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Abstract: In this paper we introduce a new type of near-ring. In [1] R.Balakrishnan and S.Silviya defined a right near-ring N to be 

a B1 near-ring if for  every a ∈ N, there  exists x ∈N∗  such  that  Nax = Nxa. Motivated   by  this,  we  introduce the concept  of  β1      

near-rings by defining that N is β1if xNy= Nxy for all x, y in N. We discuss the properties of this newly introduced structure. We 

prove that in a β1 near-ring with mate functions, the set of all N-subgroups is a Boolean algebra under the usual set inclusion. 
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I. INTRODUCTION 

 Near-rings are generalized rings. If in a ring (N, +,∙) with two binary operations ‘+’ and ‘∙’, we ignore the commutativity 

of ‘+’ and  one of  the distributive laws, (N, +, ∙)  becomes  a  near-ring. If  we do not stipulate the left distributive law, (N, +, ∙) 

becomes a right near-ring. Throughout this paper, N stands for a right near-ring (N, +, ∙ ) with at least two elements. Obviously, 

0n = 0 for all n in N, where ‘0’ denotes the identity of the group (N, +). As in [4], a subgroup (M, +) of (N, +) is called (i) a left 

N-subgroup of N if MN⊆M, (ii) an N-subgroup of N if NM⊆M and  (iii) an invariant  N – subgroup of N if M satisfies both (i) 

and  (ii). Again in [4], a normal subgroup (I, +) of  (N, +) is called (i) a left ideal if  n(n ′ + i) – nn′ ∈ I for all n, n′ ∈ N and  i∈ I 

(ii) a right ideal if IN ⊆ I and (iii) an ideal if I satisfies both (i) and (ii). An ideal I of N is called (i) a prime ideal if for all ideals 

J, K of N, JK ⊆ I ⇒ J ⊆I or K ⊆ I. (ii) a completely semiprime ideal if for a ∈ N, a2∈ I ⇒a ∈ I. (iii) an IFP ideal, if for a, b ∈ N, 

ab∈ I ⇒ anb∈ I for all n in N. (iv) a semiprime ideal if for all ideals J of  N, J2⊆ I ⇒ J ⊆ I. If {0} is a semiprime ideal, then N is 

called  a  semiprime  near-ring [2.87, p.67 of Pilz [4]]. The concept of  a  mate function in N  has been  introduced  in [5] with a 

view to handling  the regularity structure  with considerable  ease. A map  ‘f ’ from  N into N is called  a mate  function for N if 

x = xf(x)x for all x in N. Also the existence of mate functions is preserved under  homomorphisms. By identity 1of  N, we mean 

only the multiplicative identity of N. Basic concepts and terms used but left undefined in this paper can be found in Pilz [4]. 

 

II. NOTATIONS 

 

A. E denotes the set of all idempotent of N (e in N is called an idempotent if e2 = e) 
B. L denotes the set of all nilpotent of N (a in N is nilpotent if ak = 0 for some positive integer k) 
C. Nd = {n∈N / n(x+y) = nx + ny for all x, y in N} – set of all distributive elements of N.  
D. C(N) = {n∈N / nx = xn for all x in N} – Centre of N.  
E. N0 = {n∈ N / n0 = 0} – zero-symmetric part of N. 
F. (0: A) = {n∈ N / nA = {0} } – annihilator of A. 

 
 

III. PRELIMINARY RESULTS 

 

We freely make use of the following results and designate them as R(1),R(2), ...etc 

R(1) N has no non-zero nilpotent elements (i.e) L = {0}if and only if x2= 0⇒x = 0 for all x in N  

R(2) If f is a mate function for N, then for every x in N, xf(x), f(x)x ∈E and Nx =Nf(x)x, xN = xf(x)N (Lemma 3.2 of [5]) 

R(3) If L={0} and N =N0 then (i) xy = 0⇒yx = 0 for all x, y in N (ii) N has Insertion of Factors Property– IFP for short– i.e. for 

 x, y in N, xy=0⇒xny=0 for all n in N. If N satisfies (i) and (ii) then N is said to have (∗, IFP) (Lemma 2.3 of [5] &[6]) 

R(4) N has strong IFP if and only if for all ideals I of N, and for  x, y ∈N, xy∈I ⇒ xny∈I for all n∈N. 

 (Proposition 9.2, p.289 of  Pilz [4]) 

R(5) For any n in N, (0 : n) is a left ideal of N (1.43, p.21 of  Pilz [4] ) 

R(6) If N is zero-symmetric, then every left ideal is an N-subgroup (Proposition 1.34(b), p.19 of Pilz [4]) 

R(7) A zero-symmetric near-ring N has IFP if and only if (0: S) is an ideal where S is any non-empty subset of N 

 (Proposition 9.3, p.289 of  Pilz [4]) 

R(8) If L={0} and N =N0 , and e is an idempotent in N, then for any a,b ∈N, abe = aeb.(Section 2 of Lemma 3 of [3]) 

 

IV. Definition 4.1 
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Let N be a right near-ring. If for every x, y in N, xNy = Nxy then we say N is a β1 near-ring. 

Examples: (i) Let (N, +) be the Klein’s four group{0,a,b,c}.The near-ring(N,+,∙)where ‘∙’ is defined as per scheme 4, p.408, 

Pilz [4], which forms a part of Clay [2] is given as follows. 

 

. 0 a b c 

0 0 0 0 0 

a 0 0 a a 

b 0 a c b 

c 0 a b c 

This near-ring is a β1 near-ring. It is worth noting that this near- ring does not admit mate functions. 

              (ii) The near-ring (N,+,∙) where (N,+) is the group of integers modulo 5 and ‘∙’defined as per scheme 6, p.408,          

        Pilz[4], is given as follows. 

. 0 1 2 3 4 

0 0 0 0 0 0 

1 0 0 4 1 0 

2 0 0 3 2 0 

3 0 0 2 3 0 

4 0 0 1 4 0 

Then N is not a β1 near-ring, since 2N 2 ≠N 22 

Remark: A β1 near-ring with identity 1 is zero-symmetric. But the converse is not valid. 

For example, Let (N, +) be the group of integers modulo 6. We define ‘∙’as per scheme 36, p.409,Pilz [4] as follows. 

. 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 4 2 0 4 2 

2 0 2 4 0 2 4 

3 0 0 0 0 0 0 

4 0 4 2 0 4 2 

5 0 2 4 0 2 4 

This near-ring (N, +,∙) is a zero-symmetric β1 near-ring with no identity. 

 

   Proposition 4.2: If N is a β1 near-ring, then xNx= Nx2for all x in N. 

   Proof : When N is a β1 near-ring, by definition, for all x, y in N, xNy= Nxy                      (4.2.1) 

  The desired result follows by replacing  y by x in Equation (4.2.1) 

 

    Remark 4.3: The converse of proposition 4.2 is not true. 
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    For example, the near-ring (N,+,∙) where (N, +) is the Klein’s four group {0, a, b, c} and ‘∙’ defined as per scheme 8,  

    p.408, Pilz[4] is as follows. 

   

    

 

 

 

      This near-ring satisfies the condition xNx= Nx2 for all x in N. But it is not a β1 near-ring. 

        

     Proposition 4.4  : Every zero-symmetric β1 near-ring has strong IFP. 

     Proof: Let N be a β1 near-ring.Then 

xNy= Nxy for all x, y in N                                                             (4.4.1) 

      Let I be an ideal of N.Since N is zero-symmetric 

NI⊆I                                                                           (4.4.2) 

      Let  ab ∈ I. Now, for any n ∈N, anb ∈ aN b = Nab [by Equation 4.4.1] ⊆NI ⊆I [by Equation 4.4.2].  

 (i.e) anb∈I. 

     Now, R(4) guarantees that N  has strong IFP. 

 

      Theorem 4.5:  Let N be a zero-symmetric β1 near-ring with a mate function  f. Then we have, 

(i) Every N-subgroup of N is an ideal. 

(ii) (0 : x) = (0 :x2) for every x in N.  

(iii) N = (0: x) ⊕ Nx where (0 :x) and Nx are ideals of N. 

(iv) (0 : x) = eN where e is an idempotent and 1 ∈N.  

Proof:  

(i) Since N is a β1 near-ring, we have by Proposition 4.2 

xNx=Nx2             (4.5.1) 

Let x ∈N. Since f is a mate function for N, x = xf(x)x. Let f(x)x = e ∈E [by R(2)] and 

Ne=Nx       [by R(2)]                                           (4.5.2) 

Let S={n−ne/n∈N}.We claim that (0:S)=Ne. Since (n−ne)e=0 for all n∈N,(n−ne)Ne={0}[by R(3))] 

which implies (n−ne)Nx ={0}[by Equation (4.5.2)] Consequently,  

 Nx⊆(0 :S)                                                              (4.5.3) 

For the reverse inclusion, Let z ∈ (0 :S). Then since f  is a mate function for N, 

    z = zf(z)z ∈ zNz= Nz2 [by Equation 4.5.1]. 

                                  Then z = yz2for some y∈N                                                                                (4.5.4) 

Now, yz∈N implies yz– yze ∈S. Since z∈(0:S), z(yz− yze) = 0. 

By R(3) ,  (yz− yze)z = 0.  This implies that yz2 − yzez= 0 and  yz2 − yz2e = 0. [by R(8)] 

Therefore, by Equation (4.5.4) z − ze= 0.  Hence z = ze ∈N e and z ∈Nx[by Equation 4.5.2]   

It follows that (0 :S)⊆Nx                                                                (4.5.5) 

Combining Equations (4.5.3) and (4.5.5), we get (0 :S) = Nx. Using R(7) , we get Nx is an ideal of N. 

Now, if M is any N-subgroup of N, then M=∑ 𝑁𝑥 for x ∈M.Thus M becomes an ideal of N. 

 

(ii) Let x ∈N and y ∈ (0 :x) for some y in N. Then yx ∈ N. Now, yx2 = yx.x = 0.x = 0.  

This implies y ∈ (0 :x2),  

. 0 a b c 

0 0 0 0 0 

a 0 0 0 a 

b 0 a b b 

c 0 a b c 
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         Therefore, (0 :x) ⊆ (0:x2)                                                              (4.5.6)  

 On the other hand, let u ∈ (0 :x2). Then ux2 = 0 

 Now, (xux)2 = (xux)(xux) = x(ux2)ux= x.0.ux = 0 [since N = N0].  

 Now, since L={0} , by R(1) ,we have xux= 0.  

 Also, (ux)2 = (ux)(ux) =  u(xux)  =  u.0  =  0 [since N = N0], Again L={0}implies ux= 0. Therefore, u ∈ (0 :x)   .                   

Thus,                                       (0 :x2) ⊆ (0:x)                                                        (4.5.7) 

 Combining Equations (4.5.6) and (4.5.7) we get the desired result. 

     (iii ) Since f is a mate function for N, we have, x ∈Nx2 for all x in N. Then x = n1x2 for some n1in N.  

          This implies nx= nn1x2 for all n in N. (i.e.), nx= n1x2 where nn1 = n1 and hence (n−n1x)x= 0.  

         Therefore, n − n1x ∈(0 :x) . Since n = (n − n1x) + n1x, we have N = (0 :x) + Nx. 

  Next we claim that (0 :x) ∩ Nx= {0}. 

Let 0 ≠y ∈ (0 :x) ∩ Nx. Then yx= 0 and y = zx for some z∈N. Now, zx2= zx.x= yx=  0.  

Therefore, z ∈ (0  :x2)  = (0 : x). This implies zx= 0 (i.e.), y = 0. 

 Thus(0 : x)∩ Nx= {0}. Also, (0 :x) is an ideal of N. [by R(7)]. And Nx is an ideal of N [by (i)].  

 Consequently, (iii)follows. 

   (iv) We have, N = (0 :x) ⊕ Nxfor all x in N. [by (iii)]. Then there exist some y ∈ (0 :x) and z ∈Nx such that 

      1 = y+z                                                    (4.5.8) 

  By (iii), (0 :x) and Nx are ideals of N,  it follows that yz,zy ∈(0: x)∩ Nx={0}.Hence yz=0 and zy=0. 

 Now, y = 1.y = (y + z)y[by Equation (4.5.8)] = y2+ zy= y2.  

 And z = 1.z = (y + z)z [by Equation 4.5.8)] = yz+ z2= z2. Therefore, y and z are idempotent. By (ii) we get, 

yN⊆ (0:x)                                                                                       (4.5.9) 

  For the reverse inclusion, let u ∈ (0 :x). Then ux= 0.Now, 

       u = 1.u = (y + z)u[by Equation (4.5.8)] = yu. Therefore,  u∈yN. Thus 

(0 :x) ⊆ yN                                                                 (4.5.10) 

   From Equations( 4.5.9)and (4.5.10),we get (0 :x) = yN where y is an idempotent. 

 

 Theorem 4.6: Let N be a zero-symmetric β1 near-ring with mate functions and P be a proper ideal of N. Then the 

following are equivalent. 

(i) P is a prime ideal.  (ii)  P is a completely prime ideal. (iii)  P is a maximal ideal. 

       Proof. (i) ⇒ (ii): Let xy∈P, NxNy=Nxy ⊆ NP ⊆P. [by R(6)] 

         By Theorem 4.5(i),  Nx and Ny are ideals in N. Since P is prime,  

        NxNy  ⊆ P implies Nx⊆P or Ny⊆P. 

         Since f is a mate function for N, for all x, y in N, 

   x=  xf(x)x  ∈Nx ⊆P and y = yf(y)y ∈Ny ⊆P.  

        Therefore either x ∈P or y ∈P.  

         Hence (ii)follows. 

 

    (ii) ⇒ (i) is obvious. 

 

    (i) ⇒ (iii): Let J be an ideal of N such that J ≠ P and that P ⊆J ⊆N. Let x ∈J − P. Since f is a mate function for N, 

    for any x in N, x = x(f (x)x) = f (x)xx .Thus for all n in N, nx= nf(x)x2 and this implies (n − nf(x)x)x = 0.  

   Since N has (∗, IFP), we get (n − nf(x)x)zx= 0 and z(n − nf(x)x)zx= z.0 = 0. [sinceN= N0] for all z ∈N.  

    Consequently, N (n − nf(x)x)Nx=N 0 = {0} [since N = N0] If y = n − nf(x)x, then NyNx={0} ⊆P.  

   Since P is a prime ideal and Nx, N yare ideals in N.[by Theorem 4.5(i)], Nx ⊆ P or Ny ⊆ P 

 If Nx⊆P, then x = xf(x)x∈Nx ⊆P. Therefore, x ∈P which is a contradiction. Hence Ny⊆P. Then Ny⊆J and this         

  demands that for all y in N, y = yf(y)y∈Ny ⊆J. Therefore y ∈J. (i.e.), n − nf(x)x ∈ J.  

  Now, since  x∈J, nf(x)x ∈NJ ⊆J and therefore n ∈J. Hence J = N and (iii) follows. 

 

(iii) ⇒ (i)   is obvious. 

     

      The following Lemma is required to prove the main theorem of this paper. 

 

 Lemma 4.7: Let N be an abelian near-ring and let E ⊆C(N). If e1, e2∈E, then Ne1+ Ne2= Ne where  
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  e = e1 + e2 − e1e2∈E. 

 Proof:      Let e = e1+ e2− e1e2where e1,e2∈E. 

               =e1
2 + e2

2 + e1
2e2

2+ 2e1e2– 2e2e1e2 − 2e1e1e2 

               = e1 + e2 + e1e2 + 2e1e2 − 2e1e2 − 2e1e2 [since E ⊆C(N )] 

               = e1 + e2 − e1e2 = e 

  Thus e ∈E. 

Let n1e1 + n2e2 ∈ Ne1 + Ne2 for all n1, n2∈N. 

Then (n1e1 + n2e2)e     = n1e1e + n2e2e 

      = n1e1(e1 + e2 − e1e2) + n2e2(e1 + e2 − e1e2) 

      = n1(e1
2 + e1e2 – e1

2e2) + n2(e2e1 + e2
2 − e2e1e2) [since E ⊆C(N ) ⇒ E ⊆Nd] 

      = n1(e1 + e1e2 − e1e2) + n2(e2e1 + e2 − e2e1)[since E ⊆C(N )] 

      = n1e1 + n2e2 [since (N, +) is abelian] Therefore, n1e1 + n2e2 = (n1e1 + n2e2)e ∈ Ne 

This implies that  Ne1+ Ne2⊆Ne                                                                  (4.7.1) 

For any n ∈N,ne = en = (e1 + e2 − e1e2)n 

  = e1n + e2n − e1e2n 

  = ne1 + ne2 − ne1e2 [since E ⊆C(N )] 

  = ne1 + (n −ne1)e2 

  ∈Ne1 + Ne2 

 Therefore, Ne ⊆Ne1+Ne2                                                                                                                            (4.7.2) 

 From Equations (4.7.1) and (4.7.2), we get Ne1+ Ne2= Ne. 

 

           As an immediate consequence of Lemma 4.7 we have the following. 

 

Theorem 4.8 : Let N  bea zero-symmetric β1 near-ring with  a mate function f. Then for every x, y ∈N, there exists    

some z ∈N such that Nx+ Ny=Nz. 

  Proof:  Let Nx and Ny be any principal N-subgroups of N. 

We need to prove Nx + Ny= Nz for some z in N. 

Now, Nx+ Ny= Nf(x)x + Nf(y)y [by[5] ] = Ne1+ Ne2where e1 = f (x)x and e2 = f (y)y. [SinceE⊆C(N ) and by 

Theorem 8.11, p.252,Pilz[4] ], it follows that (N, +) is abelian. 

Hence by Lemma 4.7, Ne1+ Ne2= Nz where z = e1 + e2 − e1e2∈E. 

Thus Nx+ Ny= Nz. 

We now furnish below the main theorem of this paper. 

 

 Theorem 4.9: Let N be a zero-symmetric β1 near-ring with a mate function f. Then the set ℑ of all N-subgroups is a         

  Boolean Algebra under the usual set inclusion. 

Proof: Let ℑ = {Nx/x∈ N}. By Theorem 8.11, p.252,Pilz[4], N is an abelian near-ring. 

Also E ∈ C(N ). Again Nx ∩ Ny= Nxy and by Theorem 4.8,   Nx+ Ny= Nz for some z in N. 

Hence ℑ is a lattice under the usual set inclusion. 

For every x, y, z ∈ N, since f is a mate function for N, x = xf(x)x, y = y(y)y and z = zf(z)z for some f(x), f(y), f(z) ∈  N 

 and f(x)x, f(y)y, f(z)z ∈  E. We also observe that Nx=Nf(x)x, Ny=Nf(y)y, Nz=Nf(z)z  [by R(2)]                                

Further, 

              (f(x)xf(y)y)2= (f(x)xf(y)y)(f(x)xf(y)y) 

= f(x)x(f(y)yf(x)x)f(y)y 

= f(x)x(f(x)xf(y)y)f(y)y [since E ⊆ C(N)] 

= (f(x)x)2(f(y)y)2 

= (f(x)x)(f(y)y) 

Hence f(x)x)(f(y)y ∈ E 

Similarly, f(x)x)(f(z)z ∈  E 
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        To prove ℑ is a distributive lattice. For all Nx, Ny, Nz in ℑ, we have                                                                                              

         Nx∩ (Ny+ Nz) = Nf(x)x ∩ (Nf(y)y + Nf(z)z) 

           = Nf(x)x ∩ N(f(y)y + f(z)z − f(y)yf(z)z)[by Lemma 4.7] 

           = Nf(x)x(f(y)y + f(z)z − f(y)yf(z)z) 

           = N(f(x)xf(y)y + f(x)xf(z)z − f(x)xf(y)yf(z)z)[since E ⊆ C(N ) ⇒E ⊆ Nd] 

          = N(f(x)xf(y)y + f(x)xf(z)z − (f(x)x)2f(y)yf(z)z)[since f(x)x∈ E] 

                 = N(f(x)xf(y)y+f(x)xf(z)z−f(x)xf(y)yf(x)xf(z)z)[since E ⊆C(N)]      
                  = Nf(x)xf(y)y + Nf(x)xf(z)z [by Lemma 4.7] 

                  = Nf(x)x∩ Nf(y)y + Nf(x)x ∩ Nf(z)z =(Nx∩Ny)+(Nx∩Nz).Hence ℑ is a distributive lattice. 

We shall prove that if  Nx⊆Ny⊆Nz, then there exists some w ∈N such that  Ny∩ Nw= Nx and Ny+ Nw= Nz. 

Now, Nx⊆Ny⊆ Nz implies Nf(x)x⊆ Nf(y)y ⊆ Nf(z)z. 

Then as f (x)x ∈  Nf(x)x ⊆ Nf(y)y ⊆Nf(z)z, there existsn1,n2 ∈  N such that f(x)x = n1f(y)y = n2f(z)z.  

Hence f(x)xf(y)y  = (n1f(y)y)f(y)y= n1f (y)y [since f(y)y ∈  E]= f(x)x 

Similarly  f(x)xf(z)z =f(x)x 

Now, f(y)yf(x)x  = f(y)y(n1f(y)y)= n1f(y)y [since f(y)y ∈  E and E ⊆ C(N)]= f(x)x 

Similarly f(z)zf(x)x  = f (x)x 

       Collecting all these pieces we get, 

   f(x)xf(y)y = f(y)yf(x)x = f(x)xf(z)z = f(z)zf(x)x=f(x)x                        (4.9.1) 

Similarly, since f(y)y∈N, Nf(y)y ⊆Nf(z)z, there exists n3∈N such that f (y)y = n3f (z) 

Hence f(y)yf(z)z= (n3f(z)z)f(z)z= n3f (z)z [since f(z)z ∈  E]= f(y)y 

And  f(z)zf(y)y = f(z)z(n3f(z)z)= n3f (z)z [since f(z)z ∈  E and E ⊆ C(N )]= f(y)y 

Therefore, f(y)yf(z)z=f(z)zf(y)y=f(y)y                       (4.9.2) 

Let w = f(x)x+f(z)z−f(y)y                         (4.9.3) 

Now,w2= (f(x)x+ f(z)z − f(y)y)2 

= (f(x)x+ f(z)z − f(y)y) (f(x)x + f(z)z − f(y)y) 

= f(x)x(f(x)x+f(z)z−f(y)y) + f(z)z(f(x)x+f(z)z−f(y)y) − f(y)y(f(x)x + f(z)z − f(y)y) 

= (f(x)x+f(z)z−f(y)y) f(x)x + (f(x)x+f(z)z−f(y)y) f(z)z− (f(x)x + f(z)z − f(y)y) f(y)y [since E ⊆ C(N)] 

= f(x)xf(x)x + f(z)zf(x)x − f(y)yf(x)x + f(x)xf(z)z+f(z)zf(z)z −f(y)yf(z)z −f(x)xf(y)y + f(z)zf(y)y −f(y)yf(y)y. 

= f(x)x + f(x)x − f(x)x + f(x)x + f(z)z − f(y)y − f(x)x + f(y)y − f(y)y [by Equations (4.9.1) and (4.9.2)] 

= f(x)x + f(z)z − f(y)y = w 

Hence w ∈ E. 

And       f(y)yw  = wf(y)y [since E ⊆ C(N)] 

= (f(x)x+ f(z)z− f(y)y)f(y)y 

= f(x)xf(y)y + f(z)zf(y)y − f(y)yf(y)y 

= f(x)x+ f(y)y − f(y)y 

= f (x)x [since (N,+) is abelian] 

(i.e.)     f(y)yw = f(x)x                     (4.9.4) 

          Collecting all these results, we get,  Nf(y)y ∩ Nw= Nf(y)yw = Nf(x)x. [by Equation 4.9.4] (i.e.)Ny ∩ Nw= Nx  

Further,  Nf(y)y+Nw  =N(f(y)y+w−f(y)yw) [byTheorem4.8] 

                                        =N(f(y)y+w−f(x)x) [byEquation(4.9.4)] 

                                          =Nf(z)z [byEquation4.9.3] (i.e.) Ny+ Nw=Nz. 

Collecting all the pieces proved so far, ℑ is a Boolean algebra. 
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