n^1 in N.
   This implies nx = nn^1x^2 for all n in N. (i.e.), nx = n_1x^2 where nn^1 = n_1 and hence (n-n_1x)x = 0.
  Therefore, n - n_1 x \in (0 : x). Since n = (n - n_1 x) + n_1 x, we have N = (0 : x) + Nx.
   Next we claim that (0:x) \cap Nx = \{0\}.
  Let 0 \neq y \in (0:x) \cap Nx. Then yx = 0 and y = zx for some z \in N. Now, zx^2 = zx \cdot x = yx = 0.
   Therefore, z \in (0 : x^2) = (0 : x). This implies zx = 0 (i.e.), y = 0.
```

Consequently, (iii) follows. (iv) We have, $N = (0:x) \oplus Nx$ for all x in N. [by (iii)]. Then there exist some $y \in (0:x)$ and $z \in Nx$ such that

Thus $(0:x) \cap Nx = \{0\}$. Also, (0:x) is an ideal of N. [by R(7)]. And Nx is an ideal of N [by (i)].

$$1 = y + z (4.5.8)$$

By (iii), (0:x) and Nx are ideals of N, it follows that $yz, zy \in (0:x) \cap Nx = \{0\}$. Hence yz = 0 and zy = 0.

Now, y = 1.y = (y + z)y[by Equation (4.5.8)] = $y^2 + zy = y^2$.

And z = 1. z = (y + z)z [by Equation 4.5.8)] = $yz + z^2 = z^2$. Therefore, y and z are idempotent. By (ii) we get, $yN\subseteq (0:x)$ (4.5.9)

For the reverse inclusion, let $u \in (0:x)$. Then ux = 0. Now,

$$u = 1.u = (y + z)u$$
[by Equation (4.5.8)] = yu . Therefore, $u \in yN$. Thus
$$(0:x) \subseteq yN$$

$$(4.5.10)$$

From Equations (4.5.9) and (4.5.10), we get (0:x) = yN where y is an idempotent.

Theorem 4.6: Let N be a zero-symmetric β_1 near-ring with mate functions and P be a proper ideal of N. Then the following are equivalent.

(i) P is a prime ideal. (ii) P is a completely prime ideal. (iii) P is a maximal ideal.

Proof. (i) \Rightarrow (ii): Let $xy \in P$, $NxNy = Nxy \subseteq NP \subseteq P$. [by R(6)]

By Theorem 4.5(i), Nx and Ny are ideals in N. Since P is prime,

 $NxNy \subseteq P$ implies $Nx \subseteq P$ or $Ny \subseteq P$.

Since f is a mate function for N, for all x, y in N,

$$x = xf(x)x \in Nx \subseteq P \text{ and } y = yf(y)y \in Ny \subseteq P.$$

Therefore either $x \in P$ or $y \in P$.

Hence (ii)follows.

- (ii) \Rightarrow (i) is obvious.
- (i) \Rightarrow (iii): Let *J* be an ideal of *N* such that $J \neq P$ and that $P \subseteq J \subseteq N$. Let $x \in J P$. Since *f* is a mate function for *N*, for any x in N, x = x(f(x)x) = f(x)xx. Thus for all n in N, $nx = nf(x)x^2$ and this implies (n - nf(x)x)x = 0. Since N has (*, IFP), we get (n - nf(x)x)zx = 0 and z(n - nf(x)x)zx = z. 0 = 0. [since N = N₀] for all $z \in N$. Consequently, $N(n - nf(x)x)Nx = N = \{0\}$ [since $N = N_0$] If y = n - nf(x)x, then $NyNx = \{0\} \subseteq P$. Since P is a prime ideal and Nx, N yare ideals in N.[by Theorem 4.5(i)], $Nx \subseteq P$ or $Ny \subseteq P$

If $Nx \subseteq P$, then $x = xf(x)x \in Nx \subseteq P$. Therefore, $x \in P$ which is a contradiction. Hence $Ny \subseteq P$. Then $Ny \subseteq J$ and this

demands that for all y in N, $y = yf(y)y \in Ny \subseteq J$. Therefore $y \in J$. (i.e.), $n - nf(x)x \in J$.

Now, since $x \in J$, $nf(x)x \in NJ \subseteq J$ and therefore $n \in J$. Hence J = N and (iii) follows.

(iii) \Rightarrow (i) is obvious.

The following Lemma is required to prove the main theorem of this paper.

Lemma 4.7: Let N be an abelian near-ring and let $E \subseteq C(N)$. If $e_1, e_2 \in E$, then $Ne_1 + Ne_2 = Ne$ where

$$e = e_1 + e_2 - e_1 e_2 \in E$$
.

Proof: Let $e = e_1 + e_2 - e_1 e_2$ where $e_1, e_2 \in E$.

$$=e_1^2 + e_2^2 + e_1^2 e_2^2 + 2e_1 e_2 - 2e_2 e_1 e_2 - 2e_1 e_1 e_2$$

$$= e_1 + e_2 + e_1 e_2 + 2e_1 e_2 - 2e_1 e_2 - 2e_1 e_2 [\text{since } E \subseteq C(N)]$$

$$= e_1 + e_2 - e_1 e_2 = e$$

Thus $e \in E$.

Let $n_1e_1 + n_2e_2 \in Ne_1 + Ne_2$ for all $n_1, n_2 \in N$.

Then
$$(n_1e_1 + n_2e_2)e$$
 = $n_1e_1e + n_2e_2e$
= $n_1e_1(e_1 + e_2 - e_1e_2) + n_2e_2(e_1 + e_2 - e_1e_2)$
= $n_1(e_1^2 + e_1e_2 - e_1^2e_2) + n_2(e_2e_1 + e_2^2 - e_2e_1e_2)$ [since $E \subseteq C(N) \Rightarrow E \subseteq N_d$]
= $n_1(e_1 + e_1e_2 - e_1e_2) + n_2(e_2e_1 + e_2 - e_2e_1)$ [since $E \subseteq C(N)$]
= $n_1e_1 + n_2e_2$ [since $(N, +)$ is abelian] Therefore, $n_1e_1 + n_2e_2 = (n_1e_1 + n_2e_2)e \in Ne$

This implies that $Ne_1 + Ne_2 \subseteq Ne$ (4.7.1)

For any
$$n \in N$$
, $ne = en = (e_1 + e_2 - e_1e_2)n$
 $= e_1n + e_2n - e_1e_2n$
 $= ne_1 + ne_2 - ne_1e_2$ [since $E \subseteq C(N)$]
 $= ne_1 + (n - ne_1)e_2$
 $\in Ne_1 + Ne_2$

Therefore, $Ne \subseteq Ne_1 + Ne_2$

(4.7.2)

From Equations (4.7.1) and (4.7.2), we get $Ne_1 + Ne_2 = Ne$.

As an immediate consequence of Lemma 4.7 we have the following.

Theorem 4.8: Let N be zero-symmetric β_1 near-ring with a mate function f. Then for every x, y \in N, there exists some $z \in N$ such that Nx + Ny = Nz.

Proof: Let Nx and Ny be any principal N-subgroups of N.

We need to prove Nx + Ny = Nz for some z in N.

Now, Nx + Ny = Nf(x)x + Nf(y)y [by[5]] = $Ne_1 + Ne_2$ where $e_1 = f(x)x$ and $e_2 = f(y)y$. [Since $E \subseteq C(N)$ and by Theorem 8.11, p.252, Pilz[4]], it follows that (N, +) is abelian.

Hence by Lemma 4.7, $Ne_1 + Ne_2 = Nz$ where $z = e_1 + e_2 - e_1e_2 \in E$.

Thus Nx + Ny = Nz.

We now furnish below the main theorem of this paper.

Theorem 4.9: Let N be a zero-symmetric β_1 near-ring with a mate function f. Then the set \Im of all N-subgroups is a Boolean Algebra under the usual set inclusion.

Proof: Let $\Im = \{Nx/x \in N\}$. By Theorem 8.11, p.252, Pilz[4], N is an abelian near-ring.

Also $E \in C(N)$. Again $Nx \cap Ny = Nxy$ and by Theorem 4.8, Nx + Ny = Nz for some z in N.

Hence \Im is a lattice under the usual set inclusion.

For every x, y, $z \in N$, since f is a mate function for N, x = xf(x)x, y = y(y)y and z = zf(z)z for some f(x), f(y), $f(z) \in N$ and f(x)x, f(y)y, $f(z)z \in E$. We also observe that Nx=Nf(x)x, Ny=Nf(y)y, Nz=Nf(z)z[by R(2)] Further.

$$(f(x)xf(y)y)^{2} = (f(x)xf(y)y)(f(x)xf(y)y)$$

$$= f(x)x(f(y)yf(x)x)f(y)y$$

$$= f(x)x(f(x)xf(y)y)f(y)y \text{ [since } E \subseteq C(N)\text{]}$$

$$= (f(x)x)^{2}(f(y)y)^{2}$$

$$= (f(x)x)(f(y)y)$$

Hence $f(x)x(f(y)y \in E$

Similarly, f(x)x)($f(z)z \in E$

```
To prove \mathfrak{I} is a distributive lattice. For all Nx, Ny, Nz in \mathfrak{I}, we have
```

 $Nx \cap (Ny + Nz) = Nf(x)x \cap (Nf(y)y + Nf(z)z)$ = $Nf(x)x \cap N(f(y)y + f(z)z - f(y)yf(z)z)$ [by Lemma 4.7] = Nf(x)x(f(y)y + f(z)z - f(y)yf(z)z) $= N(f(x)xf(y)y + f(x)xf(z)z - f(x)xf(y)yf(z)z)[\text{since } E \subseteq C(N) \Rightarrow E \subseteq N_d]$ $= N(f(x)xf(y)y + f(x)xf(z)z - (f(x)x)^2f(y)yf(z)z)[\text{since } f(x)x \in E]$ = N(f(x)xf(y)y+f(x)xf(z)z-f(x)xf(y)yf(x)xf(z)z)[since $E \subseteq C(N)$] = Nf(x)xf(y)y + Nf(x)xf(z)z [by Lemma 4.7] $= Nf(x)x \cap Nf(y)y + Nf(x)x \cap Nf(z)z = (Nx \cap Ny) + (Nx \cap Nz)$. Hence \Im is a distributive lattice.

We shall prove that if $Nx \subseteq Ny \subseteq Nz$, then there exists some $w \in N$ such that $Ny \cap Nw = Nx$ and Ny + Nw = Nz.

Now, $Nx \subseteq Ny \subseteq Nz$ implies $Nf(x)x \subseteq Nf(y)y \subseteq Nf(z)z$.

Then as $f(x)x \in Nf(x)x \subseteq Nf(y)y \subseteq Nf(z)z$, there exists $n_1, n_2 \in N$ such that $f(x)x = n_1f(y)y = n_2f(z)z$.

Hence $= (n_1 f(y)y)f(y)y = n_1 f(y)y \text{ [since } f(y)y \in E] = f(x)x$ f(x)xf(y)y

Similarly f(x)xf(z)z=f(x)x

Now, f(y)yf(x)x $= f(y)y(n_1f(y)y) = n_1f(y)y$ [since $f(y)y \in E$ and $E \subseteq C(N)$] = f(x)x

Similarly f(z)zf(x)x= f(x)x

Collecting all these pieces we get,

$$f(x)xf(y)y = f(y)yf(x)x = f(x)xf(z)z = f(z)zf(x)x = f(x)x$$
 (4.9.1)

Similarly, since $f(y)y \in N$, $Nf(y)y \subseteq Nf(z)z$, there exists $n_3 \in N$ such that $f(y)y = n_3 f(z)$

Hence $f(y)yf(z)z = (n_3f(z)z)f(z)z = n_3f(z)z$ [since $f(z)z \in E$] = f(y)y

And
$$f(z)zf(y)y = f(z)z(n_3f(z)z) = n_3f(z)z$$
 [since $f(z)z \in E$ and $E \subseteq C(N)$]= $f(y)y$

Therefore,
$$f(y)yf(z)z=f(z)zf(y)y=f(y)y$$
 (4.9.2)

Let
$$w = f(x)x + f(z)z - f(y)y$$
 (4.9.3)

Now, $w^2 = (f(x)x + f(z)z - f(y)y)^2$

$$= (f(x)x + f(z)z - f(y)y) (f(x)x + f(z)z - f(y)y)$$

$$= f(x)x(f(x)x+f(z)z-f(y)y) + f(z)z(f(x)x+f(z)z-f(y)y) - f(y)y(f(x)x+f(z)z-f(y)y)$$

$$= (f(x)x + f(z)z - f(y)y) f(x)x + (f(x)x + f(z)z - f(y)y) f(z)z - (f(x)x + f(z)z - f(y)y) f(y)y [since E \subseteq C(N)]$$

$$= f(x)xf(x)x + f(z)zf(x)x - f(y)yf(x)x + f(x)xf(z)z + f(z)zf(z)z - f(y)yf(z)z - f(x)xf(y)y + f(z)zf(y)y - f(y)yf(y)y.$$

$$= f(x)x + f(x)x - f(x)x + f(x)x + f(x)x + f(x)z - f(y)y - f(x)x + f(y)y - f(y)y$$
 [by Equations (4.9.1) and (4.9.2)]

$$= f(x)x + f(z)z - f(y)y = w$$

Hence $w \in E$.

And
$$f(y)yw = wf(y)y$$
 [since $E \subseteq C(N)$]

$$= (f(x)x + f(z)z - f(y)y)f(y)y$$

$$= f(x)xf(y)y + f(z)zf(y)y - f(y)yf(y)y$$

$$= f(x)x + f(y)y - f(y)y$$

$$= f(x)x$$
 [since $(N, +)$ is abelian]
(i.e.) $f(y)yw = f(x)x$ (4.9.4)

Collecting all these results, we get,
$$Nf(y)y \cap Nw = Nf(y)yw = Nf(x)x$$
. [by Equation 4.9.4] (i.e.) $Ny \cap Nw = Nx$

Further, Nf(y)y+Nw = N(f(y)y+w-f(y)yw) [byTheorem4.8]

$$=N(f(y)y+w-f(x)x) \text{ [byEquation(4.9.4)]}$$

=Nf(z)z [byEquation4.9.3] (i.e.) Ny+Nw=Nz.

Collecting all the pieces proved so far, \Im is a Boolean algebra.

REFERENCES

[1]Balakrishnan R and Silviya S, B₁ Near- Rings, International Journal of Algebra, Vol 5, No.5:2011, 199-205

[2]J.R.Clay, The near-rings on groups of low order, Math.Z.104 (1968), 364 – 371.

[3]P.Dheena, A Generalization of Strongly Regular Near-Rings, Indian J. Pure and Appl. Math 20(1) January 1989, 58 – 63

[4]GunterPilz, Near-Rings, North Holland, Amsterdam, 1983.

[5]S.Suryanarayanan and N. Ganesan, 'Stable and Pseudo Stable Near-Rings', Indian J. Pure and Appl. Math 19(12) December, 1988, 1206 - 1216.

[6]S.Suryanarayanan, 'Near-Rings with P₃ – mate functions' Bull.Malaysian Math. Soc.(Second Series)19(1996)17-24.

